1
0
mirror of https://github.com/golang/go synced 2024-10-01 11:38:34 -06:00
go/pointer/reflect.go
Alan Donovan 8bb20b8231 go.tools/pointer: more reflection.
Support for:
        (*reflect.rtype).Field
        (*reflect.rtype).FieldByName
        reflect.MakeSlice
        runtime.SetFinalizer

Details:
- analysis locates ssa.Functions for (reflect.Value).Call
  and runtime.SetFinalizer during startup to that it can
  special-case them during genCall.  ('Call' is forthcoming.)
- The callsite.targets mechanism is only used for dynamic
  calls now.  For static calls we call callEdge during constraint
  generation; this is a minor optimisation.
- Static calls to SetFinalizer are inlined so that the call
  appears to go direct to the finalizer.  (We'll use the same
  trick for (reflect.Value).Call.)
- runtime.FuncForPC: treat as a no-op.
- Fixed pointer_test to properly deal with expectations
  that are multi-sets.
- Inlined rtypeMethodByNameConstraint.addMethod.
- More tests.

R=crawshaw
CC=golang-dev
https://golang.org/cl/14682045
2013-10-17 09:26:44 -04:00

1478 lines
35 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

package pointer
// This file implements the generation and resolution rules for
// constraints arising from the use of reflection in the target
// program. See doc.go for explanation of the representation.
//
// For consistency, the names of all parameters match those of the
// actual functions in the "reflect" package.
//
// To avoid proliferation of equivalent labels, instrinsics should
// memoize as much as possible, like TypeOf and Zero do for their
// tagged objects.
//
// TODO(adonovan): all {} functions are TODO.
import (
"fmt"
"go/ast"
"reflect"
"code.google.com/p/go.tools/go/exact"
"code.google.com/p/go.tools/go/types"
"code.google.com/p/go.tools/ssa"
)
// -------------------- (reflect.Value) --------------------
func ext۰reflect۰Value۰Addr(a *analysis, cgn *cgnode) {}
// ---------- func (Value).Bytes() Value ----------
// result = v.Bytes()
type rVBytesConstraint struct {
v nodeid // (ptr)
result nodeid
}
func (c *rVBytesConstraint) String() string {
return fmt.Sprintf("n%d = reflect n%d.Bytes()", c.result, c.v)
}
func (c *rVBytesConstraint) ptr() nodeid {
return c.v
}
func (c *rVBytesConstraint) solve(a *analysis, _ *node, delta nodeset) {
changed := false
for vObj := range delta {
tDyn, slice, indirect := a.taggedValue(vObj)
if indirect {
// TODO(adonovan): we'll need to implement this
// when we start creating indirect tagged objects.
panic("indirect tagged object")
}
tSlice, ok := tDyn.Underlying().(*types.Slice)
if ok && types.IsIdentical(tSlice.Elem(), types.Typ[types.Uint8]) {
if a.onlineCopy(c.result, slice) {
changed = true
}
}
}
if changed {
a.addWork(c.result)
}
}
func ext۰reflect۰Value۰Bytes(a *analysis, cgn *cgnode) {
a.addConstraint(&rVBytesConstraint{
v: a.funcParams(cgn.obj),
result: a.funcResults(cgn.obj),
})
}
func ext۰reflect۰Value۰Call(a *analysis, cgn *cgnode) {}
func ext۰reflect۰Value۰CallSlice(a *analysis, cgn *cgnode) {}
func ext۰reflect۰Value۰Convert(a *analysis, cgn *cgnode) {}
// ---------- func (Value).Elem() Value ----------
// result = v.Elem()
type rVElemConstraint struct {
cgn *cgnode
v nodeid // (ptr)
result nodeid
}
func (c *rVElemConstraint) String() string {
return fmt.Sprintf("n%d = reflect n%d.Elem()", c.result, c.v)
}
func (c *rVElemConstraint) ptr() nodeid {
return c.v
}
func (c *rVElemConstraint) solve(a *analysis, _ *node, delta nodeset) {
changed := false
for vObj := range delta {
tDyn, payload, indirect := a.taggedValue(vObj)
if indirect {
// TODO(adonovan): we'll need to implement this
// when we start creating indirect tagged objects.
panic("indirect tagged object")
}
switch t := tDyn.Underlying().(type) {
case *types.Interface:
// A direct tagged object can't hold an
// interface type. Implement when we support
// indirect tagged objects.
panic("unreachable")
case *types.Pointer:
obj := a.makeTagged(t.Elem(), c.cgn, nil)
a.load(obj+1, payload, 0, a.sizeof(t.Elem()))
if a.addLabel(c.result, obj) {
changed = true
}
}
}
if changed {
a.addWork(c.result)
}
}
func ext۰reflect۰Value۰Elem(a *analysis, cgn *cgnode) {
a.addConstraint(&rVElemConstraint{
cgn: cgn,
v: a.funcParams(cgn.obj),
result: a.funcResults(cgn.obj),
})
}
func ext۰reflect۰Value۰Field(a *analysis, cgn *cgnode) {}
func ext۰reflect۰Value۰FieldByIndex(a *analysis, cgn *cgnode) {}
func ext۰reflect۰Value۰FieldByName(a *analysis, cgn *cgnode) {}
func ext۰reflect۰Value۰FieldByNameFunc(a *analysis, cgn *cgnode) {}
// ---------- func (Value).Index() Value ----------
// result = v.Index()
type rVIndexConstraint struct {
cgn *cgnode
v nodeid // (ptr)
result nodeid
}
func (c *rVIndexConstraint) String() string {
return fmt.Sprintf("n%d = reflect n%d.Index()", c.result, c.v)
}
func (c *rVIndexConstraint) ptr() nodeid {
return c.v
}
func (c *rVIndexConstraint) solve(a *analysis, _ *node, delta nodeset) {
changed := false
for vObj := range delta {
tDyn, payload, indirect := a.taggedValue(vObj)
if indirect {
// TODO(adonovan): we'll need to implement this
// when we start creating indirect tagged objects.
