1
0
mirror of https://github.com/golang/go synced 2024-10-01 12:48:33 -06:00
go/ssa/ssa.go
Alan Donovan be28dbb86f go.types/ssa: split the load/parse/typecheck logic off into a separate package.
PLEASE NOTE: the APIs for both "importer" and "ssa" packages
will continue to evolve and both need some polishing; the key
thing is that this CL splits them.

The go.types/importer package contains contains the Importer,
which takes care of the mechanics of loading a set of packages
and type-checking them.  It exposes for each package a
PackageInfo containing:
- the package's ASTs (i.e. the input to the typechecker)
- the types.Package object
- the memoization of the typechecker callbacks for identifier
  resolution, constant folding and expression type inference.

Method-set computation (and hence bridge-method creation) is
now moved to after creation of all packages: since they are no
longer created in topological order, we can't guarantee the
needed delegate methods exist yet.

ssa.Package no longer has public TypeOf, ObjectOf, ValueOf methods.
The private counterparts are valid only during the build phase.

Also:
- added to go/types an informative error (not crash) for an
  importer() returning nil without error.
- removed Package.Name(), barely needed.
- changed Package.String() slightly.
- flag what looks like a bug in makeBridgeMethod. Will follow up.

R=golang-dev, gri
CC=golang-dev
https://golang.org/cl/9898043
2013-05-31 16:14:13 -04:00

1493 lines
46 KiB
Go

package ssa
// This package defines a high-level intermediate representation for
// Go programs using static single-assignment (SSA) form.
import (
"fmt"
"go/ast"
"go/token"
"sync"
"code.google.com/p/go.tools/go/exact"
"code.google.com/p/go.tools/go/types"
"code.google.com/p/go.tools/importer"
)
// A Program is a partial or complete Go program converted to SSA form.
// Each Builder creates and populates a single Program during its
// lifetime.
//
type Program struct {
Files *token.FileSet // position information for the files of this Program [TODO: rename Fset]
Packages map[string]*Package // all loaded Packages, keyed by import path
Builtins map[types.Object]*Builtin // all built-in functions, keyed by typechecker objects.
methodSets map[types.Type]MethodSet // concrete method sets for all needed types [TODO(adonovan): de-dup]
methodSetsMu sync.Mutex // serializes all accesses to methodSets
concreteMethods map[*types.Func]*Function // maps named concrete methods to their code
mode BuilderMode // set of mode bits
}
// A Package is a single analyzed Go package containing Members for
// all package-level functions, variables, constants and types it
// declares. These may be accessed directly via Members, or via the
// type-specific accessor methods Func, Type, Var and Const.
//
type Package struct {
Prog *Program // the owning program
Types *types.Package // the type checker's package object for this package
Members map[string]Member // all exported and unexported members of the package
Init *Function // the package's (concatenated) init function
// The following fields are set transiently during building,
// then cleared.
started int32 // atomically tested and set at start of build phase
info *importer.PackageInfo // package ASTs and type information
nTo1Vars map[*ast.ValueSpec]bool // set of n:1 ValueSpecs already built
}
// A Member is a member of a Go package, implemented by *Constant,
// *Global, *Function, or *Type; they are created by package-level
// const, var, func and type declarations respectively.
//
type Member interface {
Name() string // the declared name of the package member
String() string // human-readable information about the value
Pos() token.Pos // position of member's declaration, if known
Type() types.Type // the type of the package member
}
// An Id identifies the name of a field of a struct type, or the name
// of a method of an interface or a named type.
//
// For exported names, i.e. those beginning with a Unicode upper-case
// letter, a simple string is unambiguous.
//
// However, a method set or struct may contain multiple unexported
// names with identical spelling that are logically distinct because
// they originate in different packages. Unexported names must
// therefore be disambiguated by their package too.
//
// The Pkg field of an Id is therefore nil iff the name is exported.
//
// This type is suitable for use as a map key because the equivalence
// relation == is consistent with identifier equality.
type Id struct {
Pkg *types.Package
Name string
}
// A MethodSet contains all the methods for a particular type.
// The method sets for T and *T are distinct entities.
// The methods for a non-pointer type T all have receiver type T, but
// the methods for pointer type *T may have receiver type *T or T.
//
type MethodSet map[Id]*Function
// A Type is a Member of a Package representing the name, underlying
// type and method set of a named type declared at package scope.
//
type Type struct {
NamedType *types.Named
Methods MethodSet // concrete method set of N
PtrMethods MethodSet // concrete method set of (*N)
}
// A Constant is a Member of Package representing a package-level
// constant value.
//
// Pos() returns the position of the declaring ast.ValueSpec.Names[*]
// identifier.
//
// NB: a Constant is not a Value; it contains a literal Value, which
// it augments with the name and position of its 'const' declaration.
//
// TODO(adonovan): if we decide to add a token.Pos to literal, we
// should then add a name too, and merge Constant and Literal.
// Experiment.
//
type Constant struct {
name string
Value *Literal
pos token.Pos
}
// An SSA value that can be referenced by an instruction.
type Value interface {
// Name returns the name of this value, and determines how
// this Value appears when used as an operand of an
// Instruction.
//
// This is the same as the source name for Parameters,
// Builtins, Functions, Captures, Globals and some Allocs.
// For literals, it is a representation of the literal's value
// and type. For all other Values this is the name of the
// virtual register defined by the instruction.
//
// The name of an SSA Value is not semantically significant,
// and may not even be unique within a function.
