mirror of
https://github.com/golang/go
synced 2024-11-06 09:26:18 -07:00
579902d0b1
So prevent heavy runtime call overhead, and the compiler will have a chance to optimize the bound check. With this optimization, changing runtime/stack.go to use unsafe.Slice no longer negatively impacts stack copying performance: name old time/op new time/op delta StackCopyWithStkobj-8 16.3ms ± 6% 16.5ms ± 5% ~ (p=0.382 n=8+8) name old alloc/op new alloc/op delta StackCopyWithStkobj-8 17.0B ± 0% 17.0B ± 0% ~ (all equal) name old allocs/op new allocs/op delta StackCopyWithStkobj-8 1.00 ± 0% 1.00 ± 0% ~ (all equal) Fixes #48798 Change-Id: I731a9a4abd6dd6846f44eece7f86025b7bb1141b Reviewed-on: https://go-review.googlesource.com/c/go/+/362934 Reviewed-by: Keith Randall <khr@golang.org> Reviewed-by: Matthew Dempsky <mdempsky@google.com> Reviewed-by: Keith Randall <khr@google.com> TryBot-Result: Gopher Robot <gobot@golang.org> Run-TryBot: Cuong Manh Le <cuong.manhle.vn@gmail.com>
345 lines
9.9 KiB
Go
345 lines
9.9 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package runtime
|
|
|
|
import (
|
|
"internal/abi"
|
|
"internal/goarch"
|
|
"runtime/internal/math"
|
|
"runtime/internal/sys"
|
|
"unsafe"
|
|
)
|
|
|
|
type slice struct {
|
|
array unsafe.Pointer
|
|
len int
|
|
cap int
|
|
}
|
|
|
|
// A notInHeapSlice is a slice backed by go:notinheap memory.
|
|
type notInHeapSlice struct {
|
|
array *notInHeap
|
|
len int
|
|
cap int
|
|
}
|
|
|
|
func panicmakeslicelen() {
|
|
panic(errorString("makeslice: len out of range"))
|
|
}
|
|
|
|
func panicmakeslicecap() {
|
|
panic(errorString("makeslice: cap out of range"))
|
|
}
|
|
|
|
// makeslicecopy allocates a slice of "tolen" elements of type "et",
|
|
// then copies "fromlen" elements of type "et" into that new allocation from "from".
|
|
func makeslicecopy(et *_type, tolen int, fromlen int, from unsafe.Pointer) unsafe.Pointer {
|
|
var tomem, copymem uintptr
|
|
if uintptr(tolen) > uintptr(fromlen) {
|
|
var overflow bool
|
|
tomem, overflow = math.MulUintptr(et.size, uintptr(tolen))
|
|
if overflow || tomem > maxAlloc || tolen < 0 {
|
|
panicmakeslicelen()
|
|
}
|
|
copymem = et.size * uintptr(fromlen)
|
|
} else {
|
|
// fromlen is a known good length providing and equal or greater than tolen,
|
|
// thereby making tolen a good slice length too as from and to slices have the
|
|
// same element width.
|
|
tomem = et.size * uintptr(tolen)
|
|
copymem = tomem
|
|
}
|
|
|
|
var to unsafe.Pointer
|
|
if et.ptrdata == 0 {
|
|
to = mallocgc(tomem, nil, false)
|
|
if copymem < tomem {
|
|
memclrNoHeapPointers(add(to, copymem), tomem-copymem)
|
|
}
|
|
} else {
|
|
// Note: can't use rawmem (which avoids zeroing of memory), because then GC can scan uninitialized memory.
|
|
to = mallocgc(tomem, et, true)
|
|
if copymem > 0 && writeBarrier.enabled {
|
|
// Only shade the pointers in old.array since we know the destination slice to
|
|
// only contains nil pointers because it has been cleared during alloc.
