1
0
mirror of https://github.com/golang/go synced 2024-11-20 11:04:56 -07:00
go/usr/gri/pretty/parser.go
Robert Griesemer 6dd93bbfbc - changed pretty parser to parse and print new function type syntax
- added more test cases
- fixed a bug in test script which prevented errors to show up...

R=r
OCL=23832
CL=23974
2009-01-30 15:31:04 -08:00

1711 lines
34 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package Parser
import (
"fmt";
"array";
Scanner "scanner";
AST "ast";
)
type Parser struct {
// Tracing/debugging
verbose, sixg, deps bool;
indent uint;
// Scanner
scanner *Scanner.Scanner;
tokchan <-chan *Scanner.Token;
comments *array.Array;
// Scanner.Token
pos int; // token source position
tok int; // one token look-ahead
val string; // token value (for IDENT, NUMBER, STRING only)
// Non-syntactic parser control
opt_semi bool; // true if semicolon is optional
// Nesting levels
expr_lev int; // 0 = control clause level, 1 = expr inside ()'s
scope_lev int; // 0 = global scope, 1 = function scope of global functions, etc.
// Scopes
top_scope *AST.Scope;
};
// ----------------------------------------------------------------------------
// Elementary support
func unimplemented() {
panic("unimplemented");
}
func unreachable() {
panic("unreachable");
}
func assert(pred bool) {
if !pred {
panic("assertion failed");
}
}
// ----------------------------------------------------------------------------
// Parsing support
func (P *Parser) PrintIndent() {
for i := P.indent; i > 0; i-- {
print(". ");
}
}
func (P *Parser) Trace(msg string) {
if P.verbose {
P.PrintIndent();
print(msg, " {\n");
}
P.indent++; // always check proper identation
}
func (P *Parser) Ecart() {
P.indent--; // always check proper identation
if P.verbose {
P.PrintIndent();
print("}\n");
}
}
func (P *Parser) Next0() {
if P.tokchan == nil {
P.pos, P.tok, P.val = P.scanner.Scan();
} else {
t := <-P.tokchan;
P.tok, P.pos, P.val = t.Tok, t.Pos, t.Val;
}
P.opt_semi = false;
if P.verbose {
P.PrintIndent();
s := Scanner.TokenString(P.tok);
// rewrite "{" and "}" so we don't screw up double-click selection
// in terminal window (we print scopes using the same characters)
switch s {
case "{": s = "LBRACE";
case "}": s = "RBRACE";
}
print("[", P.pos, "] ", s, "\n");
}
}
func (P *Parser) Next() {
for P.Next0(); P.tok == Scanner.COMMENT; P.Next0() {
P.comments.Push(AST.NewComment(P.pos, P.val));
}
}
func (P *Parser) Open(verbose, sixg, deps bool, scanner *Scanner.Scanner, tokchan <-chan *Scanner.Token) {
P.verbose = verbose;
P.sixg = sixg;
P.deps = deps;
P.indent = 0;
P.scanner = scanner;
P.tokchan = tokchan;
P.comments = array.New(0);
P.Next();
P.expr_lev = 0;
P.scope_lev = 0;
}
func (P *Parser) Error(pos int, msg string) {
P.scanner.Error(pos, msg);
}
func (P *Parser) Expect(tok int) {
if P.tok != tok {
msg := "expected '" + Scanner.TokenString(tok) + "', found '" + Scanner.TokenString(P.tok) + "'";
switch P.tok {
case Scanner.IDENT, Scanner.INT, Scanner.FLOAT, Scanner.STRING:
msg += " " + P.val;
}
P.Error(P.pos, msg);
}
P.Next(); // make progress in any case
}
func (P *Parser) OptSemicolon() {
if P.tok == Scanner.SEMICOLON {
P.Next();
}
}
// ----------------------------------------------------------------------------
// Scopes
func (P *Parser) OpenScope() {
P.top_scope = AST.NewScope(P.top_scope);
}
func (P *Parser) CloseScope() {
P.top_scope = P.top_scope.Parent;
}
func (P *Parser) DeclareInScope(scope *AST.Scope, x *AST.Expr, kind int, typ *AST.Type) {
if P.scope_lev < 0 {
panic("cannot declare objects in other packages");
}
if x.Tok != Scanner.ILLEGAL { // ignore bad exprs
assert(x.Tok == Scanner.IDENT);
obj := x.Obj;
obj.Kind = kind;
obj.Typ = typ;
obj.Pnolev = P.scope_lev;
switch {
case scope.LookupLocal(obj.Ident) == nil:
scope.Insert(obj);
case kind == AST.TYPE:
// possibly a forward declaration
case kind == AST.FUNC:
// possibly a forward declaration
default:
P.Error(obj.Pos, `"` + obj.Ident + `" is declared already`);
}
}
}
// Declare a comma-separated list of idents or a single ident.