Name() string
// If this value is an Instruction, String returns its
// disassembled form; otherwise it returns unspecified
// human-readable information about the Value, such as its
// kind, name and type.
String() string
// Type returns the type of this value. Many instructions
// (e.g. IndexAddr) change the behaviour depending on the
// types of their operands.
Type() types.Type
// Referrers returns the list of instructions that have this
// value as one of their operands; it may contain duplicates
// if an instruction has a repeated operand.
//
// Referrers actually returns a pointer through which the
// caller may perform mutations to the object's state.
//
// Referrers is currently only defined for the function-local
// values Capture, Parameter and all value-defining instructions.
// It returns nil for Function, Builtin, Literal and Global.
//
// Instruction.Operands contains the inverse of this relation.
Referrers() *[]Instruction
// Pos returns the location of the source construct that
// gave rise to this value, or token.NoPos if it was not
// explicit in the source.
//
// For each ast.Expr type, a particular field is designated as
// the canonical location for the expression, e.g. the Lparen
// for an *ast.CallExpr. This enables us to find the value
// corresponding to a given piece of source syntax.
//
Pos() token.Pos
}
// An Instruction is an SSA instruction that computes a new Value or
// has some effect.
//
// An Instruction that defines a value (e.g. BinOp) also implements
// the Value interface; an Instruction that only has an effect (e.g. Store)
// does not.
//
type Instruction interface {
// String returns the disassembled form of this value. e.g.
//
// Examples of Instructions that define a Value:
// e.g. "x + y" (BinOp)
// "len([])" (Call)
// Note that the name of the Value is not printed.
//
// Examples of Instructions that do define (are) Values:
// e.g. "ret x" (Ret)
// "*y = x" (Store)
//
// (This separation is useful for some analyses which
// distinguish the operation from the value it
// defines. e.g. 'y = local int' is both an allocation of
// memory 'local int' and a definition of a pointer y.)
String() string
// Block returns the basic block to which this instruction
// belongs.
Block() *BasicBlock
// SetBlock sets the basic block to which this instruction
// belongs.
SetBlock(*BasicBlock)
// Operands returns the operands of this instruction: the
// set of Values it references.
//
// Specifically, it appends their addresses to rands, a
// user-provided slice, and returns the resulting slice,
// permitting avoidance of memory allocation.
//
// The operands are appended in undefined order; the addresses
// are always non-nil but may point to a nil Value. Clients
// may store through the pointers, e.g. to effect a value
// renaming.
//
// Value.Referrers is a subset of the inverse of this
// relation. (Referrers are not tracked for all types of
// Values.)
Operands(rands []*Value) []*Value
// Pos returns the location of the source construct that
// gave rise to this instruction, or token.NoPos if it was not
// explicit in the source.
//
// For each ast.Expr type, a particular field is designated as
// the canonical location for the expression, e.g. the Lparen
// for an *ast.CallExpr. This enables us to find the
// instruction corresponding to a given piece of source
// syntax.
//
Pos() token.Pos
}
// Function represents the parameters, results and code of a function
// or method.
//
// If Blocks is nil, this indicates an external function for which no
// Go source code is available. In this case, Captures and Locals
// will be nil too. Clients performing whole-program analysis must
// handle external functions specially.
//
// Functions are immutable values; they do not have addresses.
//
// Blocks[0] is the function entry point; block order is not otherwise
// semantically significant, though it may affect the readability of
// the disassembly.
//
// A nested function that refers to one or more lexically enclosing
// local variables ("free variables") has Capture parameters. Such
// functions cannot be called directly but require a value created by
// MakeClosure which, via its Bindings, supplies values for these
// parameters.
//
// If the function is a method (Signature.Recv() != nil) then the first
// element of Params is the receiver parameter.
//
// Pos() returns the declaring ast.FuncLit.Type.Func or the position
// of the ast.FuncDecl.Name, if the function was explicit in the
// source.
//
// Type() returns the function's Signature.
//
type Function struct {
name string
Signature *types.Signature
pos token.Pos
Enclosing *Function // enclosing function if anon; nil if global
Pkg *Package // enclosing package for Go source functions; otherwise nil
Prog *Program // enclosing program
Params []*Parameter // function parameters; for methods, includes receiver
FreeVars []*Capture // free variables whose values must be supplied by closure
Locals []*Alloc
Blocks []*BasicBlock // basic blocks of the function; nil => external
AnonFuncs []*Function // anonymous functions directly beneath this one
// The following fields are set transiently during building,
// then cleared.
currentBlock *BasicBlock // where to emit code
objects map[types.Object]Value // addresses of local variables
namedResults []*Alloc // tuple of named results
syntax *funcSyntax // abstract syntax trees for Go source functions
targets *targets // linked stack of branch targets
lblocks map[*ast.Object]*lblock // labelled blocks
}
// An SSA basic block.
//
// The final element of Instrs is always an explicit transfer of
// control (If, Jump, Ret or Panic).
//
// A block may contain no Instructions only if it is unreachable,
// i.e. Preds is nil. Empty blocks are typically pruned.
//
// BasicBlocks and their Preds/Succs relation form a (possibly cyclic)
// graph independent of the SSA Value graph. It is illegal for
// multiple edges to exist between the same pair of blocks.
//
// The order of Preds and Succs are significant (to Phi and If
// instructions, respectively).
