1
0
mirror of https://github.com/golang/go synced 2024-11-23 04:20:03 -07:00
go/usr/gri/pretty/parser.go
Robert Griesemer 8971cf2354 daily snapshot:
- separating printing of AST and documentation
- astprinter: will subsume ast printing functionality of printer
- docprinter: will subsume doc printing functionality of printer
        also: more logic to collect all the documentation pertaining
	      to all files of a package
- parser: some cleanups, stricter syntax checks
- gds: hooks to test new doc printer (disabled)

R=r
OCL=26915
CL=26915
2009-03-30 17:13:11 -07:00

1950 lines
42 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// A parser for Go source text. The input is a stream of lexical tokens
// provided via the Scanner interface. The output is an abstract syntax
// tree (AST) representing the Go source. The parser is invoked by calling
// Parse.
//
package parser
import (
"fmt";
"vector";
"token";
"ast";
)
// An implementation of a Scanner must be provided to the Parser.
// The parser calls Scan() repeatedly until token.EOF is returned.
// Scan must return the current token position pos, the token value
// tok, and the corresponding token literal string lit; lit can be
// undefined/nil unless the token is a literal (tok.IsLiteral() == true).
//
type Scanner interface {
Scan() (pos token.Position, tok token.Token, lit []byte);
}
// An implementation of an ErrorHandler may be provided to the parser.
// If a syntax error is encountered and a handler was installed, Error
// is called with a position and an error message. The position points
// to the beginning of the offending token.
//
type ErrorHandler interface {
Error(pos token.Position, msg string);
}
type interval struct {
beg, end int;
}
// The parser structure holds the parser's internal state.
type parser struct {
scanner Scanner;
err ErrorHandler; // nil if no handler installed
errorCount int;
// Tracing/debugging
mode uint; // parsing mode
trace bool; // == (mode & Trace != 0)
indent uint; // indentation used for tracing output
// Comments
comments vector.Vector; // list of collected, unassociated comments
last_doc interval; // last comments interval of consecutive comments
// The next token
pos token.Position; // token position
tok token.Token; // one token look-ahead
lit []byte; // token literal
// Non-syntactic parser control
opt_semi bool; // true if semicolon separator is optional in statement list
expr_lev int; // < 0: in control clause, >= 0: in expression
};
// noPos is used when there is no corresponding source position for a token
var noPos token.Position;
// ----------------------------------------------------------------------------
// Parsing support
func (p *parser) printTrace(a ...) {
const dots =
". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . "
". . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ";
const n = uint(len(dots));
fmt.Printf("%5d:%3d: ", p.pos.Line, p.pos.Column);
i := 2*p.indent;
for ; i > n; i -= n {
fmt.Print(dots[0 : i%n]);
}
fmt.Print(dots[0 : i]);
fmt.Println(a);
}
func trace(p *parser, msg string) *parser {
p.printTrace(msg, "(");
p.indent++;
return p;
}
func un/*trace*/(p *parser) {
p.indent--;
p.printTrace(")");
}
func (p *parser) next0() {
// Because of one-token look-ahead, print the previous token
// when tracing as it provides a more readable output. The
// very first token (p.pos.Line == 0) is not initialized (it
// is token.ILLEGAL), so don't print it .
if p.trace && p.pos.Line > 0 {
s := p.tok.String();
switch {
case p.tok.IsLiteral():
p.printTrace(s, string(p.lit));
case p.tok.IsOperator(), p.tok.IsKeyword():
p.printTrace("\"" + s + "\"");
default:
p.printTrace(s);
}
}
p.pos, p.tok, p.lit = p.scanner.Scan();
p.opt_semi = false;
}
// Collect a comment in the parser's comment list and return the line
// on which the comment ends.
//
func (p *parser) collectComment() int {
// For /*-style comments, the comment may end on a different line.
// Scan the comment for '\n' chars and adjust the end line accordingly.
// (Note that the position of the next token may be even further down
// as there may be more whitespace lines after the comment.)