func (P *Parser) Declare(p *AST.Expr, kind int, typ *AST.Type) {
for p.Tok == Scanner.COMMA {
P.DeclareInScope(P.top_scope, p.X, kind, typ);
p = p.Y;
}
P.DeclareInScope(P.top_scope, p, kind, typ);
}
// ----------------------------------------------------------------------------
// AST support
func exprType(x *AST.Expr) *AST.Type {
var t *AST.Type;
if x.Tok == Scanner.TYPE {
t = x.Typ;
} else if x.Tok == Scanner.IDENT {
// assume a type name
t = AST.NewType(x.Pos, AST.TYPENAME);
t.Expr = x;
} else if x.Tok == Scanner.PERIOD && x.Y != nil && exprType(x.X) != nil {
// possibly a qualified (type) identifier
t = AST.NewType(x.Pos, AST.TYPENAME);
t.Expr = x;
}
return t;
}
func (P *Parser) NoType(x *AST.Expr) *AST.Expr {
if x != nil && x.Tok == Scanner.TYPE {
P.Error(x.Pos, "expected expression, found type");
val := AST.NewObject(x.Pos, AST.NONE, "0");
x = AST.NewLit(Scanner.INT, val);
}
return x;
}
func (P *Parser) NewExpr(pos, tok int, x, y *AST.Expr) *AST.Expr {
return AST.NewExpr(pos, tok, P.NoType(x), P.NoType(y));
}
// ----------------------------------------------------------------------------
// Common productions
func (P *Parser) TryType() *AST.Type;
func (P *Parser) ParseExpression(prec int) *AST.Expr;
func (P *Parser) ParseStatement() *AST.Stat;
func (P *Parser) ParseDeclaration() *AST.Decl;
// If scope != nil, lookup identifier in scope. Otherwise create one.
func (P *Parser) ParseIdent(scope *AST.Scope) *AST.Expr {
P.Trace("Ident");
x := AST.BadExpr;
if P.tok == Scanner.IDENT {
var obj *AST.Object;
if scope != nil {
obj = scope.Lookup(P.val);
}
if obj == nil {
obj = AST.NewObject(P.pos, AST.NONE, P.val);
} else {
assert(obj.Kind != AST.NONE);
}
x = AST.NewLit(Scanner.IDENT, obj);
x.Pos = P.pos; // override obj.pos (incorrect if object was looked up!)
if P.verbose {
P.PrintIndent();
print("Ident = \"", P.val, "\"\n");
}
P.Next();
} else {
P.Expect(Scanner.IDENT); // use Expect() error handling
}
P.Ecart();
return x;
}
func (P *Parser) ParseIdentList() *AST.Expr {
P.Trace("IdentList");
var last *AST.Expr;
x := P.ParseIdent(nil);
for P.tok == Scanner.COMMA {
pos := P.pos;
P.Next();
y := P.ParseIdent(nil);
if last == nil {
x = P.NewExpr(pos, Scanner.COMMA, x, y);
last = x;
} else {
last.Y = P.NewExpr(pos, Scanner.COMMA, last.Y, y);
last = last.Y;
}
}
P.Ecart();
return x;
}
// ----------------------------------------------------------------------------
// Types
func (P *Parser) ParseType() *AST.Type {
P.Trace("Type");
t := P.TryType();
if t == nil {
P.Error(P.pos, "type expected");
t = AST.BadType;
}
P.Ecart();
return t;
}
func (P *Parser) ParseVarType() *AST.Type {
P.Trace("VarType");
typ := P.ParseType();
P.Ecart();
return typ;
}
func (P *Parser) ParseQualifiedIdent() *AST.Expr {
P.Trace("QualifiedIdent");
x := P.ParseIdent(P.top_scope);
for P.tok == Scanner.PERIOD {
pos := P.pos;
P.Next();
y := P.ParseIdent(nil);
x = P.NewExpr(pos, Scanner.PERIOD, x, y);
}
P.Ecart();
return x;
}
func (P *Parser) ParseTypeName() *AST.Type {
P.Trace("TypeName");
t := AST.NewType(P.pos, AST.TYPENAME);
t.Expr = P.ParseQualifiedIdent();
t.Elt = t.Expr.Typ;
P.Ecart();
return t;
}
func (P *Parser) ParseArrayType() *AST.Type {
P.Trace("ArrayType");
t := AST.NewType(P.pos, AST.ARRAY);
P.Expect(Scanner.LBRACK);
if P.tok == Scanner.ELLIPSIS {
t.Expr = P.NewExpr(P.pos, Scanner.ELLIPSIS, nil, nil);
P.Next();
} else if P.tok != Scanner.RBRACK {
t.Expr = P.ParseExpression(1);
}
P.Expect(Scanner.RBRACK);
t.Elt = P.ParseType();
P.Ecart();
return t;
}
func (P *Parser) ParseChannelType() *AST.Type {
P.Trace("ChannelType");
t := AST.NewType(P.pos, AST.CHANNEL);
t.Mode = AST.FULL;
if P.tok == Scanner.CHAN {
P.Next();
if P.tok == Scanner.ARROW {
P.Next();
t.Mode = AST.SEND;
}
} else {
P.Expect(Scanner.ARROW);
P.Expect(Scanner.CHAN);
t.Mode = AST.RECV;
}
t.Elt = P.ParseVarType();
P.Ecart();
return t;
}
func (P *Parser) ParseVar(expect_ident bool) *AST.Type {
t := AST.BadType;
if expect_ident {
x := P.ParseIdent(nil);
t = AST.NewType(x.Pos, AST.TYPENAME);
t.Expr = x;
} else if P.tok == Scanner.ELLIPSIS {
t = AST.NewType(P.pos, AST.ELLIPSIS);
P.Next();
} else {
