1
0
mirror of https://github.com/golang/go synced 2024-10-05 16:31:21 -06:00
go/src/pkg/reflect/all_test.go
Russ Cox 40fccbce6b reflect: more efficient; cannot Set result of NewValue anymore
* Reduces malloc counts during gob encoder/decoder test from 6/6 to 3/5.

The current reflect uses Set to mean two subtly different things.

(1) If you have a reflect.Value v, it might just represent
itself (as in v = reflect.NewValue(42)), in which case calling
v.Set only changed v, not any other data in the program.

(2) If you have a reflect Value v derived from a pointer
or a slice (as in x := []int{42}; v = reflect.NewValue(x).Index(0)),
v represents the value held there.  Changing x[0] affects the
value returned by v.Int(), and calling v.Set affects x[0].

This was not really by design; it just happened that way.

The motivation for the new reflect implementation was
to remove mallocs.  The use case (1) has an implicit malloc
inside it.  If you can do:

       v := reflect.NewValue(0)
       v.Set(42)
       i := v.Int()  // i = 42

then that implies that v is referring to some underlying
chunk of memory in order to remember the 42; that is,
NewValue must have allocated some memory.

Almost all the time you are using reflect the goal is to
inspect or to change other data, not to manipulate data
stored solely inside a reflect.Value.

This CL removes use case (1), so that an assignable
reflect.Value must always refer to some other piece of data
in the program.  Put another way, removing this case would
make

       v := reflect.NewValue(0)
       v.Set(42)

as illegal as

       0 = 42.

It would also make this illegal:

       x := 0
       v := reflect.NewValue(x)
       v.Set(42)

for the same reason.  (Note that right now, v.Set(42) "succeeds"
but does not change the value of x.)

If you really wanted to make v refer to x, you'd start with &x
and dereference it:

       x := 0
       v := reflect.NewValue(&x).Elem()  // v = *&x
       v.Set(42)

It's pretty rare, except in tests, to want to use NewValue and then
call Set to change the Value itself instead of some other piece of
data in the program.  I haven't seen it happen once yet while
making the tree build with this change.

For the same reasons, reflect.Zero (formerly reflect.MakeZero)
would also return an unassignable, unaddressable value.
This invalidates the (awkward) idiom:

       pv := ... some Ptr Value we have ...
       v := reflect.Zero(pv.Type().Elem())
       pv.PointTo(v)

which, when the API changed, turned into:

       pv := ... some Ptr Value we have ...
       v := reflect.Zero(pv.Type().Elem())
       pv.Set(v.Addr())

In both, it is far from clear what the code is trying to do.  Now that
it is possible, this CL adds reflect.New(Type) Value that does the
obvious thing (same as Go's new), so this code would be replaced by:

       pv := ... some Ptr Value we have ...
       pv.Set(reflect.New(pv.Type().Elem()))

The changes just described can be confusing to think about,
but I believe it is because the old API was confusing - it was
conflating two different kinds of Values - and that the new API
by itself is pretty simple: you can only Set (or call Addr on)
a Value if it actually addresses some real piece of data; that is,
only if it is the result of dereferencing a Ptr or indexing a Slice.

If you really want the old behavior, you'd get it by translating:

       v := reflect.NewValue(x)

into

       v := reflect.New(reflect.Typeof(x)).Elem()
       v.Set(reflect.NewValue(x))

Gofix will not be able to help with this, because whether
and how to change the code depends on whether the original
code meant use (1) or use (2), so the developer has to read
and think about the code.

You can see the effect on packages in the tree in
https://golang.org/cl/4423043/.

