1
0
mirror of https://github.com/golang/go synced 2024-11-19 02:54:42 -07:00
go/internal/lsp/source/util.go
Muir Manders da514acc47 internal/lsp: suggest completions that satisfy interfaces
When checking if a completion candidate matches the expected type at
the cursor position, we now use types.AssignableTo instead of
types.Identical. This properly handles cases like using a concrete
type to satisfy an interface type.

Calling AssignableTo triggered some crashes related to the fake
"resolved" types we create. Their underlying type was nil, which is
not allowed. We now set their underlying type to the invalid type.

I've also rearranged things so expected type information lives in a
dedicated typeInference struct. For now there is no new information added,
but in subsequent commits there will be more metadata about the
expected type.

Change-Id: I14e537c548960c30e444cf512a4413d75bb3ee45
GitHub-Last-Rev: 7e64ebe32938562648938d7a480195d954b018f2
GitHub-Pull-Request: golang/tools#116
Reviewed-on: https://go-review.googlesource.com/c/tools/+/182358
Run-TryBot: Rebecca Stambler <rstambler@golang.org>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Rebecca Stambler <rstambler@golang.org>
2019-06-17 19:08:20 +00:00

221 lines
5.4 KiB
Go

// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package source
import (
"fmt"
"go/ast"
"go/token"
"go/types"
"strings"
)
// indexExprAtPos returns the index of the expression containing pos.
func indexExprAtPos(pos token.Pos, args []ast.Expr) int {
for i, expr := range args {
if expr.Pos() <= pos && pos <= expr.End() {
return i
}
}
return len(args)
}
func exprAtPos(pos token.Pos, args []ast.Expr) ast.Expr {
for _, expr := range args {
if expr.Pos() <= pos && pos <= expr.End() {
return expr
}
}
return nil
}
// fieldSelections returns the set of fields that can
// be selected from a value of type T.
func fieldSelections(T types.Type) (fields []*types.Var) {
// TODO(adonovan): this algorithm doesn't exclude ambiguous
// selections that match more than one field/method.
// types.NewSelectionSet should do that for us.
seen := make(map[types.Type]bool) // for termination on recursive types
var visit func(T types.Type)
visit = func(T types.Type) {
if !seen[T] {
seen[T] = true
if T, ok := deref(T).Underlying().(*types.Struct); ok {
for i := 0; i < T.NumFields(); i++ {
f := T.Field(i)
fields = append(fields, f)
if f.Anonymous() {
visit(f.Type())
}
}
}
}
}
visit(T)
return fields
}
// resolveInvalid traverses the node of the AST that defines the scope
// containing the declaration of obj, and attempts to find a user-friendly
// name for its invalid type. The resulting Object and its Type are fake.
func resolveInvalid(obj types.Object, node ast.Node, info *types.Info) types.Object {
// Construct a fake type for the object and return a fake object with this type.
formatResult := func(expr ast.Expr) types.Object {
var typename string
switch t := expr.(type) {
case *ast.SelectorExpr:
typename = fmt.Sprintf("%s.%s", t.X, t.Sel)
case *ast.Ident:
typename = t.String()
default:
return nil
}
typ := types.NewNamed(types.NewTypeName(token.NoPos, obj.Pkg(), typename, nil), types.Typ[types.Invalid], nil)
return types.NewVar(obj.Pos(), obj.Pkg(), obj.Name(), typ)
}
var resultExpr ast.Expr
ast.Inspect(node, func(node ast.Node) bool {
switch n := node.(type) {
case *ast.ValueSpec:
for _, name := range n.Names {
if info.Defs[name] == obj {
resultExpr = n.Type
}
}
return false
case *ast.Field: // This case handles parameters and results of a FuncDecl or FuncLit.
for _, name := range n.Names {
if info.Defs[name] == obj {
resultExpr = n.Type
}
}
return false
// TODO(rstambler): Handle range statements.
default:
return true
}
})
return formatResult(resultExpr)
}
func lookupBuiltinDecl(v View, name string) interface{} {
builtinPkg := v.BuiltinPackage()
if builtinPkg == nil || builtinPkg.Scope == nil {
return nil
}
obj := builtinPkg.Scope.Lookup(name)
if obj == nil {
return nil
}
return obj.Decl
}
func isPointer(T types.Type) bool {
_, ok := T.(*types.Pointer)
return ok
}
// deref returns a pointer's element type; otherwise it returns typ.
func deref(typ types.Type) types.Type {
if p, ok := typ.Underlying().(*types.Pointer); ok {
return p.Elem()
}
return typ
}
func isTypeName(obj types.Object) bool {
_, ok := obj.(*types.TypeName)
return ok
}
func formatParams(tup *types.Tuple, variadic bool, qf types.Qualifier) []string {
params := make([]string, 0, tup.Len())
for i := 0; i < tup.Len(); i++ {
el := tup.At(i)
typ := types.TypeString(el.Type(), qf)
// Handle a variadic parameter (can only be the final parameter).
if variadic && i == tup.Len()-1 {
typ = strings.Replace(typ, "[]", "...", 1)
}
if el.Name() == "" {
params = append(params, typ)
} else {
params = append(params, el.Name()+" "+typ)
}
}
return params
}
func formatResults(tup *types.Tuple, qf types.Qualifier) ([]string, bool) {
var writeResultParens bool
results := make([]string, 0, tup.Len())
for i := 0; i < tup.Len(); i++ {
if i >= 1 {
writeResultParens = true
}
el := tup.At(i)
typ := types.TypeString(el.Type(), qf)
if el.Name() == "" {
results = append(results, typ)
} else {
if i == 0 {
writeResultParens = true
}
results = append(results, el.Name()+" "+typ)
}
}
return results, writeResultParens
}
// formatType returns the detail and kind for an object of type *types.TypeName.
func formatType(typ types.Type, qf types.Qualifier) (detail string, kind CompletionItemKind) {
if types.IsInterface(typ) {
detail = "interface{...}"
kind = InterfaceCompletionItem
} else if _, ok := typ.(*types.Struct); ok {
detail = "struct{...}"
kind = StructCompletionItem
} else if typ != typ.Underlying() {
detail, kind = formatType(typ.Underlying(), qf)
} else {
detail = types.TypeString(typ, qf)
kind = TypeCompletionItem
}
return detail, kind
}
func formatFunction(name string, params []string, results []string, writeResultParens bool) (string, string) {
var label, detail strings.Builder
label.WriteString(name)
label.WriteByte('(')
for i, p := range params {
if i > 0 {
label.WriteString(", ")
}
label.WriteString(p)
}
label.WriteByte(')')
if writeResultParens {
detail.WriteByte('(')
}
for i, p := range results {
if i > 0 {
detail.WriteString(", ")
}
detail.WriteString(p)
}
if writeResultParens {
detail.WriteByte(')')
}
return label.String(), detail.String()
}