t = P.ParseType();
}
return t;
}
func (P *Parser) ParseVarList(list *array.Array, ellipsis_ok bool) {
P.Trace("VarList");
// assume a list of types
// (a list of identifiers looks like a list of type names)
i0 := list.Len();
for {
list.Push(P.ParseVar(ellipsis_ok /* param list */ && i0 > 0));
if P.tok == Scanner.COMMA {
P.Next();
} else {
break;
}
}
// if we had a list of identifiers, it must be followed by a type
typ := P.TryType();
if typ == nil && P.tok == Scanner.ELLIPSIS {
typ = AST.NewType(P.pos, AST.ELLIPSIS);
P.Next();
}
if ellipsis_ok /* param list */ && i0 > 0 && typ == nil {
// not the first parameter section; we must have a type
P.Error(P.pos, "type expected");
typ = AST.BadType;
}
// convert the list into a list of (type) expressions
if typ != nil {
// all list entries must be identifiers
// convert the type entries into identifiers
for i, n := i0, list.Len(); i < n; i++ {
t := list.At(i).(*AST.Type);
if t.Form == AST.TYPENAME && t.Expr.Tok == Scanner.IDENT {
list.Set(i, t.Expr);
} else {
list.Set(i, AST.BadExpr);
P.Error(t.Pos, "identifier expected");
}
}
// add type
list.Push(AST.NewTypeExpr(typ));
} else {
// all list entries are types
// convert all type entries into type expressions
for i, n := i0, list.Len(); i < n; i++ {
t := list.At(i).(*AST.Type);
list.Set(i, AST.NewTypeExpr(t));
}
}
P.Ecart();
}
func (P *Parser) ParseParameterList(ellipsis_ok bool) *array.Array {
P.Trace("ParameterList");
list := array.New(0);
P.ParseVarList(list, ellipsis_ok);
for P.tok == Scanner.COMMA {
P.Next();
P.ParseVarList(list, ellipsis_ok);
}
P.Ecart();
return list;
}
func (P *Parser) ParseParameters(ellipsis_ok bool) *AST.Type {
P.Trace("Parameters");
t := AST.NewType(P.pos, AST.STRUCT);
P.Expect(Scanner.LPAREN);
if P.tok != Scanner.RPAREN {
t.List = P.ParseParameterList(ellipsis_ok);
}
t.End = P.pos;
P.Expect(Scanner.RPAREN);
P.Ecart();
return t;
}
func (P *Parser) ParseResultList() {
P.Trace("ResultList");
P.ParseType();
for P.tok == Scanner.COMMA {
P.Next();
P.ParseType();
}
if P.tok != Scanner.RPAREN {
P.ParseType();
}
P.Ecart();
}
func (P *Parser) ParseResult(ftyp *AST.Type) *AST.Type {
P.Trace("Result");
var t *AST.Type;
if P.tok == Scanner.LPAREN {
t = P.ParseParameters(false);
} else if P.tok != Scanner.FUNC {
typ := P.TryType();
if typ != nil {
t = AST.NewType(P.pos, AST.STRUCT);
t.List = array.New(0);
t.List.Push(AST.NewTypeExpr(typ));
t.End = P.pos;
}
}
P.Ecart();
return t;
}
// Function types
//
// (params)
// (params) type
// (params) (results)
func (P *Parser) ParseSignature() *AST.Type {
P.Trace("Signature");
P.OpenScope();
P.scope_lev++;
t := AST.NewType(P.pos, AST.FUNCTION);
t.Scope = P.top_scope;
t.List = P.ParseParameters(true).List; // TODO find better solution
t.End = P.pos;
t.Elt = P.ParseResult(t);
P.scope_lev--;
P.CloseScope();
P.Ecart();
return t;
}
func (P *Parser) ParseFunctionType() *AST.Type {
P.Trace("FunctionType");
P.Expect(Scanner.FUNC);
t := P.ParseSignature();
P.Ecart();
return t;
}
func (P *Parser) ParseMethodSpec(list *array.Array) {
P.Trace("MethodDecl");
list.Push(P.ParseIdentList());
t := P.ParseSignature();
list.Push(AST.NewTypeExpr(t));
P.Ecart();
}
func (P *Parser) ParseInterfaceType() *AST.Type {
P.Trace("InterfaceType");
t := AST.NewType(P.pos, AST.INTERFACE);
P.Expect(Scanner.INTERFACE);
if P.tok == Scanner.LBRACE {
P.Next();
P.OpenScope();
P.scope_lev++;
t.List = array.New(0);
for P.tok == Scanner.IDENT {
P.ParseMethodSpec(t.List);
if P.tok != Scanner.RBRACE {
P.Expect(Scanner.SEMICOLON);
}
}
t.End = P.pos;
P.scope_lev--;
P.CloseScope();
P.Expect(Scanner.RBRACE);
}
P.Ecart();
return t;
}
func (P *Parser) ParseMapType() *AST.Type {
P.Trace("MapType");
t := AST.NewType(P.pos, AST.MAP);
P.Expect(Scanner.MAP);
P.Expect(Scanner.LBRACK);
t.Key = P.ParseVarType();
P.Expect(Scanner.RBRACK);
t.Elt = P.ParseVarType();
P.Ecart();
return t;
}
func (P *Parser) ParseOperand() *AST.Expr
func (P *Parser) ParseStructType() *AST.Type {
P.Trace("StructType");
t := AST.NewType(P.pos, AST.STRUCT);
P.Expect(Scanner.STRUCT);
if P.tok == Scanner.LBRACE {
P.Next();
t.List = array.New(0);
t.Scope = AST.NewScope(nil);