R=r
CC=golang-dev
https://golang.org/cl/4435042
2011-04-18 14:35:33 -04:00

1438 lines
31 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package reflect_test
import (
"container/vector"
"fmt"
"io"
"os"
. "reflect"
"runtime"
"testing"
"unsafe"
)
type integer int
type T struct {
a int
b float64
c string
d *int
}
type pair struct {
i interface{}
s string
}
func isDigit(c uint8) bool { return '0' <= c && c <= '9' }
func assert(t *testing.T, s, want string) {
if s != want {
t.Errorf("have %#q want %#q", s, want)
}
}
func typestring(i interface{}) string { return Typeof(i).String() }
var typeTests = []pair{
{struct{ x int }{}, "int"},
{struct{ x int8 }{}, "int8"},
{struct{ x int16 }{}, "int16"},
{struct{ x int32 }{}, "int32"},
{struct{ x int64 }{}, "int64"},
{struct{ x uint }{}, "uint"},
{struct{ x uint8 }{}, "uint8"},
{struct{ x uint16 }{}, "uint16"},
{struct{ x uint32 }{}, "uint32"},
{struct{ x uint64 }{}, "uint64"},
{struct{ x float32 }{}, "float32"},
{struct{ x float64 }{}, "float64"},
{struct{ x int8 }{}, "int8"},
{struct{ x (**int8) }{}, "**int8"},
{struct{ x (**integer) }{}, "**reflect_test.integer"},
{struct{ x ([32]int32) }{}, "[32]int32"},
{struct{ x ([]int8) }{}, "[]int8"},
{struct{ x (map[string]int32) }{}, "map[string] int32"},
{struct{ x (chan<- string) }{}, "chan<- string"},
{struct {
x struct {
c chan *int32
d float32
}
}{},
"struct { c chan *int32; d float32 }",
},
{struct{ x (func(a int8, b int32)) }{}, "func(int8, int32)"},
{struct {
x struct {
c func(chan *integer, *int8)
}
}{},
"struct { c func(chan *reflect_test.integer, *int8) }",
},
{struct {
x struct {
a int8
b int32
}
}{},
"struct { a int8; b int32 }",
},
{struct {
x struct {
a int8
b int8
c int32
}
}{},
"struct { a int8; b int8; c int32 }",
},
{struct {
x struct {
a int8
b int8
c int8
d int32
}
}{},
"struct { a int8; b int8; c int8; d int32 }",
},
{struct {
x struct {
a int8
b int8
c int8
d int8
e int32
}
}{},
"struct { a int8; b int8; c int8; d int8; e int32 }",
},
{struct {
x struct {
a int8
b int8
c int8
d int8
e int8
f int32
}
}{},
"struct { a int8; b int8; c int8; d int8; e int8; f int32 }",
},
{struct {
x struct {
a int8 "hi there"
}
}{},
`struct { a int8 "hi there" }`,
},
{struct {
x struct {
a int8 "hi \x00there\t\n\"\\"
}
}{},
`struct { a int8 "hi \x00there\t\n\"\\" }`,
},
{struct {
x struct {
f func(args ...int)
}
}{},
"struct { f func(...int) }",
},
{struct {
x (interface {
a(func(func(int) int) func(func(int)) int)
b()
})
}{},
"interface { a(func(func(int) int) func(func(int)) int); b() }",
},
}
var valueTests = []pair{
{new(int8), "8"},
{new(int16), "16"},
{new(int32), "32"},
{new(int64), "64"},
{new(uint8), "8"},
{new(uint16), "16"},
{new(uint32), "32"},
{new(uint64), "64"},
{new(float32), "256.25"},
{new(float64), "512.125"},
{new(string), "stringy cheese"},
{new(bool), "true"},
{new(*int8), "*int8(0)"},
{new(**int8), "**int8(0)"},
{new([5]int32), "[5]int32{0, 0, 0, 0, 0}"},
{new(**integer), "**reflect_test.integer(0)"},
{new(map[string]int32), "map[string] int32{<can't iterate on maps>}"},
{new(chan<- string), "chan<- string"},
{new(func(a int8, b int32)), "func(int8, int32)(0)"},
{new(struct {
c chan *int32
d float32
}),
"struct { c chan *int32; d float32 }{chan *int32, 0}",
},
{new(struct{ c func(chan *integer, *int8) }),
"struct { c func(chan *reflect_test.integer, *int8) }{func(chan *reflect_test.integer, *int8)(0)}",
},
{new(struct {
a int8
b int32
}),
"struct { a int8; b int32 }{0, 0}",
},
{new(struct {
a int8
b int8
c int32
}),
"struct { a int8; b int8; c int32 }{0, 0, 0}",
},
}
func testType(t *testing.T, i int, typ Type, want string) {
s := typ.String()
if s != want {
t.Errorf("#%d: have %#q, want %#q", i, s, want)
}
}
func TestTypes(t *testing.T) {
for i, tt := range typeTests {
testType(t, i, NewValue(tt.i).Field(0).Type(), tt.s)
}
}
func TestSet(t *testing.T) {
for i, tt := range valueTests {
v := NewValue(tt.i).Elem()
switch v.Kind() {
case Int:
v.SetInt(132)
case Int8:
v.SetInt(8)
case Int16:
v.SetInt(16)
case Int32:
v.SetInt(32)
case Int64:
v.SetInt(64)
case Uint:
v.SetUint(132)
case Uint8:
v.SetUint(8)
case Uint16:
v.SetUint(16)
case Uint32:
v.SetUint(32)
case Uint64:
v.SetUint(64)
case Float32:
v.SetFloat(256.25)
case Float64:
v.SetFloat(512.125)
case Complex64:
v.SetComplex(532.125 + 10i)
