mirror of
https://github.com/golang/go
synced 2024-11-20 08:44:39 -07:00
baba292998
rsc's algorithm - applied gofmt -w misc src - partial CL (remaining files in other CLs) R=rsc, r http://go/go-review/1026036
445 lines
12 KiB
Go
445 lines
12 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package gob
|
|
|
|
import (
|
|
"bytes";
|
|
"io";
|
|
"math";
|
|
"os";
|
|
"reflect";
|
|
"unsafe";
|
|
)
|
|
|
|
const uint64Size = unsafe.Sizeof(uint64(0))
|
|
|
|
// The global execution state of an instance of the encoder.
|
|
// Field numbers are delta encoded and always increase. The field
|
|
// number is initialized to -1 so 0 comes out as delta(1). A delta of
|
|
// 0 terminates the structure.
|
|
type encoderState struct {
|
|
b *bytes.Buffer;
|
|
err os.Error; // error encountered during encoding;
|
|
fieldnum int; // the last field number written.
|
|
buf [1 + uint64Size]byte; // buffer used by the encoder; here to avoid allocation.
|
|
}
|
|
|
|
// Unsigned integers have a two-state encoding. If the number is less
|
|
// than 128 (0 through 0x7F), its value is written directly.
|
|
// Otherwise the value is written in big-endian byte order preceded
|
|
// by the byte length, negated.
|
|
|
|
// encodeUint writes an encoded unsigned integer to state.b. Sets state.err.
|
|
// If state.err is already non-nil, it does nothing.
|
|
func encodeUint(state *encoderState, x uint64) {
|
|
if state.err != nil {
|
|
return
|
|
}
|
|
if x <= 0x7F {
|
|
state.err = state.b.WriteByte(uint8(x));
|
|
return;
|
|
}
|
|
var n, m int;
|
|
m = uint64Size;
|
|
for n = 1; x > 0; n++ {
|
|
state.buf[m] = uint8(x & 0xFF);
|
|
x >>= 8;
|
|
m--;
|
|
}
|
|
state.buf[m] = uint8(-(n - 1));
|
|
n, state.err = state.b.Write(state.buf[m : uint64Size+1]);
|
|
}
|
|
|
|
// encodeInt writes an encoded signed integer to state.w.
|
|
// The low bit of the encoding says whether to bit complement the (other bits of the) uint to recover the int.
|
|
// Sets state.err. If state.err is already non-nil, it does nothing.
|
|
func encodeInt(state *encoderState, i int64) {
|
|
var x uint64;
|
|
if i < 0 {
|
|
x = uint64(^i<<1) | 1
|
|
} else {
|
|
x = uint64(i << 1)
|
|
}
|
|
encodeUint(state, uint64(x));
|
|
}
|
|
|
|
type encOp func(i *encInstr, state *encoderState, p unsafe.Pointer)
|
|
|
|
// The 'instructions' of the encoding machine
|
|
type encInstr struct {
|
|
op encOp;
|
|
field int; // field number
|
|
indir int; // how many pointer indirections to reach the value in the struct
|
|
offset uintptr; // offset in the structure of the field to encode
|
|
}
|
|
|
|
// Emit a field number and update the state to record its value for delta encoding.
|
|
// If the instruction pointer is nil, do nothing
|
|
func (state *encoderState) update(instr *encInstr) {
|
|
if instr != nil {
|
|
encodeUint(state, uint64(instr.field-state.fieldnum));
|
|
state.fieldnum = instr.field;
|
|
}
|
|
}
|
|
|
|
// Each encoder is responsible for handling any indirections associated
|
|
// with the data structure. If any pointer so reached is nil, no bytes are written.
|
|
// If the data item is zero, no bytes are written.
|
|
// Otherwise, the output (for a scalar) is the field number, as an encoded integer,
|
|
// followed by the field data in its appropriate format.