for P.tok != Scanner.RBRACE && P.tok != Scanner.EOF {
P.ParseVarList(t.List, false);
if P.tok == Scanner.STRING {
// ParseOperand takes care of string concatenation
t.List.Push(P.ParseOperand());
}
if P.tok == Scanner.SEMICOLON {
P.Next();
} else {
break;
}
}
P.OptSemicolon();
t.End = P.pos;
P.Expect(Scanner.RBRACE);
// enter fields into struct scope
for i, n := 0, t.List.Len(); i < n; i++ {
x := t.List.At(i).(*AST.Expr);
if x.Tok == Scanner.IDENT {
P.DeclareInScope(t.Scope, x, AST.FIELD, nil);
}
}
}
P.Ecart();
return t;
}
func (P *Parser) ParsePointerType() *AST.Type {
P.Trace("PointerType");
t := AST.NewType(P.pos, AST.POINTER);
P.Expect(Scanner.MUL);
t.Elt = P.ParseType();
P.Ecart();
return t;
}
func (P *Parser) TryType() *AST.Type {
P.Trace("Type (try)");
t := AST.BadType;
switch P.tok {
case Scanner.IDENT: t = P.ParseTypeName();
case Scanner.LBRACK: t = P.ParseArrayType();
case Scanner.CHAN, Scanner.ARROW: t = P.ParseChannelType();
case Scanner.INTERFACE: t = P.ParseInterfaceType();
case Scanner.FUNC: t = P.ParseFunctionType();
case Scanner.MAP: t = P.ParseMapType();
case Scanner.STRUCT: t = P.ParseStructType();
case Scanner.MUL: t = P.ParsePointerType();
default: t = nil; // no type found
}
P.Ecart();
return t;
}
// ----------------------------------------------------------------------------
// Blocks
func (P *Parser) ParseStatementList(list *array.Array) {
P.Trace("StatementList");
for P.tok != Scanner.CASE && P.tok != Scanner.DEFAULT && P.tok != Scanner.RBRACE && P.tok != Scanner.EOF {
s := P.ParseStatement();
if s != nil {
// not the empty statement
list.Push(s);
}
if P.tok == Scanner.SEMICOLON {
P.Next();
} else if P.opt_semi {
P.opt_semi = false; // "consume" optional semicolon
} else {
break;
}
}
// Try to provide a good error message
if P.tok != Scanner.CASE && P.tok != Scanner.DEFAULT && P.tok != Scanner.RBRACE && P.tok != Scanner.EOF {
P.Error(P.pos, "expected end of statement list (semicolon missing?)");
}
P.Ecart();
}
func (P *Parser) ParseBlock(ftyp *AST.Type, tok int) *AST.Block {
P.Trace("Block");
b := AST.NewBlock(P.pos, tok);
P.Expect(tok);
P.OpenScope();
// enter recv and parameters into function scope
if ftyp != nil {
assert(ftyp.Form == AST.FUNCTION);
if ftyp.Key != nil {
}
if ftyp.List != nil {
for i, n := 0, ftyp.List.Len(); i < n; i++ {
x := ftyp.List.At(i).(*AST.Expr);
if x.Tok == Scanner.IDENT {
P.DeclareInScope(P.top_scope, x, AST.VAR, nil);
}
}
}
}
P.ParseStatementList(b.List);
P.CloseScope();
if tok == Scanner.LBRACE {
b.End = P.pos;
P.Expect(Scanner.RBRACE);
P.opt_semi = true;
}
P.Ecart();
return b;
}
// ----------------------------------------------------------------------------
// Expressions
func (P *Parser) ParseExpressionList() *AST.Expr {
P.Trace("ExpressionList");
x := P.ParseExpression(1);
for first := true; P.tok == Scanner.COMMA; {
pos := P.pos;
P.Next();
y := P.ParseExpression(1);
if first {
x = P.NewExpr(pos, Scanner.COMMA, x, y);
first = false;
} else {
x.Y = P.NewExpr(pos, Scanner.COMMA, x.Y, y);
}
}
P.Ecart();
return x;
}
func (P *Parser) ParseFunctionLit() *AST.Expr {
P.Trace("FunctionLit");
f := AST.NewObject(P.pos, AST.FUNC, "");
P.Expect(Scanner.FUNC);
f.Typ = P.ParseSignature();
P.expr_lev++;
P.scope_lev++;
f.Body = P.ParseBlock(f.Typ, Scanner.LBRACE);
P.scope_lev--;
P.expr_lev--;
P.Ecart();
return AST.NewLit(Scanner.FUNC, f);
}
func (P *Parser) ParseOperand() *AST.Expr {
P.Trace("Operand");
x := AST.BadExpr;
switch P.tok {
case Scanner.IDENT:
x = P.ParseIdent(P.top_scope);
case Scanner.LPAREN:
// TODO we could have a function type here as in: new(())
// (currently not working)
P.Next();
P.expr_lev++;
x = P.ParseExpression(1);
P.expr_lev--;
P.Expect(Scanner.RPAREN);
case Scanner.INT, Scanner.FLOAT, Scanner.STRING:
val := AST.NewObject(P.pos, AST.NONE, P.val);
x = AST.NewLit(P.tok, val);
P.Next();
if x.Tok == Scanner.STRING {
// TODO should remember the list instead of
// concatenate the strings here
for ; P.tok == Scanner.STRING; P.Next() {
x.Obj.Ident += P.val;
}
}
case Scanner.FUNC:
x = P.ParseFunctionLit();
default:
t := P.TryType();
if t != nil {
x = AST.NewTypeExpr(t);