|
|
bulkBarrierPreWriteSrcOnly(uintptr(to), uintptr(from), copymem)
|
|
}
|
|
}
|
|
|
|
if raceenabled {
|
|
callerpc := getcallerpc()
|
|
pc := abi.FuncPCABIInternal(makeslicecopy)
|
|
racereadrangepc(from, copymem, callerpc, pc)
|
|
}
|
|
if msanenabled {
|
|
msanread(from, copymem)
|
|
}
|
|
if asanenabled {
|
|
asanread(from, copymem)
|
|
}
|
|
|
|
memmove(to, from, copymem)
|
|
|
|
return to
|
|
}
|
|
|
|
func makeslice(et *_type, len, cap int) unsafe.Pointer {
|
|
mem, overflow := math.MulUintptr(et.size, uintptr(cap))
|
|
if overflow || mem > maxAlloc || len < 0 || len > cap {
|
|
// NOTE: Produce a 'len out of range' error instead of a
|
|
// 'cap out of range' error when someone does make([]T, bignumber).
|
|
// 'cap out of range' is true too, but since the cap is only being
|
|
// supplied implicitly, saying len is clearer.
|
|
// See golang.org/issue/4085.
|
|
mem, overflow := math.MulUintptr(et.size, uintptr(len))
|
|
if overflow || mem > maxAlloc || len < 0 {
|
|
panicmakeslicelen()
|
|
}
|
|
panicmakeslicecap()
|
|
}
|
|
|
|
return mallocgc(mem, et, true)
|
|
}
|
|
|
|
func makeslice64(et *_type, len64, cap64 int64) unsafe.Pointer {
|
|
len := int(len64)
|
|
if int64(len) != len64 {
|
|
panicmakeslicelen()
|
|
}
|
|
|
|
cap := int(cap64)
|
|
if int64(cap) != cap64 {
|
|
panicmakeslicecap()
|
|
}
|
|
|
|
return makeslice(et, len, cap)
|
|
}
|
|
|
|
// This is a wrapper over runtime/internal/math.MulUintptr,
|
|
// so the compiler can recognize and treat it as an intrinsic.
|
|
func mulUintptr(a, b uintptr) (uintptr, bool) {
|
|
return math.MulUintptr(a, b)
|
|
}
|
|
|
|
// Keep this code in sync with cmd/compile/internal/walk/builtin.go:walkUnsafeSlice
|
|
func unsafeslice(et *_type, ptr unsafe.Pointer, len int) {
|
|
if len < 0 {
|
|
panicunsafeslicelen()
|
|
}
|
|
|
|
mem, overflow := math.MulUintptr(et.size, uintptr(len))
|
|
if overflow || mem > -uintptr(ptr) {
|
|
if ptr == nil {
|
|
panicunsafeslicenilptr()
|
|
}
|
|
panicunsafeslicelen()
|
|
}
|
|
}
|
|
|
|
// Keep this code in sync with cmd/compile/internal/walk/builtin.go:walkUnsafeSlice
|
|
func unsafeslice64(et *_type, ptr unsafe.Pointer, len64 int64) {
|
|
len := int(len64)
|
|
if int64(len) != len64 {
|
|
panicunsafeslicelen()
|
|
}
|
|
unsafeslice(et, ptr, len)
|
|
}
|
|
|
|
func unsafeslicecheckptr(et *_type, ptr unsafe.Pointer, len64 int64) {
|
|
unsafeslice64(et, ptr, len64)
|
|
|
|
// Check that underlying array doesn't straddle multiple heap objects.
|
|
// unsafeslice64 has already checked for overflow.
|
|
if checkptrStraddles(ptr, uintptr(len64)*et.size) {
|
|
throw("checkptr: unsafe.Slice result straddles multiple allocations")
|
|
}
|
|
}
|
|
|
|
func panicunsafeslicelen() {
|
|
panic(errorString("unsafe.Slice: len out of range"))
|
|
}
|
|
|
|
func panicunsafeslicenilptr() {
|
|
panic(errorString("unsafe.Slice: ptr is nil and len is not zero"))
|
|
}
|
|
|
|
// growslice handles slice growth during append.