case Complex128:
v.SetComplex(564.25 + 1i)
case String:
v.SetString("stringy cheese")
case Bool:
v.SetBool(true)
}
s := valueToString(v)
if s != tt.s {
t.Errorf("#%d: have %#q, want %#q", i, s, tt.s)
}
}
}
func TestSetValue(t *testing.T) {
for i, tt := range valueTests {
v := NewValue(tt.i).Elem()
switch v.Kind() {
case Int:
v.Set(NewValue(int(132)))
case Int8:
v.Set(NewValue(int8(8)))
case Int16:
v.Set(NewValue(int16(16)))
case Int32:
v.Set(NewValue(int32(32)))
case Int64:
v.Set(NewValue(int64(64)))
case Uint:
v.Set(NewValue(uint(132)))
case Uint8:
v.Set(NewValue(uint8(8)))
case Uint16:
v.Set(NewValue(uint16(16)))
case Uint32:
v.Set(NewValue(uint32(32)))
case Uint64:
v.Set(NewValue(uint64(64)))
case Float32:
v.Set(NewValue(float32(256.25)))
case Float64:
v.Set(NewValue(512.125))
case Complex64:
v.Set(NewValue(complex64(532.125 + 10i)))
case Complex128:
v.Set(NewValue(complex128(564.25 + 1i)))
case String:
v.Set(NewValue("stringy cheese"))
case Bool:
v.Set(NewValue(true))
}
s := valueToString(v)
if s != tt.s {
t.Errorf("#%d: have %#q, want %#q", i, s, tt.s)
}
}
}
var _i = 7
var valueToStringTests = []pair{
{123, "123"},
{123.5, "123.5"},
{byte(123), "123"},
{"abc", "abc"},
{T{123, 456.75, "hello", &_i}, "reflect_test.T{123, 456.75, hello, *int(&7)}"},
{new(chan *T), "*chan *reflect_test.T(&chan *reflect_test.T)"},
{[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, "[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}"},
{&[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, "*[10]int(&[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10})"},
{[]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, "[]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}"},
{&[]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, "*[]int(&[]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10})"},
}
func TestValueToString(t *testing.T) {
for i, test := range valueToStringTests {
s := valueToString(NewValue(test.i))
if s != test.s {
t.Errorf("#%d: have %#q, want %#q", i, s, test.s)
}
}
}
func TestArrayElemSet(t *testing.T) {
v := NewValue(&[10]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}).Elem()
v.Index(4).SetInt(123)
s := valueToString(v)
const want = "[10]int{1, 2, 3, 4, 123, 6, 7, 8, 9, 10}"
if s != want {
t.Errorf("[10]int: have %#q want %#q", s, want)
}
v = NewValue([]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10})
v.Index(4).SetInt(123)
s = valueToString(v)
const want1 = "[]int{1, 2, 3, 4, 123, 6, 7, 8, 9, 10}"
if s != want1 {
t.Errorf("[]int: have %#q want %#q", s, want1)
}
}
func TestPtrPointTo(t *testing.T) {
var ip *int32
var i int32 = 1234
vip := NewValue(&ip)
vi := NewValue(&i).Elem()
vip.Elem().Set(vi.Addr())
if *ip != 1234 {
t.Errorf("got %d, want 1234", *ip)
}
ip = nil
vp := NewValue(&ip).Elem()
vp.Set(Zero(vp.Type()))
if ip != nil {
t.Errorf("got non-nil (%p), want nil", ip)
}
}
func TestPtrSetNil(t *testing.T) {
var i int32 = 1234
ip := &i
vip := NewValue(&ip)
vip.Elem().Set(Zero(vip.Elem().Type()))
if ip != nil {
t.Errorf("got non-nil (%d), want nil", *ip)
}
}
func TestMapSetNil(t *testing.T) {
m := make(map[string]int)
vm := NewValue(&m)
vm.Elem().Set(Zero(vm.Elem().Type()))
if m != nil {
t.Errorf("got non-nil (%p), want nil", m)
}
}
func TestAll(t *testing.T) {
testType(t, 1, Typeof((int8)(0)), "int8")
testType(t, 2, Typeof((*int8)(nil)).Elem(), "int8")
typ := Typeof((*struct {
c chan *int32
d float32
})(nil))
testType(t, 3, typ, "*struct { c chan *int32; d float32 }")
etyp := typ.Elem()
testType(t, 4, etyp, "struct { c chan *int32; d float32 }")
styp := etyp
f := styp.Field(0)
testType(t, 5, f.Type, "chan *int32")
f, present := styp.FieldByName("d")
if !present {
t.Errorf("FieldByName says present field is absent")
}
testType(t, 6, f.Type, "float32")
f, present = styp.FieldByName("absent")
if present {
t.Errorf("FieldByName says absent field is present")
}
typ = Typeof([32]int32{})
testType(t, 7, typ, "[32]int32")
testType(t, 8, typ.Elem(), "int32")
typ = Typeof((map[string]*int32)(nil))
testType(t, 9, typ, "map[string] *int32")
mtyp := typ
testType(t, 10, mtyp.Key(), "string")
testType(t, 11, mtyp.Elem(), "*int32")
typ = Typeof((chan<- string)(nil))
testType(t, 12, typ, "chan<- string")
testType(t, 13, typ.Elem(), "string")