panic("indirect tagged object")
}
var res nodeid
switch t := tDyn.Underlying().(type) {
case *types.Array:
res = a.makeTagged(t.Elem(), c.cgn, nil)
a.onlineCopyN(res+1, payload+1, a.sizeof(t.Elem()))
case *types.Slice:
res = a.makeTagged(t.Elem(), c.cgn, nil)
a.load(res+1, payload, 1, a.sizeof(t.Elem()))
case *types.Basic:
if t.Kind() == types.String {
res = a.makeTagged(types.Typ[types.Rune], c.cgn, nil)
}
}
if res != 0 && a.addLabel(c.result, res) {
changed = true
}
}
if changed {
a.addWork(c.result)
}
}
func ext۰reflect۰Value۰Index(a *analysis, cgn *cgnode) {
a.addConstraint(&rVIndexConstraint{
cgn: cgn,
v: a.funcParams(cgn.obj),
result: a.funcResults(cgn.obj),
})
}
// ---------- func (Value).Interface() Value ----------
// result = v.Interface()
type rVInterfaceConstraint struct {
v nodeid // (ptr)
result nodeid
}
func (c *rVInterfaceConstraint) String() string {
return fmt.Sprintf("n%d = reflect n%d.Interface()", c.result, c.v)
}
func (c *rVInterfaceConstraint) ptr() nodeid {
return c.v
}
func (c *rVInterfaceConstraint) solve(a *analysis, _ *node, delta nodeset) {
resultPts := &a.nodes[c.result].pts
changed := false
for vObj := range delta {
tDyn, _, indirect := a.taggedValue(vObj)
if tDyn == nil {
panic("not a tagged object")
}
if indirect {
// TODO(adonovan): we'll need to implement this
// when we start creating indirect tagged objects.
panic("indirect tagged object")
}
if resultPts.add(vObj) {
changed = true
}
}
if changed {
a.addWork(c.result)
}
}
func ext۰reflect۰Value۰Interface(a *analysis, cgn *cgnode) {
a.addConstraint(&rVInterfaceConstraint{
v: a.funcParams(cgn.obj),
result: a.funcResults(cgn.obj),
})
}
// ---------- func (Value).MapIndex(Value) Value ----------
// result = v.MapIndex(_)
type rVMapIndexConstraint struct {
cgn *cgnode
v nodeid // (ptr)
result nodeid
}
func (c *rVMapIndexConstraint) String() string {
return fmt.Sprintf("n%d = reflect n%d.MapIndex(_)", c.result, c.v)
}
func (c *rVMapIndexConstraint) ptr() nodeid {
return c.v
}
func (c *rVMapIndexConstraint) solve(a *analysis, _ *node, delta nodeset) {
changed := false
for vObj := range delta {
tDyn, m, indirect := a.taggedValue(vObj)
tMap, _ := tDyn.Underlying().(*types.Map)
if tMap == nil {
continue // not a map
}
if indirect {
// TODO(adonovan): we'll need to implement this
// when we start creating indirect tagged objects.
panic("indirect tagged object")
}
obj := a.makeTagged(tMap.Elem(), c.cgn, nil)
a.load(obj+1, m, a.sizeof(tMap.Key()), a.sizeof(tMap.Elem()))
if a.addLabel(c.result, obj) {
changed = true
}
}
if changed {
a.addWork(c.result)
}
}
func ext۰reflect۰Value۰MapIndex(a *analysis, cgn *cgnode) {
a.addConstraint(&rVMapIndexConstraint{
cgn: cgn,
v: a.funcParams(cgn.obj),
result: a.funcResults(cgn.obj),
})
}
// ---------- func (Value).MapKeys() []Value ----------
// result = v.MapKeys()
type rVMapKeysConstraint struct {
cgn *cgnode
v nodeid // (ptr)
result nodeid
}
func (c *rVMapKeysConstraint) String() string {
return fmt.Sprintf("n%d = reflect n%d.MapKeys()", c.result, c.v)
}
func (c *rVMapKeysConstraint) ptr() nodeid {
return c.v
}
func (c *rVMapKeysConstraint) solve(a *analysis, _ *node, delta nodeset) {
changed := false
for vObj := range delta {
tDyn, m, indirect := a.taggedValue(vObj)
tMap, _ := tDyn.Underlying().(*types.Map)
if tMap == nil {
continue // not a map
}
if indirect {
// TODO(adonovan): we'll need to implement this
// when we start creating indirect tagged objects.
panic("indirect tagged object")
}
kObj := a.makeTagged(tMap.Key(), c.cgn, nil)
a.load(kObj+1, m, 0, a.sizeof(tMap.Key()))
if a.addLabel(c.result, kObj) {
changed = true
}
}
if changed {
a.addWork(c.result)
}
}
func ext۰reflect۰Value۰MapKeys(a *analysis, cgn *cgnode) {
// Allocate an array for the result.