//
type BasicBlock struct {
Index int // index of this block within Func.Blocks
Comment string // optional label; no semantic significance
Func *Function // containing function
Instrs []Instruction // instructions in order
Preds, Succs []*BasicBlock // predecessors and successors
succs2 [2]*BasicBlock // initial space for Succs.
dom *domNode // node in dominator tree; optional.
gaps int // number of nil Instrs (transient).
rundefers int // number of rundefers (transient)
}
// Pure values ----------------------------------------
// A Capture represents a free variable of the function to which it
// belongs.
//
// Captures are used to implement anonymous functions, whose free
// variables are lexically captured in a closure formed by
// MakeClosure. The referent of such a capture is an Alloc or another
// Capture and is considered a potentially escaping heap address, with
// pointer type.
//
// Captures are also used to implement bound method closures. Such a
// capture represents the receiver value and may be of any type that
// has concrete methods.
//
// Pos() returns the position of the value that was captured, which
// belongs to an enclosing function.
//
type Capture struct {
name string
typ types.Type
pos token.Pos
referrers []Instruction
// Transiently needed during building.
outer Value // the Value captured from the enclosing context.
}
// A Parameter represents an input parameter of a function.
//
type Parameter struct {
name string
typ types.Type
pos token.Pos
referrers []Instruction
}
// A Literal represents the value of a constant expression.
//
// It may have a nil, boolean, string or numeric (integer, fraction or
// complex) value, or a []byte or []rune conversion of a string
// literal.
//
// Literals may be of named types. A literal's underlying type can be
// a basic type, possibly one of the "untyped" types, or a slice type
// whose elements' underlying type is byte or rune. A nil literal can
// have any reference type: interface, map, channel, pointer, slice,
// or function---but not "untyped nil".
//
// All source-level constant expressions are represented by a Literal
// of equal type and value.
//
// Value holds the exact value of the literal, independent of its
// Type(), using the same representation as package go/exact uses for
// constants.
//
// Pos() returns token.NoPos.
//
// Example printed form:
// 42:int
// "hello":untyped string
// 3+4i:MyComplex
//
type Literal struct {
typ types.Type
Value exact.Value
}
// A Global is a named Value holding the address of a package-level
// variable.
//
// Pos() returns the position of the ast.ValueSpec.Names[*]
// identifier.
//
type Global struct {
name string
typ types.Type
pos token.Pos
Pkg *Package
// The following fields are set transiently during building,
// then cleared.
spec *ast.ValueSpec // explained at buildGlobal
}
// A Builtin represents a built-in function, e.g. len.
//
// Builtins are immutable values. Builtins do not have addresses.
//
// Type() returns a *types.Builtin.
// Built-in functions may have polymorphic or variadic types that are
// not expressible in Go's type system.
//
type Builtin struct {
Object *types.Func // canonical types.Universe object for this built-in
}
// Value-defining instructions ----------------------------------------
// The Alloc instruction reserves space for a value of the given type,
// zero-initializes it, and yields its address.
//
// Alloc values are always addresses, and have pointer types, so the
// type of the allocated space is actually indirect(Type()).
//
// If Heap is false, Alloc allocates space in the function's
// activation record (frame); we refer to an Alloc(Heap=false) as a
// "local" alloc. Each local Alloc returns the same address each time
// it is executed within the same activation; the space is
// re-initialized to zero.
//
// If Heap is true, Alloc allocates space in the heap, and returns; we
// refer to an Alloc(Heap=true) as a "new" alloc. Each new Alloc
// returns a different address each time it is executed.
//
// When Alloc is applied to a channel, map or slice type, it returns
// the address of an uninitialized (nil) reference of that kind; store
// the result of MakeSlice, MakeMap or MakeChan in that location to
// instantiate these types.
//
// Pos() returns the ast.CompositeLit.Lbrace for a composite literal,
// or the ast.CallExpr.Lparen for a call to new() or for a call that
// allocates a varargs slice.
//
// Example printed form:
// t0 = local int
// t1 = new int
//
type Alloc struct {
anInstruction
name string
typ types.Type
Heap bool
pos token.Pos
referrers []Instruction
index int // dense numbering; for lifting
}
// The Phi instruction represents an SSA φ-node, which combines values
// that differ across incoming control-flow edges and yields a new
// value. Within a block, all φ-nodes must appear before all non-φ
// nodes.
//
// Pos() returns the position of the && or || for short-circuit
// control-flow joins, or that of the *Alloc for φ-nodes inserted
// during SSA renaming.
//
// Example printed form:
// t2 = phi [0.start: t0, 1.if.then: t1, ...]
//
type Phi struct {
Register
Comment string // a hint as to its purpose
Edges []Value // Edges[i] is value for Block().Preds[i]
}
// The Call instruction represents a function or method call.
//
// The Call instruction yields the function result, if there is
// exactly one, or a tuple (empty or len>1) whose components are
// accessed via Extract.
//
// See CallCommon for generic function call documentation.
//
// Pos() returns the ast.CallExpr.Lparen, if explicit in the source.
//
// Example printed form:
// t2 = println(t0, t1)
// t4 = t3()
// t7 = invoke t5.Println(...t6)
//
type Call struct {
Register
Call CallCommon
}
// The BinOp instruction yields the result of binary operation X Op Y.
//
// Pos() returns the ast.BinaryExpr.OpPos, if explicit in the source.
//
// Example printed form:
// t1 = t0 + 1:int
//
type BinOp struct {
Register
// One of:
// ADD SUB MUL QUO REM + - * / %
// AND OR XOR SHL SHR AND_NOT & | ^ << >> &~
// EQL LSS GTR NEQ LEQ GEQ == != < <= < >=
Op token.Token
X, Y Value
}
// The UnOp instruction yields the result of Op X.