// make sure tag strings are not part of element type
typ = Typeof(struct {
d []uint32 "TAG"
}{}).Field(0).Type
testType(t, 14, typ, "[]uint32")
}
func TestInterfaceGet(t *testing.T) {
var inter struct {
E interface{}
}
inter.E = 123.456
v1 := NewValue(&inter)
v2 := v1.Elem().Field(0)
assert(t, v2.Type().String(), "interface { }")
i2 := v2.Interface()
v3 := NewValue(i2)
assert(t, v3.Type().String(), "float64")
}
func TestInterfaceValue(t *testing.T) {
var inter struct {
E interface{}
}
inter.E = 123.456
v1 := NewValue(&inter)
v2 := v1.Elem().Field(0)
assert(t, v2.Type().String(), "interface { }")
v3 := v2.Elem()
assert(t, v3.Type().String(), "float64")
i3 := v2.Interface()
if _, ok := i3.(float64); !ok {
t.Error("v2.Interface() did not return float64, got ", Typeof(i3))
}
}
func TestFunctionValue(t *testing.T) {
var x interface{} = func() {}
v := NewValue(x)
if v.Interface() != v.Interface() || v.Interface() != x {
t.Fatalf("TestFunction != itself")
}
assert(t, v.Type().String(), "func()")
}
var appendTests = []struct {
orig, extra []int
}{
{make([]int, 2, 4), []int{22}},
{make([]int, 2, 4), []int{22, 33, 44}},
}
func sameInts(x, y []int) bool {
if len(x) != len(y) {
return false
}
for i, xx := range x {
if xx != y[i] {
return false
}
}
return true
}
func TestAppend(t *testing.T) {
for i, test := range appendTests {
origLen, extraLen := len(test.orig), len(test.extra)
want := append(test.orig, test.extra...)
// Convert extra from []int to []Value.
e0 := make([]Value, len(test.extra))
for j, e := range test.extra {
e0[j] = NewValue(e)
}
// Convert extra from []int to *SliceValue.
e1 := NewValue(test.extra)
// Test Append.
a0 := NewValue(test.orig)
have0 := Append(a0, e0...).Interface().([]int)
if !sameInts(have0, want) {
t.Errorf("Append #%d: have %v, want %v (%p %p)", i, have0, want, test.orig, have0)
}
// Check that the orig and extra slices were not modified.
if len(test.orig) != origLen {
t.Errorf("Append #%d origLen: have %v, want %v", i, len(test.orig), origLen)
}
if len(test.extra) != extraLen {
t.Errorf("Append #%d extraLen: have %v, want %v", i, len(test.extra), extraLen)
}
// Test AppendSlice.
a1 := NewValue(test.orig)
have1 := AppendSlice(a1, e1).Interface().([]int)
if !sameInts(have1, want) {
t.Errorf("AppendSlice #%d: have %v, want %v", i, have1, want)
}
// Check that the orig and extra slices were not modified.
if len(test.orig) != origLen {
t.Errorf("AppendSlice #%d origLen: have %v, want %v", i, len(test.orig), origLen)
}
if len(test.extra) != extraLen {
t.Errorf("AppendSlice #%d extraLen: have %v, want %v", i, len(test.extra), extraLen)
}
}
}
func TestCopy(t *testing.T) {
a := []int{1, 2, 3, 4, 10, 9, 8, 7}
b := []int{11, 22, 33, 44, 1010, 99, 88, 77, 66, 55, 44}
c := []int{11, 22, 33, 44, 1010, 99, 88, 77, 66, 55, 44}
for i := 0; i < len(b); i++ {
if b[i] != c[i] {
t.Fatalf("b != c before test")
}
}
a1 := a
b1 := b
aa := NewValue(&a1).Elem()
ab := NewValue(&b1).Elem()
for tocopy := 1; tocopy <= 7; tocopy++ {
aa.SetLen(tocopy)
Copy(ab, aa)
aa.SetLen(8)
for i := 0; i < tocopy; i++ {
if a[i] != b[i] {
t.Errorf("(i) tocopy=%d a[%d]=%d, b[%d]=%d",
tocopy, i, a[i], i, b[i])
}
}
for i := tocopy; i < len(b); i++ {
if b[i] != c[i] {
if i < len(a) {
t.Errorf("(ii) tocopy=%d a[%d]=%d, b[%d]=%d, c[%d]=%d",
tocopy, i, a[i], i, b[i], i, c[i])
} else {
t.Errorf("(iii) tocopy=%d b[%d]=%d, c[%d]=%d",
tocopy, i, b[i], i, c[i])
}
} else {
t.Logf("tocopy=%d elem %d is okay\n", tocopy, i)
}
}
}
}
func TestBigUnnamedStruct(t *testing.T) {
b := struct{ a, b, c, d int64 }{1, 2, 3, 4}
v := NewValue(b)
b1 := v.Interface().(struct {
a, b, c, d int64
})
if b1.a != b.a || b1.b != b.b || b1.c != b.c || b1.d != b.d {
t.Errorf("NewValue(%v).Interface().(*Big) = %v", b, b1)
}
}
type big struct {
a, b, c, d, e int64
}
func TestBigStruct(t *testing.T) {
b := big{1, 2, 3, 4, 5}
v := NewValue(b)
b1 := v.Interface().(big)
if b1.a != b.a || b1.b != b.b || b1.c != b.c || b1.d != b.d || b1.e != b.e {
t.Errorf("NewValue(%v).Interface().(big) = %v", b, b1)
}
}
type Basic struct {
x int
y float32
}
type NotBasic Basic
type DeepEqualTest struct {
a, b interface{}
eq bool
}
var deepEqualTests = []DeepEqualTest{
// Equalities
{1, 1, true},
{int32(1), int32(1), true},
{0.5, 0.5, true},
{float32(0.5), float32(0.5), true},
{"hello", "hello", true},