} else {
P.Error(P.pos, "operand expected");
P.Next(); // make progress
}
}
P.Ecart();
return x;
}
func (P *Parser) ParseSelectorOrTypeGuard(x *AST.Expr) *AST.Expr {
P.Trace("SelectorOrTypeGuard");
x = P.NewExpr(P.pos, Scanner.PERIOD, x, nil);
P.Expect(Scanner.PERIOD);
if P.tok == Scanner.IDENT {
// TODO should always guarantee x.Typ != nil
var scope *AST.Scope;
if x.X.Typ != nil {
scope = x.X.Typ.Scope;
}
x.Y = P.ParseIdent(scope);
x.Typ = x.Y.Obj.Typ;
} else {
P.Expect(Scanner.LPAREN);
x.Y = AST.NewTypeExpr(P.ParseType());
x.Typ = x.Y.Typ;
P.Expect(Scanner.RPAREN);
}
P.Ecart();
return x;
}
func (P *Parser) ParseIndex(x *AST.Expr) *AST.Expr {
P.Trace("IndexOrSlice");
pos := P.pos;
P.Expect(Scanner.LBRACK);
P.expr_lev++;
i := P.ParseExpression(0);
P.expr_lev--;
P.Expect(Scanner.RBRACK);
P.Ecart();
return P.NewExpr(pos, Scanner.LBRACK, x, i);
}
func (P *Parser) ParseBinaryExpr(prec1 int) *AST.Expr
func (P *Parser) ParseCall(x0 *AST.Expr) *AST.Expr {
P.Trace("Call");
x := P.NewExpr(P.pos, Scanner.LPAREN, x0, nil);
P.Expect(Scanner.LPAREN);
if P.tok != Scanner.RPAREN {
P.expr_lev++;
var t *AST.Type;
if x0.Tok == Scanner.IDENT && (x0.Obj.Ident == "new" || x0.Obj.Ident == "make") {
// heuristic: assume it's a new(T) or make(T, ...) call, try to parse a type
t = P.TryType();
}
if t != nil {
// we found a type
x.Y = AST.NewTypeExpr(t);
if P.tok == Scanner.COMMA {
pos := P.pos;
P.Next();
y := P.ParseExpressionList();
// create list manually because NewExpr checks for type expressions
z := AST.NewExpr(pos, Scanner.COMMA, nil, y);
z.X = x.Y;
x.Y = z;
}
} else {
// normal argument list
x.Y = P.ParseExpressionList();
}
P.expr_lev--;
}
P.Expect(Scanner.RPAREN);
P.Ecart();
return x;
}
func (P *Parser) ParseCompositeElements() *AST.Expr {
x := P.ParseExpression(0);
if P.tok == Scanner.COMMA {
pos := P.pos;
P.Next();
// first element determines mode
singles := true;
if x.Tok == Scanner.COLON {
singles = false;
}
var last *AST.Expr;
for P.tok != Scanner.RBRACE && P.tok != Scanner.EOF {
y := P.ParseExpression(0);
if singles {
if y.Tok == Scanner.COLON {
P.Error(y.X.Pos, "single value expected; found pair");
}
} else {
if y.Tok != Scanner.COLON {
P.Error(y.Pos, "key:value pair expected; found single value");
}
}
if last == nil {
x = P.NewExpr(pos, Scanner.COMMA, x, y);
last = x;
} else {
last.Y = P.NewExpr(pos, Scanner.COMMA, last.Y, y);
last = last.Y;
}
if P.tok == Scanner.COMMA {
pos = P.pos;
P.Next();
} else {
break;
}
}
}
return x;
}
func (P *Parser) ParseCompositeLit(t *AST.Type) *AST.Expr {
P.Trace("CompositeLit");
x := P.NewExpr(P.pos, Scanner.LBRACE, nil, nil);
x.Obj = AST.NewObject(t.Pos, AST.TYPE, "");
x.Obj.Typ = t;
P.Expect(Scanner.LBRACE);
if P.tok != Scanner.RBRACE {
x.Y = P.ParseCompositeElements();
}
P.Expect(Scanner.RBRACE);
P.Ecart();
return x;
}
func (P *Parser) ParsePrimaryExpr() *AST.Expr {
P.Trace("PrimaryExpr");
x := P.ParseOperand();
for {
switch P.tok {
case Scanner.PERIOD: x = P.ParseSelectorOrTypeGuard(x);
case Scanner.LBRACK: x = P.ParseIndex(x);
case Scanner.LPAREN: x = P.ParseCall(x);
case Scanner.LBRACE:
// assume a composite literal only if x could be a type
// and if we are not inside a control clause (expr_lev >= 0)
// (composites inside control clauses must be parenthesized)
var t *AST.Type;
if P.expr_lev >= 0 {
t = exprType(x);
}
if t != nil {
x = P.ParseCompositeLit(t);
} else {
goto exit;
}
default: goto exit;
}
}
exit:
P.Ecart();
return x;
}
func (P *Parser) ParseUnaryExpr() *AST.Expr {
P.Trace("UnaryExpr");
x := AST.BadExpr;
switch P.tok {
case Scanner.ADD, Scanner.SUB, Scanner.MUL, Scanner.NOT, Scanner.XOR, Scanner.ARROW, Scanner.AND:
pos, tok := P.pos, P.tok;
P.Next();
y := P.ParseUnaryExpr();
if tok == Scanner.MUL && y.Tok == Scanner.TYPE {
// pointer type
t := AST.NewType(pos, AST.POINTER);
t.Elt = y.Obj.Typ;
x = AST.NewTypeExpr(t);
} else {
x = P.NewExpr(pos, tok, nil, y);
}
default:
x = P.ParsePrimaryExpr();
}
P.Ecart();
return x;
}
func (P *Parser) ParseBinaryExpr(prec1 int) *AST.Expr {
P.Trace("BinaryExpr");
x := P.ParseUnaryExpr();
for prec := Scanner.Precedence(P.tok); prec >= prec1; prec-- {