|
|
|
|
func encIndirect(p unsafe.Pointer, indir int) unsafe.Pointer {
|
|
for ; indir > 0; indir-- {
|
|
p = *(*unsafe.Pointer)(p);
|
|
if p == nil {
|
|
return unsafe.Pointer(nil)
|
|
}
|
|
}
|
|
return p;
|
|
}
|
|
|
|
func encBool(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
b := *(*bool)(p);
|
|
if b {
|
|
state.update(i);
|
|
encodeUint(state, 1);
|
|
}
|
|
}
|
|
|
|
func encInt(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
v := int64(*(*int)(p));
|
|
if v != 0 {
|
|
state.update(i);
|
|
encodeInt(state, v);
|
|
}
|
|
}
|
|
|
|
func encUint(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
v := uint64(*(*uint)(p));
|
|
if v != 0 {
|
|
state.update(i);
|
|
encodeUint(state, v);
|
|
}
|
|
}
|
|
|
|
func encInt8(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
v := int64(*(*int8)(p));
|
|
if v != 0 {
|
|
state.update(i);
|
|
encodeInt(state, v);
|
|
}
|
|
}
|
|
|
|
func encUint8(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
v := uint64(*(*uint8)(p));
|
|
if v != 0 {
|
|
state.update(i);
|
|
encodeUint(state, v);
|
|
}
|
|
}
|
|
|
|
func encInt16(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
v := int64(*(*int16)(p));
|
|
if v != 0 {
|
|
state.update(i);
|
|
encodeInt(state, v);
|
|
}
|
|
}
|
|
|
|
func encUint16(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
v := uint64(*(*uint16)(p));
|
|
if v != 0 {
|
|
state.update(i);
|
|
encodeUint(state, v);
|
|
}
|
|
}
|
|
|
|
func encInt32(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
v := int64(*(*int32)(p));
|
|
if v != 0 {
|
|
state.update(i);
|
|
encodeInt(state, v);
|
|
}
|
|
}
|
|
|
|
func encUint32(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
v := uint64(*(*uint32)(p));
|
|
if v != 0 {
|
|
state.update(i);
|
|
encodeUint(state, v);
|
|
}
|
|
}
|
|
|
|
func encInt64(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
v := *(*int64)(p);
|
|
if v != 0 {
|
|
state.update(i);
|
|
encodeInt(state, v);
|
|
}
|
|
}
|
|
|
|
func encUint64(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
v := *(*uint64)(p);
|
|
if v != 0 {
|
|
state.update(i);
|
|
encodeUint(state, v);
|
|
}
|
|
}
|
|
|
|
func encUintptr(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
v := uint64(*(*uintptr)(p));
|
|
if v != 0 {
|
|
state.update(i);
|
|
encodeUint(state, v);
|
|
}
|
|
}
|
|
|
|
// Floating-point numbers are transmitted as uint64s holding the bits
|
|
// of the underlying representation. They are sent byte-reversed, with
|
|
// the exponent end coming out first, so integer floating point numbers
|
|
// (for example) transmit more compactly. This routine does the
|
|
// swizzling.
|
|
func floatBits(f float64) uint64 {
|
|
u := math.Float64bits(f);
|
|
var v uint64;
|
|
for i := 0; i < 8; i++ {
|
|
v <<= 8;
|
|
v |= u & 0xFF;
|
|
u >>= 8;
|
|
}
|
|
return v;
|
|
}
|
|
|
|
func encFloat(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
f := float(*(*float)(p));
|
|
if f != 0 {
|
|
v := floatBits(float64(f));
|
|
state.update(i);
|
|
encodeUint(state, v);
|
|
}
|
|
}
|
|
|
|
func encFloat32(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
f := float32(*(*float32)(p));
|
|
if f != 0 {
|
|
v := floatBits(float64(f));
|
|
state.update(i);
|
|
encodeUint(state, v);
|
|
}
|
|
}
|
|
|
|
func encFloat64(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
f := *(*float64)(p);
|
|
if f != 0 {
|
|
state.update(i);
|
|
v := floatBits(f);
|
|
encodeUint(state, v);
|
|
}
|
|
}
|
|
|
|
// Byte arrays are encoded as an unsigned count followed by the raw bytes.