{make([]int, 10), make([]int, 10), true},
{&[3]int{1, 2, 3}, &[3]int{1, 2, 3}, true},
{Basic{1, 0.5}, Basic{1, 0.5}, true},
{os.Error(nil), os.Error(nil), true},
{map[int]string{1: "one", 2: "two"}, map[int]string{2: "two", 1: "one"}, true},
// Inequalities
{1, 2, false},
{int32(1), int32(2), false},
{0.5, 0.6, false},
{float32(0.5), float32(0.6), false},
{"hello", "hey", false},
{make([]int, 10), make([]int, 11), false},
{&[3]int{1, 2, 3}, &[3]int{1, 2, 4}, false},
{Basic{1, 0.5}, Basic{1, 0.6}, false},
{Basic{1, 0}, Basic{2, 0}, false},
{map[int]string{1: "one", 3: "two"}, map[int]string{2: "two", 1: "one"}, false},
{map[int]string{1: "one", 2: "txo"}, map[int]string{2: "two", 1: "one"}, false},
{map[int]string{1: "one"}, map[int]string{2: "two", 1: "one"}, false},
{map[int]string{2: "two", 1: "one"}, map[int]string{1: "one"}, false},
{nil, 1, false},
{1, nil, false},
// Mismatched types
{1, 1.0, false},
{int32(1), int64(1), false},
{0.5, "hello", false},
{[]int{1, 2, 3}, [3]int{1, 2, 3}, false},
{&[3]interface{}{1, 2, 4}, &[3]interface{}{1, 2, "s"}, false},
{Basic{1, 0.5}, NotBasic{1, 0.5}, false},
{map[uint]string{1: "one", 2: "two"}, map[int]string{2: "two", 1: "one"}, false},
}
func TestDeepEqual(t *testing.T) {
for _, test := range deepEqualTests {
if r := DeepEqual(test.a, test.b); r != test.eq {
t.Errorf("DeepEqual(%v, %v) = %v, want %v", test.a, test.b, r, test.eq)
}
}
}
func TestTypeof(t *testing.T) {
for _, test := range deepEqualTests {
v := NewValue(test.a)
if !v.IsValid() {
continue
}
typ := Typeof(test.a)
if typ != v.Type() {
t.Errorf("Typeof(%v) = %v, but NewValue(%v).Type() = %v", test.a, typ, test.a, v.Type())
}
}
}
type Recursive struct {
x int
r *Recursive
}
func TestDeepEqualRecursiveStruct(t *testing.T) {
a, b := new(Recursive), new(Recursive)
*a = Recursive{12, a}
*b = Recursive{12, b}
if !DeepEqual(a, b) {
t.Error("DeepEqual(recursive same) = false, want true")
}
}
type _Complex struct {
a int
b [3]*_Complex
c *string
d map[float64]float64
}
func TestDeepEqualComplexStruct(t *testing.T) {
m := make(map[float64]float64)
stra, strb := "hello", "hello"
a, b := new(_Complex), new(_Complex)
*a = _Complex{5, [3]*_Complex{a, b, a}, &stra, m}
*b = _Complex{5, [3]*_Complex{b, a, a}, &strb, m}
if !DeepEqual(a, b) {
t.Error("DeepEqual(complex same) = false, want true")
}
}
func TestDeepEqualComplexStructInequality(t *testing.T) {
m := make(map[float64]float64)
stra, strb := "hello", "helloo" // Difference is here
a, b := new(_Complex), new(_Complex)
*a = _Complex{5, [3]*_Complex{a, b, a}, &stra, m}
*b = _Complex{5, [3]*_Complex{b, a, a}, &strb, m}
if DeepEqual(a, b) {
t.Error("DeepEqual(complex different) = true, want false")
}
}
func check2ndField(x interface{}, offs uintptr, t *testing.T) {
s := NewValue(x)
f := s.Type().Field(1)
if f.Offset != offs {
t.Error("mismatched offsets in structure alignment:", f.Offset, offs)
}
}
// Check that structure alignment & offsets viewed through reflect agree with those
// from the compiler itself.
func TestAlignment(t *testing.T) {
type T1inner struct {
a int
}
type T1 struct {
T1inner
f int
}
type T2inner struct {
a, b int
}
type T2 struct {
T2inner
f int
}
x := T1{T1inner{2}, 17}
check2ndField(x, uintptr(unsafe.Pointer(&x.f))-uintptr(unsafe.Pointer(&x)), t)
x1 := T2{T2inner{2, 3}, 17}
check2ndField(x1, uintptr(unsafe.Pointer(&x1.f))-uintptr(unsafe.Pointer(&x1)), t)
}
func Nil(a interface{}, t *testing.T) {
n := NewValue(a).Field(0)
if !n.IsNil() {
t.Errorf("%v should be nil", a)
}
}
func NotNil(a interface{}, t *testing.T) {
n := NewValue(a).Field(0)
if n.IsNil() {
t.Errorf("value of type %v should not be nil", NewValue(a).Type().String())
}
}
func TestIsNil(t *testing.T) {
// These implement IsNil.
// Wrap in extra struct to hide interface type.
doNil := []interface{}{
struct{ x *int }{},
struct{ x interface{} }{},
struct{ x map[string]int }{},
struct{ x func() bool }{},
struct{ x chan int }{},
struct{ x []string }{},
}
for _, ts := range doNil {
ty := Typeof(ts).Field(0).Type
v := Zero(ty)
v.IsNil() // panics if not okay to call
}
// Check the implementations
var pi struct {
x *int
}
Nil(pi, t)
pi.x = new(int)
NotNil(pi, t)
var si struct {
x []int
}
Nil(si, t)
si.x = make([]int, 10)
NotNil(si, t)
var ci struct {
x chan int
}