// ARROW is channel receive.
// MUL is pointer indirection (load).
// XOR is bitwise complement.
// SUB is negation.
//
// If CommaOk and Op=ARROW, the result is a 2-tuple of the value above
// and a boolean indicating the success of the receive. The
// components of the tuple are accessed using Extract.
//
// Pos() returns the ast.UnaryExpr.OpPos, if explicit in the source,
//
// Example printed form:
// t0 = *x
// t2 = <-t1,ok
//
type UnOp struct {
Register
Op token.Token // One of: NOT SUB ARROW MUL XOR ! - <- * ^
X Value
CommaOk bool
}
// The ChangeType instruction applies to X a value-preserving type
// change to Type().
//
// Type changes are permitted:
// - between a named type and its underlying type.
// - between two named types of the same underlying type.
// - between (possibly named) pointers to identical base types.
// - between f(T) functions and (T) func f() methods.
// - from a bidirectional channel to a read- or write-channel,
// optionally adding/removing a name.
//
// This operation cannot fail dynamically.
//
// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
// from an explicit conversion in the source.
//
// Example printed form:
// t1 = changetype *int <- IntPtr (t0)
//
type ChangeType struct {
Register
X Value
}
// The Convert instruction yields the conversion of value X to type
// Type().
//
// A conversion may change the value and representation of its operand.
// Conversions are permitted:
// - between real numeric types.
// - between complex numeric types.
// - between string and []byte or []rune.
// - from (Unicode) integer to (UTF-8) string.
// A conversion may imply a type name change also.
//
// This operation cannot fail dynamically.
//
// Conversions of untyped string/number/bool constants to a specific
// representation are eliminated during SSA construction.
//
// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
// from an explicit conversion in the source.
//
// Example printed form:
// t1 = convert []byte <- string (t0)
//
type Convert struct {
Register
X Value
}
// ChangeInterface constructs a value of one interface type from a
// value of another interface type known to be assignable to it.
//
// This operation cannot fail. Use TypeAssert for interface
// conversions that may fail dynamically.
//
// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
// from an explicit conversion in the source.
//
// Example printed form:
// t1 = change interface interface{} <- I (t0)
//
type ChangeInterface struct {
Register
X Value
}
// MakeInterface constructs an instance of an interface type from a
// value and its method-set.
//
// To construct the zero value of an interface type T, use:
// &Literal{exact.MakeNil(), T}
//
// Pos() returns the ast.CallExpr.Lparen, if the instruction arose
// from an explicit conversion in the source.
//
// Example printed form:
// t1 = make interface interface{} <- int (42:int)
//
type MakeInterface struct {
Register
X Value
Methods MethodSet // method set of (non-interface) X
}
// The MakeClosure instruction yields a closure value whose code is
// Fn and whose free variables' values are supplied by Bindings.
//
// Type() returns a (possibly named) *types.Signature.
//
// Pos() returns the ast.FuncLit.Type.Func for a function literal
// closure or the ast.SelectorExpr.Sel for a bound method closure.
//
// Example printed form:
// t0 = make closure anon@1.2 [x y z]
// t1 = make closure bound$(main.I).add [i]
//
type MakeClosure struct {
Register
Fn Value // always a *Function
Bindings []Value // values for each free variable in Fn.FreeVars
}
// The MakeMap instruction creates a new hash-table-based map object
// and yields a value of kind map.
//
// Type() returns a (possibly named) *types.Map.
//
// Pos() returns the ast.CallExpr.Lparen, if created by make(map), or
// the ast.CompositeLit.Lbrack if created by a literal.
//
// Example printed form:
// t1 = make map[string]int t0
//
type MakeMap struct {
Register
Reserve Value // initial space reservation; nil => default
}
// The MakeChan instruction creates a new channel object and yields a
// value of kind chan.
//
// Type() returns a (possibly named) *types.Chan.
//
// Pos() returns the ast.CallExpr.Lparen for the make(chan) that
// created it.
//
// Example printed form:
// t0 = make chan int 0
//
type MakeChan struct {
Register
Size Value // int; size of buffer; zero => synchronous.
}
// The MakeSlice instruction yields a slice of length Len backed by a
// newly allocated array of length Cap.
//
// Both Len and Cap must be non-nil Values of integer type.
//
// (Alloc(types.Array) followed by Slice will not suffice because
// Alloc can only create arrays of statically known length.)
//
// Type() returns a (possibly named) *types.Slice.
//
// Pos() returns the ast.CallExpr.Lparen for the make([]T) that
// created it.
//
// Example printed form:
// t1 = make slice []string 1:int t0
//
type MakeSlice struct {
Register
Len Value
Cap Value
}
// The Slice instruction yields a slice of an existing string, slice
// or *array X between optional integer bounds Low and High.
//
// Type() returns string if the type of X was string, otherwise a
// *types.Slice with the same element type as X.
//
// Pos() returns the ast.SliceExpr.Lbrack if created by a x[:] slice
// operation, the ast.CompositeLit.Lbrace if created by a literal, or
// NoPos if not explicit in the source (e.g. a variadic argument slice).
//
// Example printed form:
// t1 = slice t0[1:]
//
type Slice struct {
Register
X Value // slice, string, or *array
Low, High Value // either may be nil
}
// The FieldAddr instruction yields the address of Field of *struct X.
