mirror of
https://github.com/golang/go
synced 2024-11-20 08:44:39 -07:00
0263103a05
performance hit of about 20% but more intuitive results for submatches. we need a good regexp package at some point. Fixes #110. R=rsc CC=golang-dev https://golang.org/cl/152131
1098 lines
27 KiB
Go
1098 lines
27 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Package regexp implements a simple regular expression library.
|
|
//
|
|
// The syntax of the regular expressions accepted is:
|
|
//
|
|
// regexp:
|
|
// concatenation { '|' concatenation }
|
|
// concatenation:
|
|
// { closure }
|
|
// closure:
|
|
// term [ '*' | '+' | '?' ]
|
|
// term:
|
|
// '^'
|
|
// '$'
|
|
// '.'
|
|
// character
|
|
// '[' [ '^' ] character-ranges ']'
|
|
// '(' regexp ')'
|
|
//
|
|
package regexp
|
|
|
|
import (
|
|
"bytes";
|
|
"container/vector";
|
|
"io";
|
|
"os";
|
|
"utf8";
|
|
)
|
|
|
|
var debug = false
|
|
|
|
// Error codes returned by failures to parse an expression.
|
|
var (
|
|
ErrInternal = os.NewError("internal error");
|
|
ErrUnmatchedLpar = os.NewError("unmatched '('");
|
|
ErrUnmatchedRpar = os.NewError("unmatched ')'");
|
|
ErrUnmatchedLbkt = os.NewError("unmatched '['");
|
|
ErrUnmatchedRbkt = os.NewError("unmatched ']'");
|
|
ErrBadRange = os.NewError("bad range in character class");
|
|
ErrExtraneousBackslash = os.NewError("extraneous backslash");
|
|
ErrBadClosure = os.NewError("repeated closure (**, ++, etc.)");
|
|
ErrBareClosure = os.NewError("closure applies to nothing");
|
|
ErrBadBackslash = os.NewError("illegal backslash escape");
|
|
)
|
|
|
|
// An instruction executed by the NFA
|
|
type instr interface {
|
|
kind() int; // the type of this instruction: _CHAR, _ANY, etc.
|
|
next() instr; // the instruction to execute after this one
|
|
setNext(i instr);
|
|
index() int;
|
|
setIndex(i int);
|
|
print();
|
|
}
|
|
|
|
// Fields and methods common to all instructions
|
|
type common struct {
|
|
_next instr;
|
|
_index int;
|
|
}
|
|
|
|
func (c *common) next() instr { return c._next }
|
|
func (c *common) setNext(i instr) { c._next = i }
|
|
func (c *common) index() int { return c._index }
|
|
func (c *common) setIndex(i int) { c._index = i }
|
|
|
|
// Regexp is the representation of a compiled regular expression.
|
|
// The public interface is entirely through methods.
|
|
type Regexp struct {
|
|
expr string; // the original expression
|
|
inst *vector.Vector;
|
|
start instr;
|
|
nbra int; // number of brackets in expression, for subexpressions
|
|
}
|
|
|
|
const (
|
|
_START = iota; // beginning of program
|
|
_END; // end of program: success
|
|
_BOT; // '^' beginning of text
|
|
_EOT; // '$' end of text
|
|
_CHAR; // 'a' regular character
|
|
_CHARCLASS; // [a-z] character class
|
|
_ANY; // '.' any character including newline
|
|
_NOTNL; // [^\n] special case: any character but newline
|
|
_BRA; // '(' parenthesized expression
|
|
_EBRA; // ')'; end of '(' parenthesized expression
|
|
_ALT; // '|' alternation
|
|
_NOP; // do nothing; makes it easy to link without patching
|
|
)
|
|
|
|
// --- START start of program
|
|
type _Start struct {
|
|
common;
|
|
}
|
|
|
|
func (start *_Start) kind() int { return _START }
|
|
func (start *_Start) print() { print("start") }
|
|
|
|
// --- END end of program
|
|
type _End struct {
|
|
common;
|
|
}
|
|
|
|
func (end *_End) kind() int { return _END }
|
|
func (end *_End) print() { print("end") }
|
|
|
|
// --- BOT beginning of text
|
|
type _Bot struct {
|
|
common;
|
|
}
|
|
|
|
func (bot *_Bot) kind() int { return _BOT }
|
|
func (bot *_Bot) print() { print("bot") }
|
|
|
|
// --- EOT end of text
|
|
type _Eot struct {
|
|
common;
|
|
}
|
|
|
|
func (eot *_Eot) kind() int { return _EOT }
|
|
func (eot *_Eot) print() { print("eot") }
|
|
|
|
// --- CHAR a regular character
|
|
type _Char struct {
|
|
common;
|
|
char int;
|
|
}
|
|
|
|
func (char *_Char) kind() int { return _CHAR }
|
|
func (char *_Char) print() { print("char ", string(char.char)) }