Nil(ci, t)
ci.x = make(chan int)
NotNil(ci, t)
var mi struct {
x map[int]int
}
Nil(mi, t)
mi.x = make(map[int]int)
NotNil(mi, t)
var ii struct {
x interface{}
}
Nil(ii, t)
ii.x = 2
NotNil(ii, t)
var fi struct {
x func(t *testing.T)
}
Nil(fi, t)
fi.x = TestIsNil
NotNil(fi, t)
}
func TestInterfaceExtraction(t *testing.T) {
var s struct {
w io.Writer
}
s.w = os.Stdout
v := Indirect(NewValue(&s)).Field(0).Interface()
if v != s.w.(interface{}) {
t.Error("Interface() on interface: ", v, s.w)
}
}
func TestNilPtrValueSub(t *testing.T) {
var pi *int
if pv := NewValue(pi); pv.Elem().IsValid() {
t.Error("NewValue((*int)(nil)).Elem().IsValid()")
}
}
func TestMap(t *testing.T) {
m := map[string]int{"a": 1, "b": 2}
mv := NewValue(m)
if n := mv.Len(); n != len(m) {
t.Errorf("Len = %d, want %d", n, len(m))
}
keys := mv.MapKeys()
i := 0
newmap := MakeMap(mv.Type())
for k, v := range m {
// Check that returned Keys match keys in range.
// These aren't required to be in the same order,
// but they are in this implementation, which makes
// the test easier.
if i >= len(keys) {
t.Errorf("Missing key #%d %q", i, k)
} else if kv := keys[i]; kv.String() != k {
t.Errorf("Keys[%q] = %d, want %d", i, kv.Int(), k)
}
i++
// Check that value lookup is correct.
vv := mv.MapIndex(NewValue(k))
if vi := vv.Int(); vi != int64(v) {
t.Errorf("Key %q: have value %d, want %d", k, vi, v)
}
// Copy into new map.
newmap.SetMapIndex(NewValue(k), NewValue(v))
}
vv := mv.MapIndex(NewValue("not-present"))
if vv.IsValid() {
t.Errorf("Invalid key: got non-nil value %s", valueToString(vv))
}
newm := newmap.Interface().(map[string]int)
if len(newm) != len(m) {
t.Errorf("length after copy: newm=%d, m=%d", newm, m)
}
for k, v := range newm {
mv, ok := m[k]
if mv != v {
t.Errorf("newm[%q] = %d, but m[%q] = %d, %v", k, v, k, mv, ok)
}
}
newmap.SetMapIndex(NewValue("a"), Value{})
v, ok := newm["a"]
if ok {
t.Errorf("newm[\"a\"] = %d after delete", v)
}
mv = NewValue(&m).Elem()
mv.Set(Zero(mv.Type()))
if m != nil {
t.Errorf("mv.Set(nil) failed")
}
}
func TestChan(t *testing.T) {
for loop := 0; loop < 2; loop++ {
var c chan int
var cv Value
// check both ways to allocate channels
switch loop {
case 1:
c = make(chan int, 1)
cv = NewValue(c)
case 0:
cv = MakeChan(Typeof(c), 1)
c = cv.Interface().(chan int)
}
// Send
cv.Send(NewValue(2))
if i := <-c; i != 2 {
t.Errorf("reflect Send 2, native recv %d", i)
}
// Recv
c <- 3
if i, ok := cv.Recv(); i.Int() != 3 || !ok {
t.Errorf("native send 3, reflect Recv %d, %t", i.Int(), ok)
}
// TryRecv fail
val, ok := cv.TryRecv()
if val.IsValid() || ok {
t.Errorf("TryRecv on empty chan: %s, %t", valueToString(val), ok)
}
// TryRecv success
c <- 4
val, ok = cv.TryRecv()
if !val.IsValid() {
t.Errorf("TryRecv on ready chan got nil")
} else if i := val.Int(); i != 4 || !ok {
t.Errorf("native send 4, TryRecv %d, %t", i, ok)
}
// TrySend fail
c <- 100
ok = cv.TrySend(NewValue(5))
i := <-c
if ok {
t.Errorf("TrySend on full chan succeeded: value %d", i)
}
// TrySend success
ok = cv.TrySend(NewValue(6))
if !ok {
t.Errorf("TrySend on empty chan failed")
} else {
if i = <-c; i != 6 {
t.Errorf("TrySend 6, recv %d", i)
}
}
// Close
c <- 123
cv.Close()
if i, ok := cv.Recv(); i.Int() != 123 || !ok {
t.Errorf("send 123 then close; Recv %d, %t", i.Int(), ok)
}
if i, ok := cv.Recv(); i.Int() != 0 || ok {
t.Errorf("after close Recv %d, %t", i.Int(), ok)
}
}
// check creation of unbuffered channel
var c chan int
cv := MakeChan(Typeof(c), 0)
c = cv.Interface().(chan int)
if cv.TrySend(NewValue(7)) {
t.Errorf("TrySend on sync chan succeeded")
}
if v, ok := cv.TryRecv(); v.IsValid() || ok {
t.Errorf("TryRecv on sync chan succeeded: isvalid=%v ok=%v", v.IsValid(), ok)
}
// len/cap
cv = MakeChan(Typeof(c), 10)
c = cv.Interface().(chan int)
for i := 0; i < 3; i++ {
c <- i
}
if l, m := cv.Len(), cv.Cap(); l != len(c) || m != cap(c) {
t.Errorf("Len/Cap = %d/%d want %d/%d", l, m, len(c), cap(c))
}
}
// Difficult test for function call because of
// implicit padding between arguments.
func dummy(b byte, c int, d byte) (i byte, j int, k byte) {
return b, c, d
}
func TestFunc(t *testing.T) {
ret := NewValue(dummy).Call([]Value{NewValue(byte(10)), NewValue(20), NewValue(byte(30))})
if len(ret) != 3 {
t.Fatalf("Call returned %d values, want 3", len(ret))