//
// The field is identified by its index within the field list of the
// struct type of X.
//
// Type() returns a (possibly named) *types.Pointer.
//
// Pos() returns the position of the ast.SelectorExpr.Sel for the
// field, if explicit in the source.
//
// Example printed form:
// t1 = &t0.name [#1]
//
type FieldAddr struct {
Register
X Value // *struct
Field int // index into X.Type().(*types.Struct).Fields
}
// The Field instruction yields the Field of struct X.
//
// The field is identified by its index within the field list of the
// struct type of X; by using numeric indices we avoid ambiguity of
// package-local identifiers and permit compact representations.
//
// Pos() returns the position of the ast.SelectorExpr.Sel for the
// field, if explicit in the source.
//
// Example printed form:
// t1 = t0.name [#1]
//
type Field struct {
Register
X Value // struct
Field int // index into X.Type().(*types.Struct).Fields
}
// The IndexAddr instruction yields the address of the element at
// index Index of collection X. Index is an integer expression.
//
// The elements of maps and strings are not addressable; use Lookup or
// MapUpdate instead.
//
// Type() returns a (possibly named) *types.Pointer.
//
// Pos() returns the ast.IndexExpr.Lbrack for the index operation, if
// explicit in the source.
//
// Example printed form:
// t2 = &t0[t1]
//
type IndexAddr struct {
Register
X Value // slice or *array,
Index Value // numeric index
}
// The Index instruction yields element Index of array X.
//
// Pos() returns the ast.IndexExpr.Lbrack for the index operation, if
// explicit in the source.
//
// Example printed form:
// t2 = t0[t1]
//
type Index struct {
Register
X Value // array
Index Value // integer index
}
// The Lookup instruction yields element Index of collection X, a map
// or string. Index is an integer expression if X is a string or the
// appropriate key type if X is a map.
//
// If CommaOk, the result is a 2-tuple of the value above and a
// boolean indicating the result of a map membership test for the key.
// The components of the tuple are accessed using Extract.
//
// Pos() returns the ast.IndexExpr.Lbrack, if explicit in the source.
//
// Example printed form:
// t2 = t0[t1]
// t5 = t3[t4],ok
//
type Lookup struct {
Register
X Value // string or map
Index Value // numeric or key-typed index
CommaOk bool // return a value,ok pair
}
// SelectState is a helper for Select.
// It represents one goal state and its corresponding communication.
//
type SelectState struct {
Dir ast.ChanDir // direction of case
Chan Value // channel to use (for send or receive)
Send Value // value to send (for send)
}
// The Select instruction tests whether (or blocks until) one or more
// of the specified sent or received states is entered.
//
// It returns a triple (index int, recv interface{}, recvOk bool)
// whose components, described below, must be accessed via the Extract
// instruction.
//
// If Blocking, select waits until exactly one state holds, i.e. a
// channel becomes ready for the designated operation of sending or
// receiving; select chooses one among the ready states
// pseudorandomly, performs the send or receive operation, and sets
// 'index' to the index of the chosen channel.
//
// If !Blocking, select doesn't block if no states hold; instead it
// returns immediately with index equal to -1.
//
// If the chosen channel was used for a receive, 'recv' is set to the
// received value; otherwise it is nil.
//
// The third component of the triple, recvOk, is a boolean whose value
// is true iff the selected operation was a receive and the receive
// successfully yielded a value.
//
// Pos() returns the ast.SelectStmt.Select.
//
// Example printed form:
// t3 = select nonblocking [<-t0, t1<-t2, ...]
// t4 = select blocking []
//
type Select struct {
Register
States []SelectState
Blocking bool
}
// The Range instruction yields an iterator over the domain and range
// of X, which must be a string or map.
//
// Elements are accessed via Next.
//
// Type() returns a (possibly named) *types.Tuple.
//
// Pos() returns the ast.RangeStmt.For.
//
// Example printed form:
// t0 = range "hello":string
//
type Range struct {
Register
X Value // string or map
}
// The Next instruction reads and advances the (map or string)
// iterator Iter and returns a 3-tuple value (ok, k, v). If the
// iterator is not exhausted, ok is true and k and v are the next
// elements of the domain and range, respectively. Otherwise ok is
// false and k and v are undefined.
//
// Components of the tuple are accessed using Extract.
//
// The IsString field distinguishes iterators over strings from those
// over maps, as the Type() alone is insufficient: consider
// map[int]rune.
//
// Type() returns a *types.Tuple for the triple (ok, k, v).
// The types of k and/or v may be types.Invalid.
//
// Example printed form:
// t1 = next t0
//
type Next struct {
Register
Iter Value
IsString bool // true => string iterator; false => map iterator.
}
// The TypeAssert instruction tests whether interface value X has type
// AssertedType.
//
// If !CommaOk, on success it returns v, the result of the conversion
// (defined below); on failure it panics.
//
// If CommaOk: on success it returns a pair (v, true) where v is the
// result of the conversion; on failure it returns (z, false) where z
// is AssertedType's zero value. The components of the pair must be
// accessed using the Extract instruction.
//
// If AssertedType is a concrete type, TypeAssert checks whether the
// dynamic type in interface X is equal to it, and if so, the result
// of the conversion is a copy of the value in the interface.
//
// If AssertedType is an interface, TypeAssert checks whether the
// dynamic type of the interface is assignable to it, and if so, the
// result of the conversion is a copy of the interface value X.
// If AssertedType is a superinterface of X.Type(), the operation
// cannot fail; ChangeInterface is preferred in this case.