|
|
|
|
func newChar(char int) *_Char {
|
|
c := new(_Char);
|
|
c.char = char;
|
|
return c;
|
|
}
|
|
|
|
// --- CHARCLASS [a-z]
|
|
|
|
type _CharClass struct {
|
|
common;
|
|
char int;
|
|
negate bool; // is character class negated? ([^a-z])
|
|
// vector of int, stored pairwise: [a-z] is (a,z); x is (x,x):
|
|
ranges *vector.IntVector;
|
|
}
|
|
|
|
func (cclass *_CharClass) kind() int { return _CHARCLASS }
|
|
|
|
func (cclass *_CharClass) print() {
|
|
print("charclass");
|
|
if cclass.negate {
|
|
print(" (negated)")
|
|
}
|
|
for i := 0; i < cclass.ranges.Len(); i += 2 {
|
|
l := cclass.ranges.At(i);
|
|
r := cclass.ranges.At(i + 1);
|
|
if l == r {
|
|
print(" [", string(l), "]")
|
|
} else {
|
|
print(" [", string(l), "-", string(r), "]")
|
|
}
|
|
}
|
|
}
|
|
|
|
func (cclass *_CharClass) addRange(a, b int) {
|
|
// range is a through b inclusive
|
|
cclass.ranges.Push(a);
|
|
cclass.ranges.Push(b);
|
|
}
|
|
|
|
func (cclass *_CharClass) matches(c int) bool {
|
|
for i := 0; i < cclass.ranges.Len(); i = i + 2 {
|
|
min := cclass.ranges.At(i);
|
|
max := cclass.ranges.At(i + 1);
|
|
if min <= c && c <= max {
|
|
return !cclass.negate
|
|
}
|
|
}
|
|
return cclass.negate;
|
|
}
|
|
|
|
func newCharClass() *_CharClass {
|
|
c := new(_CharClass);
|
|
c.ranges = vector.NewIntVector(0);
|
|
return c;
|
|
}
|
|
|
|
// --- ANY any character
|
|
type _Any struct {
|
|
common;
|
|
}
|
|
|
|
func (any *_Any) kind() int { return _ANY }
|
|
func (any *_Any) print() { print("any") }
|
|
|
|
// --- NOTNL any character but newline
|
|
type _NotNl struct {
|
|
common;
|
|
}
|
|
|
|
func (notnl *_NotNl) kind() int { return _NOTNL }
|
|
func (notnl *_NotNl) print() { print("notnl") }
|
|
|
|
// --- BRA parenthesized expression
|
|
type _Bra struct {
|
|
common;
|
|
n int; // subexpression number
|
|
}
|
|
|
|
func (bra *_Bra) kind() int { return _BRA }
|
|
func (bra *_Bra) print() { print("bra", bra.n) }
|
|
|
|
// --- EBRA end of parenthesized expression
|
|
type _Ebra struct {
|
|
common;
|
|
n int; // subexpression number
|
|
}
|
|
|
|
func (ebra *_Ebra) kind() int { return _EBRA }
|
|
func (ebra *_Ebra) print() { print("ebra ", ebra.n) }
|
|
|
|
// --- ALT alternation
|
|
type _Alt struct {
|
|
common;
|
|
left instr; // other branch
|
|
}
|
|
|
|
func (alt *_Alt) kind() int { return _ALT }
|
|
func (alt *_Alt) print() { print("alt(", alt.left.index(), ")") }
|
|
|
|
// --- NOP no operation
|
|
type _Nop struct {
|
|
common;
|
|
}
|
|
|
|
func (nop *_Nop) kind() int { return _NOP }
|
|
func (nop *_Nop) print() { print("nop") }
|
|
|
|
func (re *Regexp) add(i instr) instr {
|
|
i.setIndex(re.inst.Len());
|
|
re.inst.Push(i);
|
|
return i;
|
|
}
|
|
|
|
type parser struct {
|
|
re *Regexp;
|
|
error os.Error;
|
|
nlpar int; // number of unclosed lpars
|
|
pos int;
|
|
ch int;
|
|
}
|
|
|
|
const endOfFile = -1
|
|
|
|
func (p *parser) c() int { return p.ch }
|
|
|
|
func (p *parser) nextc() int {
|
|
if p.pos >= len(p.re.expr) {
|
|
p.ch = endOfFile
|
|
} else {
|
|
c, w := utf8.DecodeRuneInString(p.re.expr[p.pos:len(p.re.expr)]);
|
|
p.ch = c;
|
|
p.pos += w;
|
|
}
|
|
return p.ch;
|
|
}
|
|
|
|
func newParser(re *Regexp) *parser {
|
|
p := new(parser);
|
|
p.re = re;
|
|
p.nextc(); // load p.ch
|
|
return p;
|
|
}
|
|
|
|
func special(c int) bool {
|
|
s := `\.+*?()|[]^$`;
|
|
for i := 0; i < len(s); i++ {
|
|
if c == int(s[i]) {
|
|
return true
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
func specialcclass(c int) bool {
|
|
s := `\-[]`;
|
|
for i := 0; i < len(s); i++ {
|
|
if c == int(s[i]) {
|
|
return true
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
func (p *parser) charClass() instr {
|
|
cc := newCharClass();
|
|
if p.c() == '^' {
|
|
cc.negate = true;
|
|
p.nextc();
|
|
}
|
|
left := -1;
|
|
for {
|
|
switch c := p.c(); c {
|
|
case ']', endOfFile:
|
|
if left >= 0 {
|
|
p.error = ErrBadRange;
|
|
return nil;
|
|
}
|
|
// Is it [^\n]?