}
i := byte(ret[0].Uint())
j := int(ret[1].Int())
k := byte(ret[2].Uint())
if i != 10 || j != 20 || k != 30 {
t.Errorf("Call returned %d, %d, %d; want 10, 20, 30", i, j, k)
}
}
type Point struct {
x, y int
}
func (p Point) Dist(scale int) int {
// println("Point.Dist", p.x, p.y, scale)
return p.x*p.x*scale + p.y*p.y*scale
}
func TestMethod(t *testing.T) {
// Non-curried method of type.
p := Point{3, 4}
i := Typeof(p).Method(0).Func.Call([]Value{NewValue(p), NewValue(10)})[0].Int()
if i != 250 {
t.Errorf("Type Method returned %d; want 250", i)
}
i = Typeof(&p).Method(0).Func.Call([]Value{NewValue(&p), NewValue(10)})[0].Int()
if i != 250 {
t.Errorf("Pointer Type Method returned %d; want 250", i)
}
// Curried method of value.
i = NewValue(p).Method(0).Call([]Value{NewValue(10)})[0].Int()
if i != 250 {
t.Errorf("Value Method returned %d; want 250", i)
}
// Curried method of pointer.
i = NewValue(&p).Method(0).Call([]Value{NewValue(10)})[0].Int()
if i != 250 {
t.Errorf("Value Method returned %d; want 250", i)
}
// Curried method of interface value.
// Have to wrap interface value in a struct to get at it.
// Passing it to NewValue directly would
// access the underlying Point, not the interface.
var s = struct {
X interface {
Dist(int) int
}
}{p}
pv := NewValue(s).Field(0)
i = pv.Method(0).Call([]Value{NewValue(10)})[0].Int()
if i != 250 {
t.Errorf("Interface Method returned %d; want 250", i)
}
}
func TestInterfaceSet(t *testing.T) {
p := &Point{3, 4}
var s struct {
I interface{}
P interface {
Dist(int) int
}
}
sv := NewValue(&s).Elem()
sv.Field(0).Set(NewValue(p))
if q := s.I.(*Point); q != p {
t.Errorf("i: have %p want %p", q, p)
}
pv := sv.Field(1)
pv.Set(NewValue(p))
if q := s.P.(*Point); q != p {
t.Errorf("i: have %p want %p", q, p)
}
i := pv.Method(0).Call([]Value{NewValue(10)})[0].Int()
if i != 250 {
t.Errorf("Interface Method returned %d; want 250", i)
}
}
type T1 struct {
a string
int
}
func TestAnonymousFields(t *testing.T) {
var field StructField
var ok bool
var t1 T1
type1 := Typeof(t1)
if field, ok = type1.FieldByName("int"); !ok {
t.Error("no field 'int'")
}
if field.Index[0] != 1 {
t.Error("field index should be 1; is", field.Index)
}
}
type FTest struct {
s interface{}
name string
index []int
value int
}
type D1 struct {
d int
}
type D2 struct {
d int
}
type S0 struct {
a, b, c int
D1
D2
}
type S1 struct {
b int
S0
}
type S2 struct {
a int
*S1
}
type S1x struct {
S1
}
type S1y struct {
S1
}
type S3 struct {
S1x
S2
d, e int
*S1y
}
type S4 struct {
*S4
a int
}
var fieldTests = []FTest{
{struct{}{}, "", nil, 0},
{struct{}{}, "foo", nil, 0},
{S0{a: 'a'}, "a", []int{0}, 'a'},
{S0{}, "d", nil, 0},
{S1{S0: S0{a: 'a'}}, "a", []int{1, 0}, 'a'},
{S1{b: 'b'}, "b", []int{0}, 'b'},
{S1{}, "S0", []int{1}, 0},
{S1{S0: S0{c: 'c'}}, "c", []int{1, 2}, 'c'},
{S2{a: 'a'}, "a", []int{0}, 'a'},
{S2{}, "S1", []int{1}, 0},
{S2{S1: &S1{b: 'b'}}, "b", []int{1, 0}, 'b'},
{S2{S1: &S1{S0: S0{c: 'c'}}}, "c", []int{1, 1, 2}, 'c'},
{S2{}, "d", nil, 0},
{S3{}, "S1", nil, 0},
{S3{S2: S2{a: 'a'}}, "a", []int{1, 0}, 'a'},
{S3{}, "b", nil, 0},
{S3{d: 'd'}, "d", []int{2}, 0},
{S3{e: 'e'}, "e", []int{3}, 'e'},
{S4{a: 'a'}, "a", []int{1}, 'a'},
{S4{}, "b", nil, 0},
}
func TestFieldByIndex(t *testing.T) {
for _, test := range fieldTests {
s := Typeof(test.s)
f := s.FieldByIndex(test.index)
if f.Name != "" {
if test.index != nil {
if f.Name != test.name {
t.Errorf("%s.%s found; want %s", s.Name(), f.Name, test.name)
}
} else {
t.Errorf("%s.%s found", s.Name(), f.Name)
}
} else if len(test.index) > 0 {
t.Errorf("%s.%s not found", s.Name(), test.name)
}
if test.value != 0 {
v := NewValue(test.s).FieldByIndex(test.index)
if v.IsValid() {
if x, ok := v.Interface().(int); ok {
if x != test.value {
t.Errorf("%s%v is %d; want %d", s.Name(), test.index, x, test.value)
}
} else {
t.Errorf("%s%v value not an int", s.Name(), test.index)
}
} else {
t.Errorf("%s%v value not found", s.Name(), test.index)
}
}
}
}
func TestFieldByName(t *testing.T) {
for _, test := range fieldTests {
s := Typeof(test.s)
f, found := s.FieldByName(test.name)
if found {
if test.index != nil {
// Verify field depth and index.
if len(f.Index) != len(test.index) {
t.Errorf("%s.%s depth %d; want %d", s.Name(), test.name, len(f.Index), len(test.index))
} else {