|
|
// It is passed the slice element type, the old slice, and the desired new minimum capacity,
|
|
// and it returns a new slice with at least that capacity, with the old data
|
|
// copied into it.
|
|
// The new slice's length is set to the old slice's length,
|
|
// NOT to the new requested capacity.
|
|
// This is for codegen convenience. The old slice's length is used immediately
|
|
// to calculate where to write new values during an append.
|
|
// TODO: When the old backend is gone, reconsider this decision.
|
|
// The SSA backend might prefer the new length or to return only ptr/cap and save stack space.
|
|
func growslice(et *_type, old slice, cap int) slice {
|
|
if raceenabled {
|
|
callerpc := getcallerpc()
|
|
racereadrangepc(old.array, uintptr(old.len*int(et.size)), callerpc, abi.FuncPCABIInternal(growslice))
|
|
}
|
|
if msanenabled {
|
|
msanread(old.array, uintptr(old.len*int(et.size)))
|
|
}
|
|
if asanenabled {
|
|
asanread(old.array, uintptr(old.len*int(et.size)))
|
|
}
|
|
|
|
if cap < old.cap {
|
|
panic(errorString("growslice: cap out of range"))
|
|
}
|
|
|
|
if et.size == 0 {
|
|
// append should not create a slice with nil pointer but non-zero len.
|
|
// We assume that append doesn't need to preserve old.array in this case.
|
|
return slice{unsafe.Pointer(&zerobase), old.len, cap}
|
|
}
|
|
|
|
newcap := old.cap
|
|
doublecap := newcap + newcap
|
|
if cap > doublecap {
|
|
newcap = cap
|
|
} else {
|
|
const threshold = 256
|
|
if old.cap < threshold {
|
|
newcap = doublecap
|
|
} else {
|
|
// Check 0 < newcap to detect overflow
|
|
// and prevent an infinite loop.
|
|
for 0 < newcap && newcap < cap {
|
|
// Transition from growing 2x for small slices
|
|
// to growing 1.25x for large slices. This formula
|
|
// gives a smooth-ish transition between the two.
|
|
newcap += (newcap + 3*threshold) / 4
|
|
}
|
|
// Set newcap to the requested cap when
|
|
// the newcap calculation overflowed.
|
|
if newcap <= 0 {
|
|
newcap = cap
|
|
}
|
|
}
|
|
}
|
|
|
|
var overflow bool
|
|
var lenmem, newlenmem, capmem uintptr
|
|
// Specialize for common values of et.size.
|
|
// For 1 we don't need any division/multiplication.
|
|
// For goarch.PtrSize, compiler will optimize division/multiplication into a shift by a constant.
|
|
// For powers of 2, use a variable shift.
|
|
switch {
|
|
case et.size == 1:
|
|
lenmem = uintptr(old.len)
|
|
newlenmem = uintptr(cap)
|
|
capmem = roundupsize(uintptr(newcap))
|
|
overflow = uintptr(newcap) > maxAlloc
|
|
newcap = int(capmem)
|
|
case et.size == goarch.PtrSize:
|
|
lenmem = uintptr(old.len) * goarch.PtrSize
|
|
newlenmem = uintptr(cap) * goarch.PtrSize
|
|
capmem = roundupsize(uintptr(newcap) * goarch.PtrSize)
|
|
overflow = uintptr(newcap) > maxAlloc/goarch.PtrSize
|
|
newcap = int(capmem / goarch.PtrSize)
|
|
case isPowerOfTwo(et.size):
|
|
var shift uintptr
|
|
if goarch.PtrSize == 8 {
|
|
// Mask shift for better code generation.