|
|
if cc.negate && cc.ranges.Len() == 2 &&
|
|
cc.ranges.At(0) == '\n' && cc.ranges.At(1) == '\n' {
|
|
nl := new(_NotNl);
|
|
p.re.add(nl);
|
|
return nl;
|
|
}
|
|
p.re.add(cc);
|
|
return cc;
|
|
case '-': // do this before backslash processing
|
|
p.error = ErrBadRange;
|
|
return nil;
|
|
case '\\':
|
|
c = p.nextc();
|
|
switch {
|
|
case c == endOfFile:
|
|
p.error = ErrExtraneousBackslash;
|
|
return nil;
|
|
case c == 'n':
|
|
c = '\n'
|
|
case specialcclass(c):
|
|
// c is as delivered
|
|
default:
|
|
p.error = ErrBadBackslash;
|
|
return nil;
|
|
}
|
|
fallthrough;
|
|
default:
|
|
p.nextc();
|
|
switch {
|
|
case left < 0: // first of pair
|
|
if p.c() == '-' { // range
|
|
p.nextc();
|
|
left = c;
|
|
} else { // single char
|
|
cc.addRange(c, c)
|
|
}
|
|
case left <= c: // second of pair
|
|
cc.addRange(left, c);
|
|
left = -1;
|
|
default:
|
|
p.error = ErrBadRange;
|
|
return nil;
|
|
}
|
|
}
|
|
}
|
|
return nil;
|
|
}
|
|
|
|
func (p *parser) term() (start, end instr) {
|
|
// term() is the leaf of the recursion, so it's sufficient to pick off the
|
|
// error state here for early exit.
|
|
// The other functions (closure(), concatenation() etc.) assume
|
|
// it's safe to recur to here.
|
|
if p.error != nil {
|
|
return
|
|
}
|
|
switch c := p.c(); c {
|
|
case '|', endOfFile:
|
|
return nil, nil
|
|
case '*', '+':
|
|
p.error = ErrBareClosure;
|
|
return;
|
|
case ')':
|
|
if p.nlpar == 0 {
|
|
p.error = ErrUnmatchedRpar;
|
|
return;
|
|
}
|
|
return nil, nil;
|
|
case ']':
|
|
p.error = ErrUnmatchedRbkt;
|
|
return;
|
|
case '^':
|
|
p.nextc();
|
|
start = p.re.add(new(_Bot));
|
|
return start, start;
|
|
case '$':
|
|
p.nextc();
|
|
start = p.re.add(new(_Eot));
|
|
return start, start;
|
|
case '.':
|
|
p.nextc();
|
|
start = p.re.add(new(_Any));
|
|
return start, start;
|
|
case '[':
|
|
p.nextc();
|
|
start = p.charClass();
|
|
if p.error != nil {
|
|
return
|
|
}
|
|
if p.c() != ']' {
|
|
p.error = ErrUnmatchedLbkt;
|
|
return;
|
|
}
|
|
p.nextc();
|
|
return start, start;
|
|
case '(':
|
|
p.nextc();
|
|
p.nlpar++;
|
|
p.re.nbra++; // increment first so first subexpr is \1
|
|
nbra := p.re.nbra;
|
|
start, end = p.regexp();
|
|
if p.c() != ')' {
|
|
p.error = ErrUnmatchedLpar;
|
|
return;
|
|
}
|
|
p.nlpar--;
|
|
p.nextc();
|
|
bra := new(_Bra);
|
|
p.re.add(bra);
|
|
ebra := new(_Ebra);
|
|
p.re.add(ebra);
|
|
bra.n = nbra;
|
|
ebra.n = nbra;
|
|
if start == nil {
|
|
if end == nil {
|
|
p.error = ErrInternal;
|
|
return;
|
|
}
|
|
start = ebra;
|
|
} else {
|
|
end.setNext(ebra)
|
|
}
|
|
bra.setNext(start);
|
|
return bra, ebra;
|
|
case '\\':
|
|
c = p.nextc();
|
|
switch {
|
|
case c == endOfFile:
|
|
p.error = ErrExtraneousBackslash;
|
|
return;
|
|
case c == 'n':
|
|
c = '\n'
|
|
case special(c):
|
|
// c is as delivered
|
|
default:
|
|
p.error = ErrBadBackslash;
|
|
return;
|
|
}
|
|
fallthrough;
|
|
default:
|
|
p.nextc();
|
|
start = newChar(c);
|
|
p.re.add(start);
|
|
return start, start;
|
|
}
|
|
panic("unreachable");
|
|
}
|
|
|
|
func (p *parser) closure() (start, end instr) {
|
|
start, end = p.term();
|
|
if start == nil || p.error != nil {
|
|
return
|
|
}
|
|
switch p.c() {
|
|
case '*':
|
|
// (start,end)*:
|