for Scanner.Precedence(P.tok) == prec {
pos, tok := P.pos, P.tok;
P.Next();
y := P.ParseBinaryExpr(prec + 1);
x = P.NewExpr(pos, tok, x, y);
}
}
P.Ecart();
return x;
}
func (P *Parser) ParseExpression(prec int) *AST.Expr {
P.Trace("Expression");
indent := P.indent;
if prec < 0 {
panic("precedence must be >= 0");
}
x := P.NoType(P.ParseBinaryExpr(prec));
if indent != P.indent {
panic("imbalanced tracing code (Expression)");
}
P.Ecart();
return x;
}
// ----------------------------------------------------------------------------
// Statements
func (P *Parser) ParseSimpleStat(range_ok bool) *AST.Stat {
P.Trace("SimpleStat");
s := AST.BadStat;
x := P.ParseExpressionList();
is_range := false;
if range_ok && P.tok == Scanner.COLON {
pos := P.pos;
P.Next();
y := P.ParseExpression(1);
if x.Len() == 1 {
x = P.NewExpr(pos, Scanner.COLON, x, y);
is_range = true;
} else {
P.Error(pos, "expected initialization, found ':'");
}
}
switch P.tok {
case Scanner.COLON:
// label declaration
s = AST.NewStat(P.pos, Scanner.COLON);
s.Expr = x;
if x.Len() != 1 {
P.Error(x.Pos, "illegal label declaration");
}
P.Next(); // consume ":"
P.opt_semi = true;
case
Scanner.DEFINE, Scanner.ASSIGN, Scanner.ADD_ASSIGN,
Scanner.SUB_ASSIGN, Scanner.MUL_ASSIGN, Scanner.QUO_ASSIGN,
Scanner.REM_ASSIGN, Scanner.AND_ASSIGN, Scanner.OR_ASSIGN,
Scanner.XOR_ASSIGN, Scanner.SHL_ASSIGN, Scanner.SHR_ASSIGN:
// declaration/assignment
pos, tok := P.pos, P.tok;
P.Next();
y := AST.BadExpr;
if P.tok == Scanner.RANGE {
range_pos := P.pos;
P.Next();
y = P.ParseExpression(1);
y = P.NewExpr(range_pos, Scanner.RANGE, nil, y);
if tok != Scanner.DEFINE && tok != Scanner.ASSIGN {
P.Error(pos, "expected '=' or ':=', found '" + Scanner.TokenString(tok) + "'");
}
} else {
y = P.ParseExpressionList();
if is_range {
P.Error(y.Pos, "expected 'range', found expression");
}
if xl, yl := x.Len(), y.Len(); xl > 1 && yl > 1 && xl != yl {
P.Error(x.Pos, "arity of lhs doesn't match rhs");
}
}
s = AST.NewStat(x.Pos, Scanner.EXPRSTAT);
s.Expr = AST.NewExpr(pos, tok, x, y);
case Scanner.RANGE:
pos := P.pos;
P.Next();
y := P.ParseExpression(1);
y = P.NewExpr(pos, Scanner.RANGE, nil, y);
s = AST.NewStat(x.Pos, Scanner.EXPRSTAT);
s.Expr = AST.NewExpr(pos, Scanner.DEFINE, x, y);
default:
var pos, tok int;
if P.tok == Scanner.INC || P.tok == Scanner.DEC {
pos, tok = P.pos, P.tok;
P.Next();
} else {
pos, tok = x.Pos, Scanner.EXPRSTAT;
}
s = AST.NewStat(pos, tok);
s.Expr = x;
if x.Len() != 1 {
P.Error(x.Pos, "only one expression allowed");
}
}
P.Ecart();
return s;
}
func (P *Parser) ParseInvocationStat(keyword int) *AST.Stat {
P.Trace("InvocationStat");
s := AST.NewStat(P.pos, keyword);
P.Expect(keyword);
s.Expr = P.ParseExpression(1);
P.Ecart();
return s;
}
func (P *Parser) ParseReturnStat() *AST.Stat {
P.Trace("ReturnStat");
s := AST.NewStat(P.pos, Scanner.RETURN);
P.Expect(Scanner.RETURN);
if P.tok != Scanner.SEMICOLON && P.tok != Scanner.RBRACE {
s.Expr = P.ParseExpressionList();
}
P.Ecart();
return s;
}
func (P *Parser) ParseControlFlowStat(tok int) *AST.Stat {
P.Trace("ControlFlowStat");
s := AST.NewStat(P.pos, tok);
P.Expect(tok);
if tok != Scanner.FALLTHROUGH && P.tok == Scanner.IDENT {
s.Expr = P.ParseIdent(P.top_scope);
}
P.Ecart();
return s;
}
func (P *Parser) ParseControlClause(keyword int) *AST.Stat {
P.Trace("ControlClause");
s := AST.NewStat(P.pos, keyword);
P.Expect(keyword);
if P.tok != Scanner.LBRACE {
prev_lev := P.expr_lev;
P.expr_lev = -1;
if P.tok != Scanner.SEMICOLON {
s.Init = P.ParseSimpleStat(keyword == Scanner.FOR);
// TODO check for range clause and exit if found
}
if P.tok == Scanner.SEMICOLON {
P.Next();
if P.tok != Scanner.SEMICOLON && P.tok != Scanner.LBRACE {
s.Expr = P.ParseExpression(1);
}
if keyword == Scanner.FOR {
P.Expect(Scanner.SEMICOLON);
if P.tok != Scanner.LBRACE {
s.Post = P.ParseSimpleStat(false);
}
}
} else {
if s.Init != nil { // guard in case of errors
s.Expr, s.Init = s.Init.Expr, nil;
}
}
P.expr_lev = prev_lev;
}
P.Ecart();
return s;
}
func (P *Parser) ParseIfStat() *AST.Stat {
P.Trace("IfStat");
P.OpenScope();
s := P.ParseControlClause(Scanner.IF);
s.Body = P.ParseBlock(nil, Scanner.LBRACE);