obj := a.nextNode()
a.addNodes(types.NewArray(a.reflectValueObj.Type(), 1), "reflect.MapKeys result")
a.endObject(obj, cgn, nil)
a.addressOf(a.funcResults(cgn.obj), obj)
a.addConstraint(&rVMapKeysConstraint{
cgn: cgn,
v: a.funcParams(cgn.obj),
result: obj + 1, // result is stored in array elems
})
}
func ext۰reflect۰Value۰Method(a *analysis, cgn *cgnode) {}
func ext۰reflect۰Value۰MethodByName(a *analysis, cgn *cgnode) {}
// ---------- func (Value).Recv(Value) ----------
// result, _ = v.Recv()
type rVRecvConstraint struct {
cgn *cgnode
v nodeid // (ptr)
result nodeid
}
func (c *rVRecvConstraint) String() string {
return fmt.Sprintf("n%d = reflect n%d.Recv()", c.result, c.v)
}
func (c *rVRecvConstraint) ptr() nodeid {
return c.v
}
func (c *rVRecvConstraint) solve(a *analysis, _ *node, delta nodeset) {
changed := false
for vObj := range delta {
tDyn, ch, indirect := a.taggedValue(vObj)
tChan, _ := tDyn.Underlying().(*types.Chan)
if tChan == nil {
continue // not a channel
}
if indirect {
// TODO(adonovan): we'll need to implement this
// when we start creating indirect tagged objects.
panic("indirect tagged object")
}
tElem := tChan.Elem()
elemObj := a.makeTagged(tElem, c.cgn, nil)
a.load(elemObj+1, ch, 0, a.sizeof(tElem))
if a.addLabel(c.result, elemObj) {
changed = true
}
}
if changed {
a.addWork(c.result)
}
}
func ext۰reflect۰Value۰Recv(a *analysis, cgn *cgnode) {
a.addConstraint(&rVRecvConstraint{
cgn: cgn,
v: a.funcParams(cgn.obj),
result: a.funcResults(cgn.obj),
})
}
// ---------- func (Value).Send(Value) ----------
// v.Send(x)
type rVSendConstraint struct {
cgn *cgnode
v nodeid // (ptr)
x nodeid
}
func (c *rVSendConstraint) String() string {
return fmt.Sprintf("reflect n%d.Send(n%d)", c.v, c.x)
}
func (c *rVSendConstraint) ptr() nodeid {
return c.v
}
func (c *rVSendConstraint) solve(a *analysis, _ *node, delta nodeset) {
for vObj := range delta {
tDyn, ch, indirect := a.taggedValue(vObj)
tChan, _ := tDyn.Underlying().(*types.Chan)
if tChan == nil {
continue // not a channel
}
if indirect {
// TODO(adonovan): we'll need to implement this
// when we start creating indirect tagged objects.
panic("indirect tagged object")
}
// Extract x's payload to xtmp, then store to channel.
tElem := tChan.Elem()
xtmp := a.addNodes(tElem, "Send.xtmp")
a.untag(tElem, xtmp, c.x, false)
a.store(ch, xtmp, 0, a.sizeof(tElem))
}
}
func ext۰reflect۰Value۰Send(a *analysis, cgn *cgnode) {
params := a.funcParams(cgn.obj)
a.addConstraint(&rVSendConstraint{
cgn: cgn,
v: params,
x: params + 1,
})
}
func ext۰reflect۰Value۰Set(a *analysis, cgn *cgnode) {}
// ---------- func (Value).SetBytes(x []byte) ----------
// v.SetBytes(x)
type rVSetBytesConstraint struct {
cgn *cgnode
v nodeid // (ptr)
x nodeid
}
func (c *rVSetBytesConstraint) String() string {
return fmt.Sprintf("reflect n%d.SetBytes(n%d)", c.v, c.x)
}
func (c *rVSetBytesConstraint) ptr() nodeid {
return c.v
}
func (c *rVSetBytesConstraint) solve(a *analysis, _ *node, delta nodeset) {
for vObj := range delta {
tDyn, slice, indirect := a.taggedValue(vObj)
if indirect {
// TODO(adonovan): we'll need to implement this
// when we start creating indirect tagged objects.
panic("indirect tagged object")
}
tSlice, ok := tDyn.Underlying().(*types.Slice)
if ok && types.IsIdentical(tSlice.Elem(), types.Typ[types.Uint8]) {
if a.onlineCopy(slice, c.x) {
a.addWork(slice)
}
}
}
}
func ext۰reflect۰Value۰SetBytes(a *analysis, cgn *cgnode) {
params := a.funcParams(cgn.obj)
a.addConstraint(&rVSetBytesConstraint{
cgn: cgn,
v: params,
x: params + 1,
})
}
// ---------- func (Value).SetMapIndex(k Value, v Value) ----------
// v.SetMapIndex(key, val)
type rVSetMapIndexConstraint struct {
cgn *cgnode
v nodeid // (ptr)
key nodeid
val nodeid
}
func (c *rVSetMapIndexConstraint) String() string {
return fmt.Sprintf("reflect n%d.SetMapIndex(n%d, n%d)", c.v, c.key, c.val)
}
func (c *rVSetMapIndexConstraint) ptr() nodeid {
return c.v
}
func (c *rVSetMapIndexConstraint) solve(a *analysis, _ *node, delta nodeset) {
for vObj := range delta {
tDyn, m, indirect := a.taggedValue(vObj)
tMap, _ := tDyn.Underlying().(*types.Map)
if tMap == nil {
continue // not a map
}
if indirect {
// TODO(adonovan): we'll need to implement this
// when we start creating indirect tagged objects.
panic("indirect tagged object")
}
keysize := a.sizeof(tMap.Key())
// Extract key's payload to keytmp, then store to map key.