|
alt := new(_Alt);
|
|
p.re.add(alt);
|
|
end.setNext(alt); // after end, do alt
|
|
alt.left = start; // alternate brach: return to start
|
|
start = alt; // alt becomes new (start, end)
|
|
end = alt;
|
|
case '+':
|
|
// (start,end)+:
|
|
alt := new(_Alt);
|
|
p.re.add(alt);
|
|
end.setNext(alt); // after end, do alt
|
|
alt.left = start; // alternate brach: return to start
|
|
end = alt; // start is unchanged; end is alt
|
|
case '?':
|
|
// (start,end)?:
|
|
alt := new(_Alt);
|
|
p.re.add(alt);
|
|
nop := new(_Nop);
|
|
p.re.add(nop);
|
|
alt.left = start; // alternate branch is start
|
|
alt.setNext(nop); // follow on to nop
|
|
end.setNext(nop); // after end, go to nop
|
|
start = alt; // start is now alt
|
|
end = nop; // end is nop pointed to by both branches
|
|
default:
|
|
return
|
|
}
|
|
switch p.nextc() {
|
|
case '*', '+', '?':
|
|
p.error = ErrBadClosure
|
|
}
|
|
return;
|
|
}
|
|
|
|
func (p *parser) concatenation() (start, end instr) {
|
|
for {
|
|
nstart, nend := p.closure();
|
|
if p.error != nil {
|
|
return
|
|
}
|
|
switch {
|
|
case nstart == nil: // end of this concatenation
|
|
if start == nil { // this is the empty string
|
|
nop := p.re.add(new(_Nop));
|
|
return nop, nop;
|
|
}
|
|
return;
|
|
case start == nil: // this is first element of concatenation
|
|
start, end = nstart, nend
|
|
default:
|
|
end.setNext(nstart);
|
|
end = nend;
|
|
}
|
|
}
|
|
panic("unreachable");
|
|
}
|
|
|
|
func (p *parser) regexp() (start, end instr) {
|
|
start, end = p.concatenation();
|
|
if p.error != nil {
|
|
return
|
|
}
|
|
for {
|
|
switch p.c() {
|
|
default:
|
|
return
|
|
case '|':
|
|
p.nextc();
|
|
nstart, nend := p.concatenation();
|
|
if p.error != nil {
|
|
return
|
|
}
|
|
alt := new(_Alt);
|
|
p.re.add(alt);
|
|
alt.left = start;
|
|
alt.setNext(nstart);
|
|
nop := new(_Nop);
|
|
p.re.add(nop);
|
|
end.setNext(nop);
|
|
nend.setNext(nop);
|
|
start, end = alt, nop;
|
|
}
|
|
}
|
|
panic("unreachable");
|
|
}
|
|
|
|
func unNop(i instr) instr {
|
|
for i.kind() == _NOP {
|
|
i = i.next()
|
|
}
|
|
return i;
|
|
}
|
|
|
|
func (re *Regexp) eliminateNops() {
|
|
for i := 0; i < re.inst.Len(); i++ {
|
|
inst := re.inst.At(i).(instr);
|
|
if inst.kind() == _END {
|
|
continue
|
|
}
|
|
inst.setNext(unNop(inst.next()));
|
|
if inst.kind() == _ALT {
|
|
alt := inst.(*_Alt);
|
|
alt.left = unNop(alt.left);
|
|
}
|
|
}
|
|
}
|
|
|
|
func (re *Regexp) dump() {
|
|
for i := 0; i < re.inst.Len(); i++ {
|
|
inst := re.inst.At(i).(instr);
|
|
print(inst.index(), ": ");
|
|
inst.print();
|
|
if inst.kind() != _END {
|
|
print(" -> ", inst.next().index())
|
|
}
|
|
print("\n");
|
|
}
|
|
}
|
|
|
|
func (re *Regexp) doParse() os.Error {
|
|
p := newParser(re);
|
|
start := new(_Start);
|
|
re.add(start);
|
|
s, e := p.regexp();
|
|
if p.error != nil {
|
|
return p.error
|
|
}
|
|
start.setNext(s);
|
|
re.start = start;
|
|
e.setNext(re.add(new(_End)));
|
|
|
|
if debug {
|
|
re.dump();
|
|
println();
|
|
}
|
|
|
|
re.eliminateNops();
|
|
if debug {
|
|
re.dump();
|
|
println();
|
|
}
|
|
return p.error;
|
|
}
|
|
|
|
// Compile parses a regular expression and returns, if successful, a Regexp
|
|
// object that can be used to match against text.