//
// Type() reflects the actual type of the result, possibly a
// 2-types.Tuple; AssertedType is the asserted type.
//
// Example printed form:
// t1 = typeassert t0.(int)
// t3 = typeassert,ok t2.(T)
//
type TypeAssert struct {
Register
X Value
AssertedType types.Type
CommaOk bool
}
// The Extract instruction yields component Index of Tuple.
//
// This is used to access the results of instructions with multiple
// return values, such as Call, TypeAssert, Next, UnOp(ARROW) and
// IndexExpr(Map).
//
// Example printed form:
// t1 = extract t0 #1
//
type Extract struct {
Register
Tuple Value
Index int
}
// Instructions executed for effect. They do not yield a value. --------------------
// The Jump instruction transfers control to the sole successor of its
// owning block.
//
// A Jump must be the last instruction of its containing BasicBlock.
//
// Pos() returns NoPos.
//
// Example printed form:
// jump done
//
type Jump struct {
anInstruction
}
// The If instruction transfers control to one of the two successors
// of its owning block, depending on the boolean Cond: the first if
// true, the second if false.
//
// An If instruction must be the last instruction of its containing
// BasicBlock.
//
// Pos() returns NoPos.
//
// Example printed form:
// if t0 goto done else body
//
type If struct {
anInstruction
Cond Value
}
// The Ret instruction returns values and control back to the calling
// function.
//
// len(Results) is always equal to the number of results in the
// function's signature.
//
// If len(Results) > 1, Ret returns a tuple value with the specified
// components which the caller must access using Extract instructions.
//
// There is no instruction to return a ready-made tuple like those
// returned by a "value,ok"-mode TypeAssert, Lookup or UnOp(ARROW) or
// a tail-call to a function with multiple result parameters.
//
// Ret must be the last instruction of its containing BasicBlock.
// Such a block has no successors.
//
// Pos() returns the ast.ReturnStmt.Return, if explicit in the source.
//
// Example printed form:
// ret
// ret nil:I, 2:int
//
type Ret struct {
anInstruction
Results []Value
pos token.Pos
}
// The RunDefers instruction pops and invokes the entire stack of
// procedure calls pushed by Defer instructions in this function.
//
// It is legal to encounter multiple 'rundefers' instructions in a
// single control-flow path through a function; this is useful in
// the combined init() function, for example.
//
// Pos() returns NoPos.
//
// Example printed form:
// rundefers
//
type RunDefers struct {
anInstruction
}
// The Panic instruction initiates a panic with value X.
//
// A Panic instruction must be the last instruction of its containing
// BasicBlock, which must have no successors.
//
// NB: 'go panic(x)' and 'defer panic(x)' do not use this instruction;
// they are treated as calls to a built-in function.
//
// Pos() returns the ast.CallExpr.Lparen if this panic was explicit
// in the source.
//
// Example printed form:
// panic t0
//
type Panic struct {
anInstruction
X Value // an interface{}
pos token.Pos
}
// The Go instruction creates a new goroutine and calls the specified
// function within it.
//
// See CallCommon for generic function call documentation.
//
// Example printed form:
// go println(t0, t1)
// go t3()
// go invoke t5.Println(...t6)
//
type Go struct {
anInstruction
Call CallCommon
}
// The Defer instruction pushes the specified call onto a stack of
// functions to be called by a RunDefers instruction or by a panic.
//
// See CallCommon for generic function call documentation.
//
// Example printed form:
// defer println(t0, t1)
// defer t3()
// defer invoke t5.Println(...t6)
//
type Defer struct {
anInstruction
Call CallCommon
}
// The Send instruction sends X on channel Chan.
//
// Pos() returns the ast.SendStmt.Arrow, if explicit in the source.
//
// Example printed form:
// send t0 <- t1
//
type Send struct {
anInstruction
Chan, X Value
pos token.Pos
}
// The Store instruction stores Val at address Addr.
// Stores can be of arbitrary types.
//
// Pos() returns the ast.StarExpr.Star, if explicit in the source.
//
// Example printed form:
// *x = y
//
type Store struct {
anInstruction
Addr Value
Val Value
pos token.Pos
}
// The MapUpdate instruction updates the association of Map[Key] to
// Value.
//
// Pos() returns the ast.KeyValueExpr.Colon, if explicit in the source.
//
// Example printed form:
// t0[t1] = t2
//
type MapUpdate struct {
anInstruction
Map Value
Key Value
Value Value
pos token.Pos
}
// Embeddable mix-ins and helpers for common parts of other structs. -----------
// Register is a mix-in embedded by all SSA values that are also
// instructions, i.e. virtual registers, and provides implementations
// of the Value interface's Name() and Type() methods: the name is
// simply a numbered register (e.g. "t0") and the type is the Type_
// field.
//
// Temporary names are automatically assigned to each Register on
// completion of building a function in SSA form.
//
// Clients must not assume that the 'id' value (and the Name() derived
// from it) is unique within a function. As always in this API,
// semantics are determined only by identity; names exist only to
// facilitate debugging.
//
type Register struct {
anInstruction
num int // "name" of virtual register, e.g. "t0". Not guaranteed unique.
typ types.Type // type of virtual register
pos token.Pos // position of source expression, or NoPos
referrers []Instruction
}
// anInstruction is a mix-in embedded by all Instructions.
// It provides the implementations of the Block and SetBlock methods.
type anInstruction struct {
block *BasicBlock // the basic block of this instruction
}
// CallCommon is contained by Go, Defer and Call to hold the
// common parts of a function or method call.