keytmp := a.addNodes(tMap.Key(), "SetMapIndex.keytmp")
a.untag(tMap.Key(), keytmp, c.key, false)
a.store(m, keytmp, 0, keysize)
// Extract val's payload to vtmp, then store to map value.
valtmp := a.addNodes(tMap.Elem(), "SetMapIndex.valtmp")
a.untag(tMap.Elem(), valtmp, c.val, false)
a.store(m, valtmp, keysize, a.sizeof(tMap.Elem()))
}
}
func ext۰reflect۰Value۰SetMapIndex(a *analysis, cgn *cgnode) {
params := a.funcParams(cgn.obj)
a.addConstraint(&rVSetMapIndexConstraint{
cgn: cgn,
v: params,
key: params + 1,
val: params + 2,
})
}
func ext۰reflect۰Value۰SetPointer(a *analysis, cgn *cgnode) {}
// ---------- func (Value).Slice(v Value, i, j int) ----------
// result = v.Slice(_, _)
type rVSliceConstraint struct {
cgn *cgnode
v nodeid // (ptr)
result nodeid
}
func (c *rVSliceConstraint) String() string {
return fmt.Sprintf("n%d = reflect n%d.Slice(_, _)", c.result, c.v)
}
func (c *rVSliceConstraint) ptr() nodeid {
return c.v
}
func (c *rVSliceConstraint) solve(a *analysis, _ *node, delta nodeset) {
changed := false
for vObj := range delta {
tDyn, payload, indirect := a.taggedValue(vObj)
if indirect {
// TODO(adonovan): we'll need to implement this
// when we start creating indirect tagged objects.
panic("indirect tagged object")
}
var res nodeid
switch t := tDyn.Underlying().(type) {
case *types.Pointer:
if tArr, ok := t.Elem().Underlying().(*types.Array); ok {
// pointer to array
res = a.makeTagged(types.NewSlice(tArr.Elem()), c.cgn, nil)
if a.onlineCopy(res+1, payload) {
a.addWork(res + 1)
}
}
case *types.Array:
// TODO(adonovan): implement addressable
// arrays when we do indirect tagged objects.
case *types.Slice:
res = vObj
case *types.Basic:
if t == types.Typ[types.String] {
res = vObj
}
}
if res != 0 && a.addLabel(c.result, res) {
changed = true
}
}
if changed {
a.addWork(c.result)
}
}
func ext۰reflect۰Value۰Slice(a *analysis, cgn *cgnode) {
a.addConstraint(&rVSliceConstraint{
cgn: cgn,
v: a.funcParams(cgn.obj),
result: a.funcResults(cgn.obj),
})
}
// -------------------- Standalone reflect functions --------------------
func ext۰reflect۰Append(a *analysis, cgn *cgnode) {}
func ext۰reflect۰AppendSlice(a *analysis, cgn *cgnode) {}
func ext۰reflect۰Copy(a *analysis, cgn *cgnode) {}
// ---------- func ChanOf(ChanDir, Type) Type ----------
// result = ChanOf(dir, t)
type reflectChanOfConstraint struct {
cgn *cgnode
t nodeid // (ptr)
result nodeid
dirs []ast.ChanDir
}
func (c *reflectChanOfConstraint) String() string {
return fmt.Sprintf("n%d = reflect.ChanOf(n%d)", c.result, c.t)
}
func (c *reflectChanOfConstraint) ptr() nodeid {
return c.t
}
func (c *reflectChanOfConstraint) solve(a *analysis, _ *node, delta nodeset) {
changed := false
for tObj := range delta {
T := a.rtypeTaggedValue(tObj)
for _, dir := range c.dirs {
if a.addLabel(c.result, a.makeRtype(types.NewChan(dir, T))) {
changed = true
}
}
}
if changed {
a.addWork(c.result)
}
}
// dirMap maps reflect.ChanDir to the set of channel types generated by ChanOf.
var dirMap = [...][]ast.ChanDir{
0: {ast.RECV, ast.SEND, ast.RECV | ast.SEND}, // unknown
reflect.RecvDir: {ast.RECV},
reflect.SendDir: {ast.SEND},
reflect.BothDir: {ast.RECV | ast.SEND},
}
func ext۰reflect۰ChanOf(a *analysis, cgn *cgnode) {
// If we have access to the callsite,
// and the channel argument is a constant (as is usual),
// only generate the requested direction.