if P.tok == Scanner.ELSE {
P.Next();
s1 := AST.BadStat;
if P.tok == Scanner.IF || P.tok == Scanner.LBRACE {
s1 = P.ParseStatement();
} else if P.sixg {
s1 = P.ParseStatement();
if s1 != nil {
// not the empty statement
assert(s1.Tok != Scanner.LBRACE);
// wrap in a block since we don't have one
b := AST.NewStat(s1.Pos, Scanner.LBRACE);
b.Body = AST.NewBlock(s1.Pos, Scanner.LBRACE);
b.Body.List.Push(s1);
s1 = b;
}
} else {
P.Error(P.pos, "'if' or '{' expected - illegal 'else' branch");
}
s.Post = s1;
}
P.CloseScope();
P.Ecart();
return s;
}
func (P *Parser) ParseForStat() *AST.Stat {
P.Trace("ForStat");
P.OpenScope();
s := P.ParseControlClause(Scanner.FOR);
s.Body = P.ParseBlock(nil, Scanner.LBRACE);
P.CloseScope();
P.Ecart();
return s;
}
func (P *Parser) ParseSwitchCase() *AST.Stat {
P.Trace("SwitchCase");
s := AST.NewStat(P.pos, P.tok);
if P.tok == Scanner.CASE {
P.Next();
s.Expr = P.ParseExpressionList();
} else {
P.Expect(Scanner.DEFAULT);
}
P.Ecart();
return s;
}
func (P *Parser) ParseCaseClause() *AST.Stat {
P.Trace("CaseClause");
s := P.ParseSwitchCase();
s.Body = P.ParseBlock(nil, Scanner.COLON);
P.Ecart();
return s;
}
func (P *Parser) ParseSwitchStat() *AST.Stat {
P.Trace("SwitchStat");
P.OpenScope();
s := P.ParseControlClause(Scanner.SWITCH);
b := AST.NewBlock(P.pos, Scanner.LBRACE);
P.Expect(Scanner.LBRACE);
for P.tok != Scanner.RBRACE && P.tok != Scanner.EOF {
b.List.Push(P.ParseCaseClause());
}
b.End = P.pos;
P.Expect(Scanner.RBRACE);
P.opt_semi = true;
P.CloseScope();
s.Body = b;
P.Ecart();
return s;
}
func (P *Parser) ParseCommCase() *AST.Stat {
P.Trace("CommCase");
s := AST.NewStat(P.pos, P.tok);
if P.tok == Scanner.CASE {
P.Next();
x := P.ParseExpression(1);
if P.tok == Scanner.ASSIGN || P.tok == Scanner.DEFINE {
pos, tok := P.pos, P.tok;
P.Next();
if P.tok == Scanner.ARROW {
y := P.ParseExpression(1);
x = AST.NewExpr(pos, tok, x, y);
} else {
P.Expect(Scanner.ARROW); // use Expect() error handling
}
}
s.Expr = x;
} else {
P.Expect(Scanner.DEFAULT);
}
P.Ecart();
return s;
}
func (P *Parser) ParseCommClause() *AST.Stat {
P.Trace("CommClause");
s := P.ParseCommCase();
s.Body = P.ParseBlock(nil, Scanner.COLON);
P.Ecart();
return s;
}
func (P *Parser) ParseSelectStat() *AST.Stat {
P.Trace("SelectStat");
s := AST.NewStat(P.pos, Scanner.SELECT);
P.Expect(Scanner.SELECT);
b := AST.NewBlock(P.pos, Scanner.LBRACE);
P.Expect(Scanner.LBRACE);
for P.tok != Scanner.RBRACE && P.tok != Scanner.EOF {
b.List.Push(P.ParseCommClause());
}
b.End = P.pos;
P.Expect(Scanner.RBRACE);
P.opt_semi = true;
s.Body = b;
P.Ecart();
return s;
}
func (P *Parser) ParseStatement() *AST.Stat {
P.Trace("Statement");
indent := P.indent;
s := AST.BadStat;
switch P.tok {
case Scanner.CONST, Scanner.TYPE, Scanner.VAR:
s = AST.NewStat(P.pos, P.tok);
s.Decl = P.ParseDeclaration();
case Scanner.FUNC:
// for now we do not allow local function declarations,
// instead we assume this starts a function literal
fallthrough;
case
// only the tokens that are legal top-level expression starts
Scanner.IDENT, Scanner.INT, Scanner.FLOAT, Scanner.STRING, Scanner.LPAREN, // operand
Scanner.LBRACK, Scanner.STRUCT, // composite type
Scanner.MUL, Scanner.AND, Scanner.ARROW: // unary
s = P.ParseSimpleStat(false);
case Scanner.GO, Scanner.DEFER:
s = P.ParseInvocationStat(P.tok);
case Scanner.RETURN:
s = P.ParseReturnStat();
case Scanner.BREAK, Scanner.CONTINUE, Scanner.GOTO, Scanner.FALLTHROUGH:
s = P.ParseControlFlowStat(P.tok);
case Scanner.LBRACE:
s = AST.NewStat(P.pos, Scanner.LBRACE);
s.Body = P.ParseBlock(nil, Scanner.LBRACE);
case Scanner.IF:
s = P.ParseIfStat();
case Scanner.FOR:
s = P.ParseForStat();
case Scanner.SWITCH:
s = P.ParseSwitchStat();
case Scanner.SELECT:
s = P.ParseSelectStat();
default:
// empty statement
s = nil;
}
if indent != P.indent {
panic("imbalanced tracing code (Statement)");
}
P.Ecart();
return s;
}
// ----------------------------------------------------------------------------
// Declarations
func (P *Parser) ParseImportSpec(d *AST.Decl) {
P.Trace("ImportSpec");
if P.tok == Scanner.PERIOD {
P.Error(P.pos, `"import ." not yet handled properly`);