for i, x := range f.Index {
if x != test.index[i] {
t.Errorf("%s.%s.Index[%d] is %d; want %d", s.Name(), test.name, i, x, test.index[i])
}
}
}
} else {
t.Errorf("%s.%s found", s.Name(), f.Name)
}
} else if len(test.index) > 0 {
t.Errorf("%s.%s not found", s.Name(), test.name)
}
if test.value != 0 {
v := NewValue(test.s).FieldByName(test.name)
if v.IsValid() {
if x, ok := v.Interface().(int); ok {
if x != test.value {
t.Errorf("%s.%s is %d; want %d", s.Name(), test.name, x, test.value)
}
} else {
t.Errorf("%s.%s value not an int", s.Name(), test.name)
}
} else {
t.Errorf("%s.%s value not found", s.Name(), test.name)
}
}
}
}
func TestImportPath(t *testing.T) {
if path := Typeof(vector.Vector{}).PkgPath(); path != "container/vector" {
t.Errorf("Typeof(vector.Vector{}).PkgPath() = %q, want \"container/vector\"", path)
}
}
func TestDotDotDot(t *testing.T) {
// Test example from FuncType.DotDotDot documentation.
var f func(x int, y ...float64)
typ := Typeof(f)
if typ.NumIn() == 2 && typ.In(0) == Typeof(int(0)) {
sl := typ.In(1)
if sl.Kind() == Slice {
if sl.Elem() == Typeof(0.0) {
// ok
return
}
}
}
// Failed
t.Errorf("want NumIn() = 2, In(0) = int, In(1) = []float64")
s := fmt.Sprintf("have NumIn() = %d", typ.NumIn())
for i := 0; i < typ.NumIn(); i++ {
s += fmt.Sprintf(", In(%d) = %s", i, typ.In(i))
}
t.Error(s)
}
type inner struct {
x int
}
type outer struct {
y int
inner
}
func (*inner) m() {}
func (*outer) m() {}
func TestNestedMethods(t *testing.T) {
typ := Typeof((*outer)(nil))
if typ.NumMethod() != 1 || typ.Method(0).Func.Pointer() != NewValue((*outer).m).Pointer() {
t.Errorf("Wrong method table for outer: (m=%p)", (*outer).m)
for i := 0; i < typ.NumMethod(); i++ {
m := typ.Method(i)
t.Errorf("\t%d: %s %#x\n", i, m.Name, m.Func.Pointer())
}
}
}
type innerInt struct {
x int
}
type outerInt struct {
y int
innerInt
}
func (i *innerInt) m() int {
return i.x
}
func TestEmbeddedMethods(t *testing.T) {
typ := Typeof((*outerInt)(nil))
if typ.NumMethod() != 1 || typ.Method(0).Func.Pointer() != NewValue((*outerInt).m).Pointer() {
t.Errorf("Wrong method table for outerInt: (m=%p)", (*outerInt).m)
for i := 0; i < typ.NumMethod(); i++ {
m := typ.Method(i)
t.Errorf("\t%d: %s %#x\n", i, m.Name, m.Func.Pointer())
}
}
i := &innerInt{3}
if v := NewValue(i).Method(0).Call(nil)[0].Int(); v != 3 {
t.Errorf("i.m() = %d, want 3", v)
}
o := &outerInt{1, innerInt{2}}
if v := NewValue(o).Method(0).Call(nil)[0].Int(); v != 2 {
t.Errorf("i.m() = %d, want 2", v)
}
f := (*outerInt).m
if v := f(o); v != 2 {
t.Errorf("f(o) = %d, want 2", v)
}
}
func TestPtrTo(t *testing.T) {
var i int
typ := Typeof(i)
for i = 0; i < 100; i++ {
typ = PtrTo(typ)
}
for i = 0; i < 100; i++ {
typ = typ.Elem()
}
if typ != Typeof(i) {
t.Errorf("after 100 PtrTo and Elem, have %s, want %s", typ, Typeof(i))
}
}
func TestAddr(t *testing.T) {
var p struct {
X, Y int
}
v := NewValue(&p)
v = v.Elem()
v = v.Addr()
v = v.Elem()
v = v.Field(0)
v.SetInt(2)
if p.X != 2 {
t.Errorf("Addr.Elem.Set failed to set value")
}
// Again but take address of the NewValue value.
// Exercises generation of PtrTypes not present in the binary.
q := &p
v = NewValue(&q).Elem()
v = v.Addr()
v = v.Elem()
v = v.Elem()
v = v.Addr()
v = v.Elem()
v = v.Field(0)
v.SetInt(3)
if p.X != 3 {
t.Errorf("Addr.Elem.Set failed to set value")
}
// Starting without pointer we should get changed value
// in interface.
qq := p
v = NewValue(&qq).Elem()
v0 := v
v = v.Addr()
v = v.Elem()
v = v.Field(0)
v.SetInt(4)
if p.X != 3 { // should be unchanged from last time
t.Errorf("somehow value Set changed original p")
}
p = v0.Interface().(struct {
X, Y int
})
if p.X != 4 {
t.Errorf("Addr.Elem.Set valued to set value in top value")
}
}
func noAlloc(t *testing.T, n int, f func(int)) {
// once to prime everything
f(-1)
runtime.MemStats.Mallocs = 0
for j := 0; j < n; j++ {
f(j)
}
if runtime.MemStats.Mallocs != 0 {
t.Fatalf("%d mallocs after %d iterations", runtime.MemStats.Mallocs, n)
}
}
func TestAllocations(t *testing.T) {
noAlloc(t, 100, func(j int) {
var i interface{}
var v Value
i = 42 + j
v = NewValue(i)
if int(v.Int()) != 42+j {
panic("wrong int")
}
})
}
func TestSmallNegativeInt(t *testing.T) {
i := int16(-1)
v := NewValue(i)
if v.Int() != -1 {
t.Errorf("int16(-1).Int() returned %v", v.Int())
}
}