|
|
func encUint8Array(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
b := *(*[]byte)(p);
|
|
if len(b) > 0 {
|
|
state.update(i);
|
|
encodeUint(state, uint64(len(b)));
|
|
state.b.Write(b);
|
|
}
|
|
}
|
|
|
|
// Strings are encoded as an unsigned count followed by the raw bytes.
|
|
func encString(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
s := *(*string)(p);
|
|
if len(s) > 0 {
|
|
state.update(i);
|
|
encodeUint(state, uint64(len(s)));
|
|
io.WriteString(state.b, s);
|
|
}
|
|
}
|
|
|
|
// The end of a struct is marked by a delta field number of 0.
|
|
func encStructTerminator(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
encodeUint(state, 0)
|
|
}
|
|
|
|
// Execution engine
|
|
|
|
// The encoder engine is an array of instructions indexed by field number of the encoding
|
|
// data, typically a struct. It is executed top to bottom, walking the struct.
|
|
type encEngine struct {
|
|
instr []encInstr;
|
|
}
|
|
|
|
func encodeStruct(engine *encEngine, b *bytes.Buffer, basep uintptr) os.Error {
|
|
state := new(encoderState);
|
|
state.b = b;
|
|
state.fieldnum = -1;
|
|
for i := 0; i < len(engine.instr); i++ {
|
|
instr := &engine.instr[i];
|
|
p := unsafe.Pointer(basep + instr.offset);
|
|
if instr.indir > 0 {
|
|
if p = encIndirect(p, instr.indir); p == nil {
|
|
continue
|
|
}
|
|
}
|
|
instr.op(instr, state, p);
|
|
if state.err != nil {
|
|
break
|
|
}
|
|
}
|
|
return state.err;
|
|
}
|
|
|
|
func encodeArray(b *bytes.Buffer, p uintptr, op encOp, elemWid uintptr, length int, elemIndir int) os.Error {
|
|
state := new(encoderState);
|
|
state.b = b;
|
|
state.fieldnum = -1;
|
|
encodeUint(state, uint64(length));
|
|
for i := 0; i < length && state.err == nil; i++ {
|
|
elemp := p;
|
|
up := unsafe.Pointer(elemp);
|
|
if elemIndir > 0 {
|
|
if up = encIndirect(up, elemIndir); up == nil {
|
|
state.err = os.ErrorString("gob: encodeArray: nil element");
|
|
break;
|
|
}
|
|
elemp = uintptr(up);
|
|
}
|
|
op(nil, state, unsafe.Pointer(elemp));
|
|
p += uintptr(elemWid);
|
|
}
|
|
return state.err;
|
|
}
|
|
|
|
var encOpMap = map[reflect.Type]encOp{
|
|
valueKind(false): encBool,
|
|
valueKind(int(0)): encInt,
|
|
valueKind(int8(0)): encInt8,
|
|
valueKind(int16(0)): encInt16,
|
|
valueKind(int32(0)): encInt32,
|
|
valueKind(int64(0)): encInt64,
|
|
valueKind(uint(0)): encUint,
|
|
valueKind(uint8(0)): encUint8,
|
|
valueKind(uint16(0)): encUint16,
|
|
valueKind(uint32(0)): encUint32,
|
|
valueKind(uint64(0)): encUint64,
|
|
valueKind(uintptr(0)): encUintptr,
|
|
valueKind(float(0)): encFloat,
|
|
valueKind(float32(0)): encFloat32,
|
|
valueKind(float64(0)): encFloat64,
|
|
valueKind("x"): encString,
|
|
}
|
|
|
|
// Return the encoding op for the base type under rt and
|
|
// the indirection count to reach it.
|
|
func encOpFor(rt reflect.Type) (encOp, int, os.Error) {
|
|
typ, indir := indirect(rt);
|
|
op, ok := encOpMap[reflect.Typeof(typ)];
|
|
if !ok {
|
|
typ, _ := indirect(rt);
|
|
// Special cases
|
|
switch t := typ.(type) {
|
|
case *reflect.SliceType:
|
|
if _, ok := t.Elem().(*reflect.Uint8Type); ok {
|
|
op = encUint8Array;
|
|
break;
|
|
}
|
|
// Slices have a header; we decode it to find the underlying array.