//
// Each CallCommon exists in one of two modes, function call and
// interface method invocation, or "call" and "invoke" for short.
//
// 1. "call" mode: when Recv is nil (!IsInvoke), a CallCommon
// represents an ordinary function call of the value in Func.
//
// In the common case in which Func is a *Function, this indicates a
// statically dispatched call to a package-level function, an
// anonymous function, or a method of a named type. Also statically
// dispatched, but less common, Func may be a *MakeClosure, indicating
// an immediately applied function literal with free variables. Any
// other Value of Func indicates a dynamically dispatched function
// call. The StaticCallee method returns the callee in these cases.
//
// Args contains the arguments to the call. If Func is a method,
// Args[0] contains the receiver parameter. Recv and Method are not
// used in this mode.
//
// Example printed form:
// t2 = println(t0, t1)
// go t3()
// defer t5(...t6)
//
// 2. "invoke" mode: when Recv is non-nil (IsInvoke), a CallCommon
// represents a dynamically dispatched call to an interface method.
// In this mode, Recv is the interface value and Method is the index
// of the method within the interface type of the receiver.
//
// Recv is implicitly supplied to the concrete method implementation
// as the receiver parameter; in other words, Args[0] holds not the
// receiver but the first true argument. Func is not used in this
// mode.
//
// If the called method's receiver has non-pointer type T, but the
// receiver supplied by the interface value has type *T, an implicit
// load (copy) operation is performed.
//
// Example printed form:
// t1 = invoke t0.String()
// go invoke t3.Run(t2)
// defer invoke t4.Handle(...t5)
//
// In both modes, HasEllipsis is true iff the last element of Args is
// a slice value containing zero or more arguments to a variadic
// function. (This is not semantically significant since the type of
// the called function is sufficient to determine this, but it aids
// readability of the printed form.)
//
type CallCommon struct {
Recv Value // receiver, iff interface method invocation
Method int // index of interface method; call MethodId() for its Id
Func Value // target of call, iff function call
Args []Value // actual parameters, including receiver in invoke mode
HasEllipsis bool // true iff last Args is a slice of '...' args (needed?)
pos token.Pos // position of CallExpr.Lparen, iff explicit in source
}
// IsInvoke returns true if this call has "invoke" (not "call") mode.
func (c *CallCommon) IsInvoke() bool {
return c.Recv != nil
}
func (c *CallCommon) Pos() token.Pos { return c.pos }
// StaticCallee returns the called function if this is a trivially
// static "call"-mode call.
func (c *CallCommon) StaticCallee() *Function {
switch fn := c.Func.(type) {
case *Function:
return fn
case *MakeClosure:
return fn.Fn.(*Function)
}
return nil
}
// MethodId returns the Id for the method called by c, which must
// have "invoke" mode.
func (c *CallCommon) MethodId() Id {
m := c.Recv.Type().Underlying().(*types.Interface).Method(c.Method)
return MakeId(m.Name(), m.Pkg())
}
// Description returns a description of the mode of this call suitable
// for a user interface, e.g. "static method call".
func (c *CallCommon) Description() string {
switch fn := c.Func.(type) {
case nil:
return "dynamic method call" // ("invoke" mode)
case *MakeClosure:
return "static function closure call"
case *Function:
if fn.Signature.Recv() != nil {
return "static method call"
}
return "static function call"
}
return "dynamic function call"
}
func (v *Builtin) Type() types.Type { return v.Object.Type() }
func (v *Builtin) Name() string { return v.Object.Name() }
func (*Builtin) Referrers() *[]Instruction { return nil }
func (v *Builtin) Pos() token.Pos { return token.NoPos }
func (v *Capture) Type() types.Type { return v.typ }
func (v *Capture) Name() string { return v.name }
func (v *Capture) Referrers() *[]Instruction { return &v.referrers }
func (v *Capture) Pos() token.Pos { return v.pos }
func (v *Global) Type() types.Type { return v.typ }
func (v *Global) Name() string { return v.name }
func (v *Global) Pos() token.Pos { return v.pos }
func (*Global) Referrers() *[]Instruction { return nil }
func (v *Function) Name() string { return v.name }
func (v *Function) Type() types.Type { return v.Signature }
func (v *Function) Pos() token.Pos { return v.pos }
func (*Function) Referrers() *[]Instruction { return nil }
func (v *Parameter) Type() types.Type { return v.typ }
func (v *Parameter) Name() string { return v.name }
func (v *Parameter) Referrers() *[]Instruction { return &v.referrers }
func (v *Parameter) Pos() token.Pos { return v.pos }
func (v *Alloc) Type() types.Type { return v.typ }
func (v *Alloc) Name() string { return v.name }
func (v *Alloc) Referrers() *[]Instruction { return &v.referrers }
func (v *Alloc) Pos() token.Pos { return v.pos }
func (v *Register) Type() types.Type { return v.typ }
func (v *Register) setType(typ types.Type) { v.typ = typ }
func (v *Register) Name() string { return fmt.Sprintf("t%d", v.num) }
func (v *Register) setNum(num int) { v.num = num }
func (v *Register) Referrers() *[]Instruction { return &v.referrers }
func (v *Register) asRegister() *Register { return v }
func (v *Register) Pos() token.Pos { return v.pos }
func (v *Register) setPos(pos token.Pos) { v.pos = pos }
func (v *anInstruction) Block() *BasicBlock { return v.block }
func (v *anInstruction) SetBlock(block *BasicBlock) { v.block = block }
func (t *Type) Name() string { return t.NamedType.Obj().Name() }
func (t *Type) Pos() token.Pos { return t.NamedType.Obj().Pos() }
func (t *Type) String() string { return t.Name() }
func (t *Type) Type() types.Type { return t.NamedType }
func (c *Constant) Name() string { return c.name }
func (c *Constant) Pos() token.Pos { return c.pos }
func (c *Constant) String() string { return c.Name() }
func (c *Constant) Type() types.Type { return c.Value.Type() }
// Func returns the package-level function of the specified name,
// or nil if not found.
