1
0
mirror of https://github.com/golang/go synced 2024-11-18 13:04:46 -07:00
go/src/math/pow.go
Bill O'Farrell 88672de7af math: use SIMD to accelerate additional scalar math functions on s390x
As necessary, math functions were structured to use stubs, so that they can
be accelerated with assembly on any platform.

Technique used was minimax polynomial approximation using tables of
polynomial coefficients, with argument range reduction.

Benchmark         New     Old     Speedup
BenchmarkAcos     12.2    47.5    3.89
BenchmarkAcosh    18.5    56.2    3.04
BenchmarkAsin     13.1    40.6    3.10
BenchmarkAsinh    19.4    62.8    3.24
BenchmarkAtan     10.1    23      2.28
BenchmarkAtanh    19.1    53.2    2.79
BenchmarkAtan2    16.5    33.9    2.05
BenchmarkCbrt     14.8    58      3.92
BenchmarkErf      10.8    20.1    1.86
BenchmarkErfc     11.2    23.5    2.10
BenchmarkExp      8.77    53.8    6.13
BenchmarkExpm1    10.1    38.3    3.79
BenchmarkLog      13.1    40.1    3.06
BenchmarkLog1p    12.7    38.3    3.02
BenchmarkPowInt   31.7    40.5    1.28
BenchmarkPowFrac  33.1    141     4.26
BenchmarkTan      11.5    30      2.61

Accuracy was tested against a high precision
reference function to determine maximum error.
Note: ulperr is error in "units in the last place"

       max
      ulperr
Acos  1.15
Acosh 1.07
Asin  2.22
Asinh 1.72
Atan  1.41
Atanh 3.00
Atan2 1.45
Cbrt  1.18
Erf   1.29
Erfc  4.82
Exp   1.00
Expm1 2.26
Log   0.94
Log1p 2.39
Tan   3.14

Pow will have 99.99% correctly rounded results with reasonable inputs
producing numeric (non Inf or NaN) results

Change-Id: I850e8cf7b70426e8b54ec49d74acd4cddc8c6cb2
Reviewed-on: https://go-review.googlesource.com/38585
Reviewed-by: Michael Munday <munday@ca.ibm.com>
Run-TryBot: Michael Munday <munday@ca.ibm.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2017-05-08 19:52:30 +00:00

140 lines
2.6 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package math
func isOddInt(x float64) bool {
xi, xf := Modf(x)
return xf == 0 && int64(xi)&1 == 1
}
// Special cases taken from FreeBSD's /usr/src/lib/msun/src/e_pow.c
// updated by IEEE Std. 754-2008 "Section 9.2.1 Special values".
// Pow returns x**y, the base-x exponential of y.
//
// Special cases are (in order):
// Pow(x, ±0) = 1 for any x
// Pow(1, y) = 1 for any y
// Pow(x, 1) = x for any x
// Pow(NaN, y) = NaN
// Pow(x, NaN) = NaN
// Pow(±0, y) = ±Inf for y an odd integer < 0
// Pow(±0, -Inf) = +Inf
// Pow(±0, +Inf) = +0
// Pow(±0, y) = +Inf for finite y < 0 and not an odd integer
// Pow(±0, y) = ±0 for y an odd integer > 0
// Pow(±0, y) = +0 for finite y > 0 and not an odd integer
// Pow(-1, ±Inf) = 1
// Pow(x, +Inf) = +Inf for |x| > 1
// Pow(x, -Inf) = +0 for |x| > 1
// Pow(x, +Inf) = +0 for |x| < 1
// Pow(x, -Inf) = +Inf for |x| < 1
// Pow(+Inf, y) = +Inf for y > 0
// Pow(+Inf, y) = +0 for y < 0
// Pow(-Inf, y) = Pow(-0, -y)
// Pow(x, y) = NaN for finite x < 0 and finite non-integer y
func Pow(x, y float64) float64
func pow(x, y float64) float64 {
switch {
case y == 0 || x == 1:
return 1
case y == 1:
return x
case y == 0.5:
return Sqrt(x)
case y == -0.5:
return 1 / Sqrt(x)
case IsNaN(x) || IsNaN(y):
return NaN()
case x == 0:
switch {
case y < 0:
if isOddInt(y) {
return Copysign(Inf(1), x)
}
return Inf(1)
case y > 0:
if isOddInt(y) {
return x
}
return 0
}
case IsInf(y, 0):
switch {
case x == -1:
return 1
case (Abs(x) < 1) == IsInf(y, 1):
return 0
default:
return Inf(1)
}
case IsInf(x, 0):
if IsInf(x, -1) {
return Pow(1/x, -y) // Pow(-0, -y)
}
switch {
case y < 0:
return 0
case y > 0:
return Inf(1)
}
}
absy := y
flip := false
if absy < 0 {
absy = -absy
flip = true
}
yi, yf := Modf(absy)
if yf != 0 && x < 0 {
return NaN()
}
if yi >= 1<<63 {
return Exp(y * Log(x))
}
// ans = a1 * 2**ae (= 1 for now).
a1 := 1.0
ae := 0
// ans *= x**yf
if yf != 0 {
if yf > 0.5 {
yf--
yi++
}
a1 = Exp(yf * Log(x))
}
// ans *= x**yi
// by multiplying in successive squarings
// of x according to bits of yi.
// accumulate powers of two into exp.
x1, xe := Frexp(x)
for i := int64(yi); i != 0; i >>= 1 {
if i&1 == 1 {
a1 *= x1
ae += xe
}
x1 *= x1
xe <<= 1
if x1 < .5 {
x1 += x1
xe--
}
}
// ans = a1*2**ae
// if flip { ans = 1 / ans }
// but in the opposite order
if flip {
a1 = 1 / a1
ae = -ae
}
return Ldexp(a1, ae)
}