|
|
func Compile(str string) (regexp *Regexp, error os.Error) {
|
|
regexp = new(Regexp);
|
|
regexp.expr = str;
|
|
regexp.inst = vector.New(0);
|
|
error = regexp.doParse();
|
|
return;
|
|
}
|
|
|
|
// MustCompile is like Compile but panics if the expression cannot be parsed.
|
|
// It simplifies safe initialization of global variables holding compiled regular
|
|
// expressions.
|
|
func MustCompile(str string) *Regexp {
|
|
regexp, error := Compile(str);
|
|
if error != nil {
|
|
panicln(`regexp: compiling "`, str, `": `, error.String())
|
|
}
|
|
return regexp;
|
|
}
|
|
|
|
type state struct {
|
|
inst instr; // next instruction to execute
|
|
match []int; // pairs of bracketing submatches. 0th is start,end
|
|
}
|
|
|
|
// Append new state to to-do list. Leftmost-longest wins so avoid
|
|
// adding a state that's already active.
|
|
func (re *Regexp) addState(s []state, inst instr, match []int, pos, end int) []state {
|
|
switch inst.kind() {
|
|
case _BOT:
|
|
if pos == 0 {
|
|
s = re.addState(s, inst.next(), match, pos, end)
|
|
}
|
|
return s;
|
|
case _EOT:
|
|
if pos == end {
|
|
s = re.addState(s, inst.next(), match, pos, end)
|
|
}
|
|
return s;
|
|
case _BRA:
|
|
n := inst.(*_Bra).n;
|
|
match[2*n] = pos;
|
|
s = re.addState(s, inst.next(), match, pos, end);
|
|
return s;
|
|
case _EBRA:
|
|
n := inst.(*_Ebra).n;
|
|
match[2*n+1] = pos;
|
|
s = re.addState(s, inst.next(), match, pos, end);
|
|
return s;
|
|
}
|
|
index := inst.index();
|
|
l := len(s);
|
|
begin := match[0];
|
|
// TODO: Once the state is a vector and we can do insert, have inputs always
|
|
// go in order correctly and this "earlier" test is never necessary,
|
|
for i := 0; i < l; i++ {
|
|
if s[i].inst.index() == index && // same instruction
|
|
s[i].match[0] <= begin { // earlier match already going; lefmost wins
|
|
return s
|
|
}
|
|
}
|
|
if l == cap(s) {
|
|
s1 := make([]state, 2*l)[0:l];
|
|
for i := 0; i < l; i++ {
|
|
s1[i] = s[i]
|
|
}
|
|
s = s1;
|
|
}
|
|
s = s[0 : l+1];
|
|
s[l].inst = inst;
|
|
s[l].match = match;
|
|
if inst.kind() == _ALT {
|
|
s1 := make([]int, 2*(re.nbra+1));
|
|
for i := 0; i < len(s1); i++ {
|
|
s1[i] = match[i]
|
|
}
|
|
s = re.addState(s, inst.(*_Alt).left, s1, pos, end);
|
|
// give other branch a copy of this match vector
|
|
s1 = make([]int, 2*(re.nbra+1));
|
|
for i := 0; i < len(s1); i++ {
|
|
s1[i] = match[i]
|
|
}
|
|
s = re.addState(s, inst.next(), s1, pos, end);
|
|
}
|
|
return s;
|
|
}
|
|
|
|
// Accepts either string or bytes - the logic is identical either way.
|
|
// If bytes == nil, scan str.