var dir reflect.ChanDir // unknown
if site := cgn.callersite; site != nil {
if c, ok := site.instr.Common().Args[0].(*ssa.Const); ok {
v, _ := exact.Int64Val(c.Value)
if 0 <= v && v <= int64(reflect.BothDir) {
dir = reflect.ChanDir(v)
}
}
}
params := a.funcParams(cgn.obj)
a.addConstraint(&reflectChanOfConstraint{
cgn: cgn,
t: params + 1,
result: a.funcResults(cgn.obj),
dirs: dirMap[dir],
})
}
// ---------- func Indirect(v Value) Value ----------
// result = Indirect(v)
type reflectIndirectConstraint struct {
cgn *cgnode
v nodeid // (ptr)
result nodeid
}
func (c *reflectIndirectConstraint) String() string {
return fmt.Sprintf("n%d = reflect.Indirect(n%d)", c.result, c.v)
}
func (c *reflectIndirectConstraint) ptr() nodeid {
return c.v
}
func (c *reflectIndirectConstraint) solve(a *analysis, _ *node, delta nodeset) {
changed := false
for vObj := range delta {
tDyn, _, _ := a.taggedValue(vObj)
if tDyn == nil {
panic("not a tagged value")
}
var res nodeid
if tPtr, ok := tDyn.Underlying().(*types.Pointer); ok {
// load the payload of the pointer's tagged object
// into a new tagged object
res = a.makeTagged(tPtr.Elem(), c.cgn, nil)
a.load(res+1, vObj+1, 0, a.sizeof(tPtr.Elem()))
} else {
res = vObj
}
if a.addLabel(c.result, res) {
changed = true
}
}
if changed {
a.addWork(c.result)
}
}
func ext۰reflect۰Indirect(a *analysis, cgn *cgnode) {
a.addConstraint(&reflectIndirectConstraint{
cgn: cgn,
v: a.funcParams(cgn.obj),
result: a.funcResults(cgn.obj),
})
}
// ---------- func MakeChan(Type) Value ----------
// result = MakeChan(typ)
type reflectMakeChanConstraint struct {
cgn *cgnode
typ nodeid // (ptr)
result nodeid
}
func (c *reflectMakeChanConstraint) String() string {
return fmt.Sprintf("n%d = reflect.MakeChan(n%d)", c.result, c.typ)
}
func (c *reflectMakeChanConstraint) ptr() nodeid {
return c.typ
}
func (c *reflectMakeChanConstraint) solve(a *analysis, _ *node, delta nodeset) {
changed := false
for typObj := range delta {
T := a.rtypeTaggedValue(typObj)
tChan, ok := T.Underlying().(*types.Chan)
if !ok || tChan.Dir() != ast.SEND|ast.RECV {
continue // not a bidirectional channel type
}
obj := a.nextNode()
a.addNodes(tChan.Elem(), "reflect.MakeChan.value")
a.endObject(obj, c.cgn, nil)
// put its address in a new T-tagged object
id := a.makeTagged(T, c.cgn, nil)
a.addLabel(id+1, obj)
// flow the T-tagged object to the result
if a.addLabel(c.result, id) {
changed = true
}
}
if changed {
a.addWork(c.result)
}
}
func ext۰reflect۰MakeChan(a *analysis, cgn *cgnode) {
a.addConstraint(&reflectMakeChanConstraint{
cgn: cgn,
typ: a.funcParams(cgn.obj),
result: a.funcResults(cgn.obj),
})
}
func ext۰reflect۰MakeFunc(a *analysis, cgn *cgnode) {}
// ---------- func MakeMap(Type) Value ----------
// result = MakeMap(typ)
type reflectMakeMapConstraint struct {
cgn *cgnode
typ nodeid // (ptr)
result nodeid
}
func (c *reflectMakeMapConstraint) String() string {
return fmt.Sprintf("n%d = reflect.MakeMap(n%d)", c.result, c.typ)
}
func (c *reflectMakeMapConstraint) ptr() nodeid {
return c.typ
}
func (c *reflectMakeMapConstraint) solve(a *analysis, _ *node, delta nodeset) {
changed := false
for typObj := range delta {
T := a.rtypeTaggedValue(typObj)
tMap, ok := T.Underlying().(*types.Map)
if !ok {
continue // not a map type
}
mapObj := a.nextNode()
a.addNodes(tMap.Key(), "reflect.MakeMap.key")
a.addNodes(tMap.Elem(), "reflect.MakeMap.value")
a.endObject(mapObj, c.cgn, nil)
// put its address in a new T-tagged object
id := a.makeTagged(T, c.cgn, nil)
a.addLabel(id+1, mapObj)
// flow the T-tagged object to the result
if a.addLabel(c.result, id) {
changed = true
}
}
if changed {
a.addWork(c.result)
}
}
func ext۰reflect۰MakeMap(a *analysis, cgn *cgnode) {
a.addConstraint(&reflectMakeMapConstraint{
cgn: cgn,
typ: a.funcParams(cgn.obj),
result: a.funcResults(cgn.obj),
})
}
// ---------- func MakeSlice(Type) Value ----------
// result = MakeSlice(typ)
type reflectMakeSliceConstraint struct {
cgn *cgnode
typ nodeid // (ptr)
result nodeid
}
func (c *reflectMakeSliceConstraint) String() string {
return fmt.Sprintf("n%d = reflect.MakeSlice(n%d)", c.result, c.typ)
}
func (c *reflectMakeSliceConstraint) ptr() nodeid {
return c.typ
}
func (c *reflectMakeSliceConstraint) solve(a *analysis, _ *node, delta nodeset) {
changed := false
for typObj := range delta {
T := a.rtypeTaggedValue(typObj)
if _, ok := T.Underlying().(*types.Slice); !ok {
continue // not a slice type
}
obj := a.nextNode()
a.addNodes(sliceToArray(T), "reflect.MakeSlice")
a.endObject(obj, c.cgn, nil)
// put its address in a new T-tagged object
id := a.makeTagged(T, c.cgn, nil)
a.addLabel(id+1, obj)
// flow the T-tagged object to the result
if a.addLabel(c.result, id) {
changed = true
}
}
if changed {
a.addWork(c.result)
}
}
func ext۰reflect۰MakeSlice(a *analysis, cgn *cgnode) {
a.addConstraint(&reflectMakeSliceConstraint{
cgn: cgn,
typ: a.funcParams(cgn.obj),
result: a.funcResults(cgn.obj),
})
}
func ext۰reflect۰MapOf(a *analysis, cgn *cgnode) {}
// ---------- func New(Type) Value ----------
// result = New(typ)
type reflectNewConstraint struct {
cgn *cgnode
typ nodeid // (ptr)
result nodeid
}
func (c *reflectNewConstraint) String() string {
return fmt.Sprintf("n%d = reflect.New(n%d)", c.result, c.typ)
}
func (c *reflectNewConstraint) ptr() nodeid {
return c.typ
}
func (c *reflectNewConstraint) solve(a *analysis, _ *node, delta nodeset) {
changed := false
for typObj := range delta {
T := a.rtypeTaggedValue(typObj)
// allocate new T object
newObj := a.nextNode()
a.addNodes(T, "reflect.New")
a.endObject(newObj, c.cgn, nil)
// put its address in a new *T-tagged object
id := a.makeTagged(types.NewPointer(T), c.cgn, nil)
a.addLabel(id+1, newObj)
// flow the pointer to the result
if a.addLabel(c.result, id) {
changed = true
}
}
if changed {
a.addWork(c.result)
}
}
func ext۰reflect۰New(a *analysis, cgn *cgnode) {
a.addConstraint(&reflectNewConstraint{
cgn: cgn,
typ: a.funcParams(cgn.obj),
result: a.funcResults(cgn.obj),
})
}
func ext۰reflect۰NewAt(a *analysis, cgn *cgnode) {
ext۰reflect۰New(a, cgn)
// TODO(adonovan): also report dynamic calls to unsound intrinsics.