|
|
elemOp, indir, err := encOpFor(t.Elem());
|
|
if err != nil {
|
|
return nil, 0, err
|
|
}
|
|
op = func(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
slice := (*reflect.SliceHeader)(p);
|
|
if slice.Len == 0 {
|
|
return
|
|
}
|
|
state.update(i);
|
|
state.err = encodeArray(state.b, slice.Data, elemOp, t.Elem().Size(), int(slice.Len), indir);
|
|
};
|
|
case *reflect.ArrayType:
|
|
// True arrays have size in the type.
|
|
elemOp, indir, err := encOpFor(t.Elem());
|
|
if err != nil {
|
|
return nil, 0, err
|
|
}
|
|
op = func(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
state.update(i);
|
|
state.err = encodeArray(state.b, uintptr(p), elemOp, t.Elem().Size(), t.Len(), indir);
|
|
};
|
|
case *reflect.StructType:
|
|
// Generate a closure that calls out to the engine for the nested type.
|
|
_, err := getEncEngine(typ);
|
|
if err != nil {
|
|
return nil, 0, err
|
|
}
|
|
info := getTypeInfoNoError(typ);
|
|
op = func(i *encInstr, state *encoderState, p unsafe.Pointer) {
|
|
state.update(i);
|
|
// indirect through info to delay evaluation for recursive structs
|
|
state.err = encodeStruct(info.encoder, state.b, uintptr(p));
|
|
};
|
|
}
|
|
}
|
|
if op == nil {
|
|
return op, indir, os.ErrorString("gob enc: can't happen: encode type" + rt.String())
|
|
}
|
|
return op, indir, nil;
|
|
}
|
|
|
|
// The local Type was compiled from the actual value, so we know it's compatible.
|
|
func compileEnc(rt reflect.Type) (*encEngine, os.Error) {
|
|
srt, ok := rt.(*reflect.StructType);
|
|
if !ok {
|
|
panicln("can't happen: non-struct")
|
|
}
|
|
engine := new(encEngine);
|
|
engine.instr = make([]encInstr, srt.NumField()+1); // +1 for terminator
|
|
for fieldnum := 0; fieldnum < srt.NumField(); fieldnum++ {
|
|
f := srt.Field(fieldnum);
|
|
op, indir, err := encOpFor(f.Type);
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
engine.instr[fieldnum] = encInstr{op, fieldnum, indir, uintptr(f.Offset)};
|
|
}
|
|
engine.instr[srt.NumField()] = encInstr{encStructTerminator, 0, 0, 0};
|
|
return engine, nil;
|
|
}
|
|
|
|
// typeLock must be held (or we're in initialization and guaranteed single-threaded).
|
|
// The reflection type must have all its indirections processed out.
|
|
func getEncEngine(rt reflect.Type) (*encEngine, os.Error) {
|
|
info, err := getTypeInfo(rt);
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
if info.encoder == nil {
|
|
// mark this engine as underway before compiling to handle recursive types.
|
|
info.encoder = new(encEngine);
|
|
info.encoder, err = compileEnc(rt);
|
|
}
|
|
return info.encoder, err;
|
|
}
|
|
|
|
func encode(b *bytes.Buffer, e interface{}) os.Error {
|
|
// Dereference down to the underlying object.
|
|
rt, indir := indirect(reflect.Typeof(e));
|
|
v := reflect.NewValue(e);
|
|
for i := 0; i < indir; i++ {
|
|
v = reflect.Indirect(v)
|
|
}
|
|
if _, ok := v.(*reflect.StructValue); !ok {
|
|
return os.ErrorString("gob: encode can't handle " + v.Type().String())
|
|
}
|
|
typeLock.Lock();
|
|
engine, err := getEncEngine(rt);
|
|
typeLock.Unlock();
|
|
if err != nil {
|
|
return err
|
|
}
|
|
return encodeStruct(engine, b, v.Addr());
|
|
}
|