|
|
func (re *Regexp) doExecute(str string, bytes []byte, pos int) []int {
|
|
var s [2][]state; // TODO: use a vector when state values (not ptrs) can be vector elements
|
|
s[0] = make([]state, 10)[0:0];
|
|
s[1] = make([]state, 10)[0:0];
|
|
in, out := 0, 1;
|
|
var final state;
|
|
found := false;
|
|
end := len(str);
|
|
if bytes != nil {
|
|
end = len(bytes)
|
|
}
|
|
for pos <= end {
|
|
if !found {
|
|
// prime the pump if we haven't seen a match yet
|
|
match := make([]int, 2*(re.nbra+1));
|
|
for i := 0; i < len(match); i++ {
|
|
match[i] = -1 // no match seen; catches cases like "a(b)?c" on "ac"
|
|
}
|
|
match[0] = pos;
|
|
s[out] = re.addState(s[out], re.start.next(), match, pos, end);
|
|
}
|
|
in, out = out, in; // old out state is new in state
|
|
s[out] = s[out][0:0]; // clear out state
|
|
if found && len(s[in]) == 0 {
|
|
// machine has completed
|
|
break
|
|
}
|
|
charwidth := 1;
|
|
c := endOfFile;
|
|
if pos < end {
|
|
if bytes == nil {
|
|
c, charwidth = utf8.DecodeRuneInString(str[pos:end])
|
|
} else {
|
|
c, charwidth = utf8.DecodeRune(bytes[pos:end])
|
|
}
|
|
}
|
|
pos += charwidth;
|
|
for i := 0; i < len(s[in]); i++ {
|
|
st := s[in][i];
|
|
switch s[in][i].inst.kind() {
|
|
case _BOT:
|
|
case _EOT:
|
|
case _CHAR:
|
|
if c == st.inst.(*_Char).char {
|
|
s[out] = re.addState(s[out], st.inst.next(), st.match, pos, end)
|
|
}
|
|
case _CHARCLASS:
|
|
if st.inst.(*_CharClass).matches(c) {
|
|
s[out] = re.addState(s[out], st.inst.next(), st.match, pos, end)
|
|
}
|
|
case _ANY:
|
|
if c != endOfFile {
|
|
s[out] = re.addState(s[out], st.inst.next(), st.match, pos, end)
|
|
}
|
|
case _NOTNL:
|
|
if c != endOfFile && c != '\n' {
|
|
s[out] = re.addState(s[out], st.inst.next(), st.match, pos, end)
|
|
}
|
|
case _BRA:
|
|
case _EBRA:
|
|
case _ALT:
|
|
case _END:
|
|
// choose leftmost longest
|
|
if !found || // first
|
|
st.match[0] < final.match[0] || // leftmost
|
|
(st.match[0] == final.match[0] && pos-charwidth > final.match[1]) { // longest
|
|
final = st;
|
|
final.match[1] = pos - charwidth;
|
|
}
|
|
found = true;
|
|
default:
|
|
st.inst.print();
|
|
panic("unknown instruction in execute");
|
|
}
|
|
}
|
|
}
|
|
return final.match;
|
|
}
|
|
|
|
|
|
// ExecuteString matches the Regexp against the string s.
|
|
// The return value is an array of integers, in pairs, identifying the positions of
|
|
// substrings matched by the expression.
|
|
// s[a[0]:a[1]] is the substring matched by the entire expression.
|
|
// s[a[2*i]:a[2*i+1]] for i > 0 is the substring matched by the ith parenthesized subexpression.
|
|
// A negative value means the subexpression did not match any element of the string.
|
|
// An empty array means "no match".
|
|
func (re *Regexp) ExecuteString(s string) (a []int) {
|
|
return re.doExecute(s, nil, 0)
|
|
}
|
|
|
|
|
|
// Execute matches the Regexp against the byte slice b.
|
|
// The return value is an array of integers, in pairs, identifying the positions of
|
|
// subslices matched by the expression.
|
|
// b[a[0]:a[1]] is the subslice matched by the entire expression.
|
|
// b[a[2*i]:a[2*i+1]] for i > 0 is the subslice matched by the ith parenthesized subexpression.
|
|
// A negative value means the subexpression did not match any element of the slice.
|
|
// An empty array means "no match".
|
|
func (re *Regexp) Execute(b []byte) (a []int) { return re.doExecute("", b, 0) }
|
|
|
|
|
|
// MatchString returns whether the Regexp matches the string s.
|
|
// The return value is a boolean: true for match, false for no match.
|
|
func (re *Regexp) MatchString(s string) bool { return len(re.doExecute(s, nil, 0)) > 0 }
|
|
|
|
|
|
// Match returns whether the Regexp matches the byte slice b.
|
|
// The return value is a boolean: true for match, false for no match.
|
|
func (re *Regexp) Match(b []byte) bool { return len(re.doExecute("", b, 0)) > 0 }
|
|
|
|
|
|
// MatchStrings matches the Regexp against the string s.
|
|
// The return value is an array of strings matched by the expression.
|
|
// a[0] is the substring matched by the entire expression.
|
|
// a[i] for i > 0 is the substring matched by the ith parenthesized subexpression.
|
|
// An empty array means ``no match''.
|
|
func (re *Regexp) MatchStrings(s string) (a []string) {
|
|
r := re.doExecute(s, nil, 0);
|
|
if r == nil {
|
|
return nil
|
|
}
|
|
a = make([]string, len(r)/2);
|
|
for i := 0; i < len(r); i += 2 {
|
|
if r[i] != -1 { // -1 means no match for this subexpression
|
|
a[i/2] = s[r[i]:r[i+1]]
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
// MatchSlices matches the Regexp against the byte slice b.
|
|
// The return value is an array of subslices matched by the expression.
|
|
// a[0] is the subslice matched by the entire expression.
|
|
// a[i] for i > 0 is the subslice matched by the ith parenthesized subexpression.
|
|
// An empty array means ``no match''.
|
|
func (re *Regexp) MatchSlices(b []byte) (a [][]byte) {
|
|
r := re.doExecute("", b, 0);
|
|
if r == nil {
|
|
return nil
|
|
}
|
|
a = make([][]byte, len(r)/2);
|
|
for i := 0; i < len(r); i += 2 {
|
|
if r[i] != -1 { // -1 means no match for this subexpression
|
|
a[i/2] = b[r[i]:r[i+1]]
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
|
|
// MatchString checks whether a textual regular expression
|
|
// matches a string. More complicated queries need
|
|
// to use Compile and the full Regexp interface.