if site := cgn.callersite; site != nil {
a.warnf(site.pos(), "unsound: %s contains a reflect.NewAt() call", site.instr.Parent())
}
}
// ---------- func PtrTo(Type) Type ----------
// result = PtrTo(t)
type reflectPtrToConstraint struct {
cgn *cgnode
t nodeid // (ptr)
result nodeid
}
func (c *reflectPtrToConstraint) String() string {
return fmt.Sprintf("n%d = reflect.PtrTo(n%d)", c.result, c.t)
}
func (c *reflectPtrToConstraint) ptr() nodeid {
return c.t
}
func (c *reflectPtrToConstraint) solve(a *analysis, _ *node, delta nodeset) {
changed := false
for tObj := range delta {
T := a.rtypeTaggedValue(tObj)
if a.addLabel(c.result, a.makeRtype(types.NewPointer(T))) {
changed = true
}
}
if changed {
a.addWork(c.result)
}
}
func ext۰reflect۰PtrTo(a *analysis, cgn *cgnode) {
a.addConstraint(&reflectPtrToConstraint{
cgn: cgn,
t: a.funcParams(cgn.obj),
result: a.funcResults(cgn.obj),
})
}
func ext۰reflect۰Select(a *analysis, cgn *cgnode) {}
// ---------- func SliceOf(Type) Type ----------
// result = SliceOf(t)
type reflectSliceOfConstraint struct {
cgn *cgnode
t nodeid // (ptr)
result nodeid
}
func (c *reflectSliceOfConstraint) String() string {
return fmt.Sprintf("n%d = reflect.SliceOf(n%d)", c.result, c.t)
}
func (c *reflectSliceOfConstraint) ptr() nodeid {
return c.t
}
func (c *reflectSliceOfConstraint) solve(a *analysis, _ *node, delta nodeset) {
changed := false
for tObj := range delta {
T := a.rtypeTaggedValue(tObj)
if a.addLabel(c.result, a.makeRtype(types.NewSlice(T))) {
changed = true
}
}
if changed {
a.addWork(c.result)
}
}
func ext۰reflect۰SliceOf(a *analysis, cgn *cgnode) {
a.addConstraint(&reflectSliceOfConstraint{
cgn: cgn,
t: a.funcParams(cgn.obj),
result: a.funcResults(cgn.obj),
})
}
// ---------- func TypeOf(v Value) Type ----------
// result = TypeOf(i)
type reflectTypeOfConstraint struct {
cgn *cgnode
i nodeid // (ptr)
result nodeid
}
func (c *reflectTypeOfConstraint) String() string {
return fmt.Sprintf("n%d = reflect.TypeOf(n%d)", c.result, c.i)
}
func (c *reflectTypeOfConstraint) ptr() nodeid {
return c.i
}
func (c *reflectTypeOfConstraint) solve(a *analysis, _ *node, delta nodeset) {
changed := false
for iObj := range delta {
tDyn, _, _ := a.taggedValue(iObj)
if tDyn == nil {
panic("not a tagged value")
}
if a.addLabel(c.result, a.makeRtype(tDyn)) {
changed = true
}
}
if changed {
a.addWork(c.result)
}
}
func ext۰reflect۰TypeOf(a *analysis, cgn *cgnode) {
a.addConstraint(&reflectTypeOfConstraint{
cgn: cgn,
i: a.funcParams(cgn.obj),
result: a.funcResults(cgn.obj),
})
}
// ---------- func ValueOf(interface{}) Value ----------
func ext۰reflect۰ValueOf(a *analysis, cgn *cgnode) {
// TODO(adonovan): when we start creating indirect tagged
// objects, we'll need to handle them specially here since
// they must never appear in the PTS of an interface{}.
a.copy(a.funcResults(cgn.obj), a.funcParams(cgn.obj), 1)
}
// ---------- func Zero(Type) Value ----------
// result = Zero(typ)
type reflectZeroConstraint struct {
cgn *cgnode
typ nodeid // (ptr)
result nodeid
}
func (c *reflectZeroConstraint) String() string {
return fmt.Sprintf("n%d = reflect.Zero(n%d)", c.result, c.typ)
}
func (c *reflectZeroConstraint) ptr() nodeid {
return c.typ
}
func (c *reflectZeroConstraint) solve(a *analysis, _ *node, delta nodeset) {
changed := false
for typObj := range delta {
T := a.rtypeTaggedValue(typObj)
// TODO(adonovan): if T is an interface type, we need
// to create an indirect tagged object containing
// new(T). To avoid updates of such shared values,
// we'll need another flag on indirect tagged values
// that marks whether they are addressable or
// readonly, just like the reflect package does.