|
|
shift = uintptr(sys.Ctz64(uint64(et.size))) & 63
|
|
} else {
|
|
shift = uintptr(sys.Ctz32(uint32(et.size))) & 31
|
|
}
|
|
lenmem = uintptr(old.len) << shift
|
|
newlenmem = uintptr(cap) << shift
|
|
capmem = roundupsize(uintptr(newcap) << shift)
|
|
overflow = uintptr(newcap) > (maxAlloc >> shift)
|
|
newcap = int(capmem >> shift)
|
|
default:
|
|
lenmem = uintptr(old.len) * et.size
|
|
newlenmem = uintptr(cap) * et.size
|
|
capmem, overflow = math.MulUintptr(et.size, uintptr(newcap))
|
|
capmem = roundupsize(capmem)
|
|
newcap = int(capmem / et.size)
|
|
}
|
|
|
|
// The check of overflow in addition to capmem > maxAlloc is needed
|
|
// to prevent an overflow which can be used to trigger a segfault
|
|
// on 32bit architectures with this example program:
|
|
//
|
|
// type T [1<<27 + 1]int64
|
|
//
|
|
// var d T
|
|
// var s []T
|
|
//
|
|
// func main() {
|
|
// s = append(s, d, d, d, d)
|
|
// print(len(s), "\n")
|
|
// }
|
|
if overflow || capmem > maxAlloc {
|
|
panic(errorString("growslice: cap out of range"))
|
|
}
|
|
|
|
var p unsafe.Pointer
|
|
if et.ptrdata == 0 {
|
|
p = mallocgc(capmem, nil, false)
|
|
// The append() that calls growslice is going to overwrite from old.len to cap (which will be the new length).
|
|
// Only clear the part that will not be overwritten.
|
|
memclrNoHeapPointers(add(p, newlenmem), capmem-newlenmem)
|
|
} else {
|
|
// Note: can't use rawmem (which avoids zeroing of memory), because then GC can scan uninitialized memory.
|
|
p = mallocgc(capmem, et, true)
|
|
if lenmem > 0 && writeBarrier.enabled {
|
|
// Only shade the pointers in old.array since we know the destination slice p
|
|
// only contains nil pointers because it has been cleared during alloc.
|
|
bulkBarrierPreWriteSrcOnly(uintptr(p), uintptr(old.array), lenmem-et.size+et.ptrdata)
|
|
}
|
|
}
|
|
memmove(p, old.array, lenmem)
|
|
|
|
return slice{p, old.len, newcap}
|
|
}
|
|
|
|
func isPowerOfTwo(x uintptr) bool {
|
|
return x&(x-1) == 0
|
|
}
|
|
|
|
// slicecopy is used to copy from a string or slice of pointerless elements into a slice.
|
|
func slicecopy(toPtr unsafe.Pointer, toLen int, fromPtr unsafe.Pointer, fromLen int, width uintptr) int {
|
|
if fromLen == 0 || toLen == 0 {
|
|
return 0
|
|
}
|
|
|
|
n := fromLen
|
|
if toLen < n {
|
|
n = toLen
|
|
}
|
|
|
|
if width == 0 {
|
|
return n
|
|
}
|
|
|
|
size := uintptr(n) * width
|
|
if raceenabled {
|
|
callerpc := getcallerpc()
|
|
pc := abi.FuncPCABIInternal(slicecopy)
|
|
racereadrangepc(fromPtr, size, callerpc, pc)
|
|
racewriterangepc(toPtr, size, callerpc, pc)
|
|
}
|
|
if msanenabled {
|
|
msanread(fromPtr, size)
|
|
msanwrite(toPtr, size)
|
|
}
|
|
if asanenabled {
|
|
asanread(fromPtr, size)
|
|
asanwrite(toPtr, size)
|
|
}
|
|
|
|
if size == 1 { // common case worth about 2x to do here
|
|
// TODO: is this still worth it with new memmove impl?
|
|
*(*byte)(toPtr) = *(*byte)(fromPtr) // known to be a byte pointer
|
|
} else {
|
|
memmove(toPtr, fromPtr, size)
|
|
}
|
|
return n
|
|
}
|