|
|
func MatchString(pattern string, s string) (matched bool, error os.Error) {
|
|
re, err := Compile(pattern);
|
|
if err != nil {
|
|
return false, err
|
|
}
|
|
return re.MatchString(s), nil;
|
|
}
|
|
|
|
// Match checks whether a textual regular expression
|
|
// matches a byte slice. More complicated queries need
|
|
// to use Compile and the full Regexp interface.
|
|
func Match(pattern string, b []byte) (matched bool, error os.Error) {
|
|
re, err := Compile(pattern);
|
|
if err != nil {
|
|
return false, err
|
|
}
|
|
return re.Match(b), nil;
|
|
}
|
|
|
|
// ReplaceAllString returns a copy of src in which all matches for the Regexp
|
|
// have been replaced by repl. No support is provided for expressions
|
|
// (e.g. \1 or $1) in the replacement string.
|
|
func (re *Regexp) ReplaceAllString(src, repl string) string {
|
|
lastMatchEnd := 0; // end position of the most recent match
|
|
searchPos := 0; // position where we next look for a match
|
|
buf := new(bytes.Buffer);
|
|
for searchPos <= len(src) {
|
|
a := re.doExecute(src, nil, searchPos);
|
|
if len(a) == 0 {
|
|
break // no more matches
|
|
}
|
|
|
|
// Copy the unmatched characters before this match.
|
|
io.WriteString(buf, src[lastMatchEnd:a[0]]);
|
|
|
|
// Now insert a copy of the replacement string, but not for a
|
|
// match of the empty string immediately after another match.
|
|
// (Otherwise, we get double replacement for patterns that
|
|
// match both empty and nonempty strings.)
|
|
if a[1] > lastMatchEnd || a[0] == 0 {
|
|
io.WriteString(buf, repl)
|
|
}
|
|
lastMatchEnd = a[1];
|
|
|
|
// Advance past this match; always advance at least one character.
|
|
_, width := utf8.DecodeRuneInString(src[searchPos:len(src)]);
|
|
if searchPos+width > a[1] {
|
|
searchPos += width
|
|
} else if searchPos+1 > a[1] {
|
|
// This clause is only needed at the end of the input
|
|
// string. In that case, DecodeRuneInString returns width=0.
|
|
searchPos++
|
|
} else {
|
|
searchPos = a[1]
|
|
}
|
|
}
|
|
|
|
// Copy the unmatched characters after the last match.
|
|
io.WriteString(buf, src[lastMatchEnd:len(src)]);
|
|
|
|
return buf.String();
|
|
}
|
|
|
|
// ReplaceAll returns a copy of src in which all matches for the Regexp
|
|
// have been replaced by repl. No support is provided for expressions
|
|
// (e.g. \1 or $1) in the replacement text.
|
|
func (re *Regexp) ReplaceAll(src, repl []byte) []byte {
|
|
lastMatchEnd := 0; // end position of the most recent match
|
|
searchPos := 0; // position where we next look for a match
|
|
buf := new(bytes.Buffer);
|
|
for searchPos <= len(src) {
|
|
a := re.doExecute("", src, searchPos);
|
|
if len(a) == 0 {
|
|
break // no more matches
|
|
}
|
|
|
|
// Copy the unmatched characters before this match.
|
|
buf.Write(src[lastMatchEnd:a[0]]);
|
|
|
|
// Now insert a copy of the replacement string, but not for a
|
|
// match of the empty string immediately after another match.
|
|
// (Otherwise, we get double replacement for patterns that
|
|
// match both empty and nonempty strings.)
|
|
if a[1] > lastMatchEnd || a[0] == 0 {
|
|
buf.Write(repl)
|
|
}
|
|
lastMatchEnd = a[1];
|
|
|
|
// Advance past this match; always advance at least one character.
|
|
_, width := utf8.DecodeRune(src[searchPos:len(src)]);
|
|
if searchPos+width > a[1] {
|
|
searchPos += width
|
|
} else if searchPos+1 > a[1] {
|
|
// This clause is only needed at the end of the input
|
|
// string. In that case, DecodeRuneInString returns width=0.
|
|
searchPos++
|
|
} else {
|
|
searchPos = a[1]
|
|
}
|
|
}
|
|
|
|
// Copy the unmatched characters after the last match.
|
|
buf.Write(src[lastMatchEnd:len(src)]);
|
|
|
|
return buf.Bytes();
|
|
}
|
|
|
|
// QuoteMeta returns a string that quotes all regular expression metacharacters
|
|
// inside the argument text; the returned string is a regular expression matching
|
|
// the literal text. For example, QuoteMeta(`[foo]`) returns `\[foo\]`.