// memoize using a.reflectZeros[T]
var id nodeid
if z := a.reflectZeros.At(T); false && z != nil {
id = z.(nodeid)
} else {
id = a.makeTagged(T, c.cgn, nil)
a.reflectZeros.Set(T, id)
}
if a.addLabel(c.result, id) {
changed = true
}
}
if changed {
a.addWork(c.result)
}
}
func ext۰reflect۰Zero(a *analysis, cgn *cgnode) {
a.addConstraint(&reflectZeroConstraint{
cgn: cgn,
typ: a.funcParams(cgn.obj),
result: a.funcResults(cgn.obj),
})
}
// -------------------- (*reflect.rtype) methods --------------------
// ---------- func (*rtype) Elem() Type ----------
// result = Elem(t)
type rtypeElemConstraint struct {
cgn *cgnode
t nodeid // (ptr)
result nodeid
}
func (c *rtypeElemConstraint) String() string {
return fmt.Sprintf("n%d = (*reflect.rtype).Elem(n%d)", c.result, c.t)
}
func (c *rtypeElemConstraint) ptr() nodeid {
return c.t
}
func (c *rtypeElemConstraint) solve(a *analysis, _ *node, delta nodeset) {
// Implemented by *types.{Map,Chan,Array,Slice,Pointer}.
type hasElem interface {
Elem() types.Type
}
changed := false
for tObj := range delta {
T := a.nodes[tObj].obj.data.(types.Type)
if tHasElem, ok := T.Underlying().(hasElem); ok {
if a.addLabel(c.result, a.makeRtype(tHasElem.Elem())) {
changed = true
}
}
}
if changed {
a.addWork(c.result)
}
}
func ext۰reflect۰rtype۰Elem(a *analysis, cgn *cgnode) {
a.addConstraint(&rtypeElemConstraint{
cgn: cgn,
t: a.funcParams(cgn.obj),
result: a.funcResults(cgn.obj),
})
}
// ---------- func (*rtype) Field(int) StructField ----------
// ---------- func (*rtype) FieldByName(string) (StructField, bool) ----------
// result = FieldByName(t, name)
// result = Field(t, _)
type rtypeFieldByNameConstraint struct {
cgn *cgnode
name string // name of field; "" for unknown
t nodeid // (ptr)
result nodeid
}
func (c *rtypeFieldByNameConstraint) String() string {
return fmt.Sprintf("n%d = (*reflect.rtype).FieldByName(n%d, %q)", c.result, c.t, c.name)
}
func (c *rtypeFieldByNameConstraint) ptr() nodeid {
return c.t
}
func (c *rtypeFieldByNameConstraint) solve(a *analysis, _ *node, delta nodeset) {
// type StructField struct {
// 0 __identity__
// 1 Name string
// 2 PkgPath string
// 3 Type Type
// 4 Tag StructTag
// 5 Offset uintptr
// 6 Index []int
// 7 Anonymous bool
// }
for tObj := range delta {
T := a.nodes[tObj].obj.data.(types.Type)
tStruct, ok := T.Underlying().(*types.Struct)
if !ok {
continue // not a struct type
}
n := tStruct.NumFields()
for i := 0; i < n; i++ {
f := tStruct.Field(i)
if c.name == "" || c.name == f.Name() {
// a.offsetOf(Type) is 3.
if id := c.result + 3; a.addLabel(id, a.makeRtype(f.Type())) {
a.addWork(id)
}
// TODO(adonovan): StructField.Index should be non-nil.
}
}
}
}
func ext۰reflect۰rtype۰FieldByName(a *analysis, cgn *cgnode) {
// If we have access to the callsite,
// and the argument is a string constant,
// return only that field.
var name string
if site := cgn.callersite; site != nil {
if c, ok := site.instr.Common().Args[0].(*ssa.Const); ok {
name = exact.StringVal(c.Value)
}
}
a.addConstraint(&rtypeFieldByNameConstraint{
cgn: cgn,
name: name,
t: a.funcParams(cgn.obj),
result: a.funcResults(cgn.obj),
})
}
func ext۰reflect۰rtype۰Field(a *analysis, cgn *cgnode) {
// No-one ever calls Field with a constant argument,
// so we don't specialize that case.
a.addConstraint(&rtypeFieldByNameConstraint{
cgn: cgn,
t: a.funcParams(cgn.obj),
result: a.funcResults(cgn.obj),
})
}
func ext۰reflect۰rtype۰FieldByIndex(a *analysis, cgn *cgnode) {}
func ext۰reflect۰rtype۰FieldByNameFunc(a *analysis, cgn *cgnode) {}
// ---------- func (*rtype) In/Out() Type ----------
// result = In/Out(t)
type rtypeInOutConstraint struct {
cgn *cgnode
t nodeid // (ptr)
result nodeid
out bool
}
func (c *rtypeInOutConstraint) String() string {
return fmt.Sprintf("n%d = (*reflect.rtype).InOut(n%d)", c.result, c.t)
}
func (c *rtypeInOutConstraint) ptr() nodeid {
return c.t
}
func (c *rtypeInOutConstraint) solve(a *analysis, _ *node, delta nodeset) {
changed := false
for tObj := range delta {
T := a.nodes[tObj].obj.data.(types.Type)
sig, ok := T.Underlying().(*types.Signature)
if !ok {
continue // not a func type
}
tuple := sig.Params()
if c.out {
tuple = sig.Results()
}
// TODO(adonovan): when a function is analyzed
// context-sensitively, we should be able to see its
// caller's actual parameter's ssa.Values. Refactor
// the intrinsic mechanism to allow this. Then if the
// value is an int const K, skip the loop and use
// tuple.At(K).