P.Next();
} else if P.tok == Scanner.IDENT {
d.Ident = P.ParseIdent(nil);
}
if P.tok == Scanner.STRING {
// TODO eventually the scanner should strip the quotes
val := AST.NewObject(P.pos, AST.NONE, P.val);
d.Val = AST.NewLit(Scanner.STRING, val);
P.Next();
} else {
P.Expect(Scanner.STRING); // use Expect() error handling
}
P.Ecart();
}
func (P *Parser) ParseConstSpec(d *AST.Decl) {
P.Trace("ConstSpec");
d.Ident = P.ParseIdentList();
d.Typ = P.TryType();
if P.tok == Scanner.ASSIGN {
P.Next();
d.Val = P.ParseExpressionList();
}
P.Ecart();
}
func (P *Parser) ParseTypeSpec(d *AST.Decl) {
P.Trace("TypeSpec");
d.Ident = P.ParseIdent(nil);
d.Typ = P.ParseType();
P.opt_semi = true;
P.Ecart();
}
func (P *Parser) ParseVarSpec(d *AST.Decl) {
P.Trace("VarSpec");
d.Ident = P.ParseIdentList();
if P.tok == Scanner.ASSIGN {
P.Next();
d.Val = P.ParseExpressionList();
} else {
d.Typ = P.ParseVarType();
if P.tok == Scanner.ASSIGN {
P.Next();
d.Val = P.ParseExpressionList();
}
}
P.Ecart();
}
func (P *Parser) ParseSpec(d *AST.Decl) {
kind := AST.NONE;
switch d.Tok {
case Scanner.IMPORT: P.ParseImportSpec(d); kind = AST.PACKAGE;
case Scanner.CONST: P.ParseConstSpec(d); kind = AST.CONST;
case Scanner.TYPE: P.ParseTypeSpec(d); kind = AST.TYPE;
case Scanner.VAR: P.ParseVarSpec(d); kind = AST.VAR;
default: unreachable();
}
// semantic checks
if d.Tok == Scanner.IMPORT {
if d.Ident != nil {
P.Declare(d.Ident, kind, nil);
}
} else {
P.Declare(d.Ident, kind, d.Typ);
if d.Val != nil {
// initialization/assignment
llen := d.Ident.Len();
rlen := d.Val.Len();
if llen == rlen {
// TODO
} else if rlen == 1 {
// TODO
} else {
if llen < rlen {
P.Error(d.Val.At(llen).Pos, "more expressions than variables");
} else {
P.Error(d.Ident.At(rlen).Pos, "more variables than expressions");
}
}
} else {
// TODO
}
}
}
func (P *Parser) ParseDecl(keyword int) *AST.Decl {
P.Trace("Decl");
d := AST.NewDecl(P.pos, keyword);
P.Expect(keyword);
if P.tok == Scanner.LPAREN {
P.Next();
d.List = array.New(0);
for P.tok != Scanner.RPAREN && P.tok != Scanner.EOF {
d1 := AST.NewDecl(P.pos, keyword);
P.ParseSpec(d1);
d.List.Push(d1);
if P.tok == Scanner.SEMICOLON {
P.Next();
} else {
break;
}
}
d.End = P.pos;
P.Expect(Scanner.RPAREN);
P.opt_semi = true;
} else {
P.ParseSpec(d);
}
P.Ecart();
return d;
}
// Function declarations
//
// func ident (params)
// func ident (params) type
// func ident (params) (results)
// func (recv) ident (params)
// func (recv) ident (params) type
// func (recv) ident (params) (results)
func (P *Parser) ParseFunctionDecl() *AST.Decl {
P.Trace("FunctionDecl");
d := AST.NewDecl(P.pos, Scanner.FUNC);
P.Expect(Scanner.FUNC);
var recv *AST.Type;
if P.tok == Scanner.LPAREN {
pos := P.pos;
recv = P.ParseParameters(true);
if recv.Nfields() != 1 {
P.Error(pos, "must have exactly one receiver");
}
}
d.Ident = P.ParseIdent(nil);
d.Typ = P.ParseSignature();
d.Typ.Key = recv;
if P.tok == Scanner.LBRACE {
f := AST.NewObject(d.Pos, AST.FUNC, d.Ident.Obj.Ident);
f.Typ = d.Typ;
f.Body = P.ParseBlock(d.Typ, Scanner.LBRACE);
d.Val = AST.NewLit(Scanner.FUNC, f);
}
P.Ecart();
return d;
}
func (P *Parser) ParseDeclaration() *AST.Decl {
P.Trace("Declaration");
indent := P.indent;
d := AST.BadDecl;
switch P.tok {
case Scanner.CONST, Scanner.TYPE, Scanner.VAR:
d = P.ParseDecl(P.tok);
case Scanner.FUNC:
d = P.ParseFunctionDecl();
default:
P.Error(P.pos, "declaration expected");
P.Next(); // make progress
}
if indent != P.indent {
panic("imbalanced tracing code (Declaration)");
}
P.Ecart();
return d;
}
// ----------------------------------------------------------------------------
// Program
func (P *Parser) ParseProgram() *AST.Program {
P.Trace("Program");
P.OpenScope();
p := AST.NewProgram(P.pos);
P.Expect(Scanner.PACKAGE);
p.Ident = P.ParseIdent(nil);
// package body
{ P.OpenScope();
p.Decls = array.New(0);
for P.tok == Scanner.IMPORT {
p.Decls.Push(P.ParseDecl(Scanner.IMPORT));
P.OptSemicolon();
}
if !P.deps {
for P.tok != Scanner.EOF {
p.Decls.Push(P.ParseDeclaration());
P.OptSemicolon();
}
}
P.CloseScope();
}
p.Comments = P.comments;
P.CloseScope();
P.Ecart();
return p;
}