|
|
func QuoteMeta(s string) string {
|
|
b := make([]byte, 2*len(s));
|
|
|
|
// A byte loop is correct because all metacharacters are ASCII.
|
|
j := 0;
|
|
for i := 0; i < len(s); i++ {
|
|
if special(int(s[i])) {
|
|
b[j] = '\\';
|
|
j++;
|
|
}
|
|
b[j] = s[i];
|
|
j++;
|
|
}
|
|
return string(b[0:j]);
|
|
}
|
|
|
|
// Find matches in slice b if b is non-nil, otherwise find matches in string s.
|
|
func (re *Regexp) allMatches(s string, b []byte, n int, deliver func(int, int)) {
|
|
var end int;
|
|
if b == nil {
|
|
end = len(s)
|
|
} else {
|
|
end = len(b)
|
|
}
|
|
|
|
for pos, i, prevMatchEnd := 0, 0, -1; i < n && pos <= end; {
|
|
matches := re.doExecute(s, b, pos);
|
|
if len(matches) == 0 {
|
|
break
|
|
}
|
|
|
|
accept := true;
|
|
if matches[1] == pos {
|
|
// We've found an empty match.
|
|
if matches[0] == prevMatchEnd {
|
|
// We don't allow an empty match right
|
|
// after a previous match, so ignore it.
|
|
accept = false
|
|
}
|
|
var width int;
|
|
if b == nil {
|
|
_, width = utf8.DecodeRuneInString(s[pos:end])
|
|
} else {
|
|
_, width = utf8.DecodeRune(b[pos:end])
|
|
}
|
|
if width > 0 {
|
|
pos += width
|
|
} else {
|
|
pos = end + 1
|
|
}
|
|
} else {
|
|
pos = matches[1]
|
|
}
|
|
prevMatchEnd = matches[1];
|
|
|
|
if accept {
|
|
deliver(matches[0], matches[1]);
|
|
i++;
|
|
}
|
|
}
|
|
}
|
|
|
|
// AllMatches slices the byte slice b into substrings that are successive
|
|
// matches of the Regexp within b. If n > 0, the function returns at most n
|
|
// matches. Text that does not match the expression will be skipped. Empty
|
|
// matches abutting a preceding match are ignored. The function returns a slice
|
|
// containing the matching substrings.
|
|
func (re *Regexp) AllMatches(b []byte, n int) [][]byte {
|
|
if n <= 0 {
|
|
n = len(b) + 1
|
|
}
|
|
result := make([][]byte, n);
|
|
i := 0;
|
|
re.allMatches("", b, n, func(start, end int) {
|
|
result[i] = b[start:end];
|
|
i++;
|
|
});
|
|
return result[0:i];
|
|
}
|
|
|
|
// AllMatchesString slices the string s into substrings that are successive
|
|
// matches of the Regexp within s. If n > 0, the function returns at most n
|
|
// matches. Text that does not match the expression will be skipped. Empty
|
|
// matches abutting a preceding match are ignored. The function returns a slice
|
|
// containing the matching substrings.
|
|
func (re *Regexp) AllMatchesString(s string, n int) []string {
|
|
if n <= 0 {
|
|
n = len(s) + 1
|
|
}
|
|
result := make([]string, n);
|
|
i := 0;
|
|
re.allMatches(s, nil, n, func(start, end int) {
|
|
result[i] = s[start:end];
|
|
i++;
|
|
});
|
|
return result[0:i];
|
|
}
|
|
|
|
// AllMatchesIter slices the byte slice b into substrings that are successive
|
|
// matches of the Regexp within b. If n > 0, the function returns at most n
|
|
// matches. Text that does not match the expression will be skipped. Empty
|
|
// matches abutting a preceding match are ignored. The function returns a
|
|
// channel that iterates over the matching substrings.
|
|
func (re *Regexp) AllMatchesIter(b []byte, n int) <-chan []byte {
|
|
if n <= 0 {
|
|
n = len(b) + 1
|
|
}
|
|
c := make(chan []byte, 10);
|
|
go func() {
|
|
re.allMatches("", b, n, func(start, end int) { c <- b[start:end] });
|
|
close(c);
|
|
}();
|
|
return c;
|
|
}
|
|
|
|
// AllMatchesStringIter slices the string s into substrings that are successive
|
|
// matches of the Regexp within s. If n > 0, the function returns at most n
|
|
// matches. Text that does not match the expression will be skipped. Empty
|
|
// matches abutting a preceding match are ignored. The function returns a
|
|
// channel that iterates over the matching substrings.
|
|
func (re *Regexp) AllMatchesStringIter(s string, n int) <-chan string {
|
|
if n <= 0 {
|
|
n = len(s) + 1
|
|
}
|
|
c := make(chan string, 10);
|
|
go func() {
|
|
re.allMatches(s, nil, n, func(start, end int) { c <- s[start:end] });
|
|
close(c);
|
|
}();
|
|
return c;
|
|
}
|