for i, n := 0, tuple.Len(); i < n; i++ {
if a.addLabel(c.result, a.makeRtype(tuple.At(i).Type())) {
changed = true
}
}
}
if changed {
a.addWork(c.result)
}
}
func ext۰reflect۰rtype۰InOut(a *analysis, cgn *cgnode, out bool) {
a.addConstraint(&rtypeInOutConstraint{
cgn: cgn,
t: a.funcParams(cgn.obj),
result: a.funcResults(cgn.obj),
out: out,
})
}
func ext۰reflect۰rtype۰In(a *analysis, cgn *cgnode) {
ext۰reflect۰rtype۰InOut(a, cgn, false)
}
func ext۰reflect۰rtype۰Out(a *analysis, cgn *cgnode) {
ext۰reflect۰rtype۰InOut(a, cgn, true)
}
// ---------- func (*rtype) Key() Type ----------
// result = Key(t)
type rtypeKeyConstraint struct {
cgn *cgnode
t nodeid // (ptr)
result nodeid
}
func (c *rtypeKeyConstraint) String() string {
return fmt.Sprintf("n%d = (*reflect.rtype).Key(n%d)", c.result, c.t)
}
func (c *rtypeKeyConstraint) ptr() nodeid {
return c.t
}
func (c *rtypeKeyConstraint) solve(a *analysis, _ *node, delta nodeset) {
changed := false
for tObj := range delta {
T := a.nodes[tObj].obj.data.(types.Type)
if tMap, ok := T.Underlying().(*types.Map); ok {
if a.addLabel(c.result, a.makeRtype(tMap.Key())) {
changed = true
}
}
}
if changed {
a.addWork(c.result)
}
}
func ext۰reflect۰rtype۰Key(a *analysis, cgn *cgnode) {
a.addConstraint(&rtypeKeyConstraint{
cgn: cgn,
t: a.funcParams(cgn.obj),
result: a.funcResults(cgn.obj),
})
}
// ---------- func (*rtype) Method(int) (Method, bool) ----------
// ---------- func (*rtype) MethodByName(string) (Method, bool) ----------
// result = MethodByName(t, name)
// result = Method(t, _)
type rtypeMethodByNameConstraint struct {
cgn *cgnode
name string // name of method; "" for unknown
t nodeid // (ptr)
result nodeid
}
func (c *rtypeMethodByNameConstraint) String() string {
return fmt.Sprintf("n%d = (*reflect.rtype).MethodByName(n%d, %q)", c.result, c.t, c.name)
}
func (c *rtypeMethodByNameConstraint) ptr() nodeid {
return c.t
}
// changeRecv returns sig with Recv prepended to Params().
func changeRecv(sig *types.Signature) *types.Signature {
params := sig.Params()
n := params.Len()
p2 := make([]*types.Var, n+1)
p2[0] = sig.Recv()
for i := 0; i < n; i++ {
p2[i+1] = params.At(i)
}
return types.NewSignature(nil, nil, types.NewTuple(p2...), sig.Results(), sig.IsVariadic())
}
func (c *rtypeMethodByNameConstraint) solve(a *analysis, _ *node, delta nodeset) {
for tObj := range delta {
T := a.nodes[tObj].obj.data.(types.Type)
// We don't use Lookup(c.name) when c.name != "" to avoid
// ambiguity: >1 unexported methods could match.
mset := T.MethodSet()
for i, n := 0, mset.Len(); i < n; i++ {
sel := mset.At(i)
if c.name == "" || c.name == sel.Obj().Name() {
// type Method struct {
// 0 __identity__
// 1 Name string
// 2 PkgPath string
// 3 Type Type
// 4 Func Value
// 5 Index int
// }
fn := a.prog.Method(sel)
// a.offsetOf(Type) is 3.
if id := c.result + 3; a.addLabel(id, a.makeRtype(changeRecv(fn.Signature))) {
a.addWork(id)
}
// a.offsetOf(Func) is 4.
if id := c.result + 4; a.addLabel(id, a.objectNode(nil, fn)) {
a.addWork(id)
}
}
}
}
}
func ext۰reflect۰rtype۰MethodByName(a *analysis, cgn *cgnode) {
// If we have access to the callsite,
// and the argument is a string constant,
// return only that method.
var name string
if site := cgn.callersite; site != nil {
if c, ok := site.instr.Common().Args[0].(*ssa.Const); ok {
name = exact.StringVal(c.Value)
}
}
a.addConstraint(&rtypeMethodByNameConstraint{
cgn: cgn,
name: name,
t: a.funcParams(cgn.obj),
result: a.funcResults(cgn.obj),
})
}
func ext۰reflect۰rtype۰Method(a *analysis, cgn *cgnode) {
// No-one ever calls Method with a constant argument,
// so we don't specialize that case.
a.addConstraint(&rtypeMethodByNameConstraint{
cgn: cgn,
t: a.funcParams(cgn.obj),
result: a.funcResults(cgn.obj),
})
}