//
func (p *Package) Func(name string) (f *Function) {
f, _ = p.Members[name].(*Function)
return
}
// Var returns the package-level variable of the specified name,
// or nil if not found.
//
func (p *Package) Var(name string) (g *Global) {
g, _ = p.Members[name].(*Global)
return
}
// Const returns the package-level constant of the specified name,
// or nil if not found.
//
func (p *Package) Const(name string) (c *Constant) {
c, _ = p.Members[name].(*Constant)
return
}
// Type returns the package-level type of the specified name,
// or nil if not found.
//
func (p *Package) Type(name string) (t *Type) {
t, _ = p.Members[name].(*Type)
return
}
func (v *Call) Pos() token.Pos { return v.Call.pos }
func (s *Defer) Pos() token.Pos { return s.Call.pos }
func (s *Go) Pos() token.Pos { return s.Call.pos }
func (s *MapUpdate) Pos() token.Pos { return s.pos }
func (s *Panic) Pos() token.Pos { return s.pos }
func (s *Ret) Pos() token.Pos { return s.pos }
func (s *Send) Pos() token.Pos { return s.pos }
func (s *Store) Pos() token.Pos { return s.pos }
func (s *If) Pos() token.Pos { return token.NoPos }
func (s *Jump) Pos() token.Pos { return token.NoPos }
func (s *RunDefers) Pos() token.Pos { return token.NoPos }
// Operands.
func (v *Alloc) Operands(rands []*Value) []*Value {
return rands
}
func (v *BinOp) Operands(rands []*Value) []*Value {
return append(rands, &v.X, &v.Y)
}
func (c *CallCommon) Operands(rands []*Value) []*Value {
rands = append(rands, &c.Recv, &c.Func)
for i := range c.Args {
rands = append(rands, &c.Args[i])
}
return rands
}
func (s *Go) Operands(rands []*Value) []*Value {
return s.Call.Operands(rands)
}
func (s *Call) Operands(rands []*Value) []*Value {
return s.Call.Operands(rands)
}
func (s *Defer) Operands(rands []*Value) []*Value {
return s.Call.Operands(rands)
}
func (v *ChangeInterface) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (v *ChangeType) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (v *Convert) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (v *Extract) Operands(rands []*Value) []*Value {
return append(rands, &v.Tuple)
}
func (v *Field) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (v *FieldAddr) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (s *If) Operands(rands []*Value) []*Value {
return append(rands, &s.Cond)
}
func (v *Index) Operands(rands []*Value) []*Value {
return append(rands, &v.X, &v.Index)
}
func (v *IndexAddr) Operands(rands []*Value) []*Value {
return append(rands, &v.X, &v.Index)
}
func (*Jump) Operands(rands []*Value) []*Value {
return rands
}
func (v *Lookup) Operands(rands []*Value) []*Value {
return append(rands, &v.X, &v.Index)
}
func (v *MakeChan) Operands(rands []*Value) []*Value {
return append(rands, &v.Size)
}
func (v *MakeClosure) Operands(rands []*Value) []*Value {
rands = append(rands, &v.Fn)
for i := range v.Bindings {
rands = append(rands, &v.Bindings[i])
}
return rands
}
func (v *MakeInterface) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (v *MakeMap) Operands(rands []*Value) []*Value {
return append(rands, &v.Reserve)
}
func (v *MakeSlice) Operands(rands []*Value) []*Value {
return append(rands, &v.Len, &v.Cap)
}
func (v *MapUpdate) Operands(rands []*Value) []*Value {
return append(rands, &v.Map, &v.Key, &v.Value)
}
func (v *Next) Operands(rands []*Value) []*Value {
return append(rands, &v.Iter)
}
func (s *Panic) Operands(rands []*Value) []*Value {
return append(rands, &s.X)
}
func (v *Phi) Operands(rands []*Value) []*Value {
for i := range v.Edges {
rands = append(rands, &v.Edges[i])
}
return rands
}
func (v *Range) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (s *Ret) Operands(rands []*Value) []*Value {
for i := range s.Results {
rands = append(rands, &s.Results[i])
}
return rands
}
func (*RunDefers) Operands(rands []*Value) []*Value {
return rands
}
func (v *Select) Operands(rands []*Value) []*Value {
for i := range v.States {
rands = append(rands, &v.States[i].Chan, &v.States[i].Send)
}
return rands
}
func (s *Send) Operands(rands []*Value) []*Value {
return append(rands, &s.Chan, &s.X)
}
func (v *Slice) Operands(rands []*Value) []*Value {
return append(rands, &v.X, &v.Low, &v.High)
}
func (s *Store) Operands(rands []*Value) []*Value {
return append(rands, &s.Addr, &s.Val)
}
func (v *TypeAssert) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}
func (v *UnOp) Operands(rands []*Value) []*Value {
return append(rands, &v.X)
}