endline := p.pos.Line;
if p.lit[1] == '*' {
for i, b := range p.lit {
if b == '\n' {
endline++;
}
}
}
p.comments.Push(&ast.Comment{p.pos, p.lit, endline});
p.next0();
return endline;
}
func (p *parser) getComments() interval {
// group adjacent comments, an empty line terminates a group
beg := p.comments.Len();
endline := p.pos.Line;
for p.tok == token.COMMENT && endline+1 >= p.pos.Line {
endline = p.collectComment();
}
end := p.comments.Len();
return interval {beg, end};
}
func (p *parser) getDoc() ast.Comments {
doc := p.last_doc;
n := doc.end - doc.beg;
if n <= 0 || p.comments.At(doc.end - 1).(*ast.Comment).EndLine + 1 < p.pos.Line {
// no comments or empty line between last comment and current token;
// do not use as documentation
return nil;
}
// found immediately adjacent comment interval;
// use as documentation
c := make(ast.Comments, n);
for i := 0; i < n; i++ {
c[i] = p.comments.At(doc.beg + i).(*ast.Comment);
}
// remove comments from the general list
p.comments.Cut(doc.beg, doc.end);
return c;
}
func (p *parser) next() {
p.next0();
p.last_doc = interval{0, 0};
for p.tok == token.COMMENT {
p.last_doc = p.getComments();
}
}
func (p *parser) error(pos token.Position, msg string) {
if p.err != nil {
p.err.Error(pos, msg);
}
p.errorCount++;
}
func (p *parser) error_expected(pos token.Position, msg string) {
msg = "expected " + msg;
if pos.Offset == p.pos.Offset {
// the error happened at the current position;
// make the error message more specific
msg += ", found '" + p.tok.String() + "'";
if p.tok.IsLiteral() {
msg += " " + string(p.lit);
}
}
p.error(pos, msg);
}
func (p *parser) expect(tok token.Token) token.Position {
pos := p.pos;
if p.tok != tok {
p.error_expected(pos, "'" + tok.String() + "'");
}
p.next(); // make progress in any case
return pos;
}
// ----------------------------------------------------------------------------
// Common productions
func (p *parser) tryType() ast.Expr;
func (p *parser) parseStringList(x *ast.StringLit) []*ast.StringLit
func (p *parser) parseExpression() ast.Expr;
func (p *parser) parseStatement() ast.Stmt;
func (p *parser) parseDeclaration() ast.Decl;
func (p *parser) parseIdent() *ast.Ident {
if p.tok == token.IDENT {
x := &ast.Ident{p.pos, p.lit};
p.next();
return x;
}
p.expect(token.IDENT); // use expect() error handling
return &ast.Ident{p.pos, [0]byte{}};
}
func (p *parser) parseIdentList(x ast.Expr) []*ast.Ident {
if p.trace {
defer un(trace(p, "IdentList"));
}
list := vector.New(0);
if x == nil {
x = p.parseIdent();
}
list.Push(x);
for p.tok == token.COMMA {
p.next();
list.Push(p.parseIdent());
}
// convert vector
idents := make([]*ast.Ident, list.Len());
for i := 0; i < list.Len(); i++ {
idents[i] = list.At(i).(*ast.Ident);
}
return idents;
}
func (p *parser) parseExpressionList() []ast.Expr {
if p.trace {
defer un(trace(p, "ExpressionList"));
}
list := vector.New(0);
list.Push(p.parseExpression());
for p.tok == token.COMMA {
p.next();
list.Push(p.parseExpression());
}
// convert list
exprs := make([]ast.Expr, list.Len());
for i := 0; i < list.Len(); i++ {
exprs[i] = list.At(i).(ast.Expr);
}
return exprs;
}
// ----------------------------------------------------------------------------
// Types
func (p *parser) parseType() ast.Expr {
if p.trace {
defer un(trace(p, "Type"));
}
typ := p.tryType();
if typ == nil {
p.error_expected(p.pos, "type");
return &ast.BadExpr{p.pos};
}
return typ;
}
func (p *parser) parseQualifiedIdent() ast.Expr {
if p.trace {
defer un(trace(p, "QualifiedIdent"));
}
var x ast.Expr = p.parseIdent();
if p.tok == token.PERIOD {
// first identifier is a package identifier
p.next();
sel := p.parseIdent();
x = &ast.SelectorExpr{x, sel};
}
return x;
}
func (p *parser) parseTypeName() ast.Expr {
if p.trace {
defer un(trace(p, "TypeName"));
}
return p.parseQualifiedIdent();
}
func (p *parser) parseArrayOrSliceType(ellipsis_ok bool) ast.Expr {
if p.trace {
defer un(trace(p, "ArrayOrSliceType"));
}
lbrack := p.expect(token.LBRACK);
var len ast.Expr;
if ellipsis_ok && p.tok == token.ELLIPSIS {
len = &ast.Ellipsis{p.pos};
p.next();
} else if p.tok != token.RBRACK {
len = p.parseExpression();
}
p.expect(token.RBRACK);
elt := p.parseType();
if len != nil {
return &ast.ArrayType{lbrack, len, elt};
}
return &ast.SliceType{lbrack, elt};
}
func (p *parser) makeIdentList(list *vector.Vector) []*ast.Ident {
idents := make([]*ast.Ident, list.Len());
for i := 0; i < list.Len(); i++ {
ident, is_ident := list.At(i).(*ast.Ident);
if !is_ident {
pos := list.At(i).(ast.Expr).Pos();
p.error_expected(pos, "identifier");
idents[i] = &ast.Ident{pos, []byte{}};
}
idents[i] = ident;
}
return idents;
}
func (p *parser) parseFieldDecl() *ast.Field {
if p.trace {
defer un(trace(p, "FieldDecl"));
}
doc := p.getDoc();
// a list of identifiers looks like a list of type names
list := vector.New(0);
for {
// TODO do not allow ()'s here
list.Push(p.parseType());
if p.tok == token.COMMA {
p.next();
} else {
break;
}
}
// if we had a list of identifiers, it must be followed by a type
typ := p.tryType();
// optional tag
var tag []*ast.StringLit;
if p.tok == token.STRING {
tag = p.parseStringList(nil);
}
// analyze case
var idents []*ast.Ident;
if typ != nil {
// IdentifierList Type
idents = p.makeIdentList(list);
} else {
// Type (anonymous field)
if list.Len() == 1 {
// TODO check that this looks like a type
typ = list.At(0).(ast.Expr);
} else {
p.error_expected(p.pos, "anonymous field");
typ = &ast.BadExpr{p.pos};
}
}
return &ast.Field{doc, idents, typ, tag};
}
func (p *parser) parseStructType() *ast.StructType {
if p.trace {
defer un(trace(p, "StructType"));
}
pos := p.expect(token.STRUCT);
var lbrace, rbrace token.Position;
var fields []*ast.Field;
if p.tok == token.LBRACE {
lbrace = p.pos;
p.next();
list := vector.New(0);
for p.tok != token.RBRACE && p.tok != token.EOF {
list.Push(p.parseFieldDecl());
if p.tok == token.SEMICOLON {
p.next();
} else {
break;
}
}
if p.tok == token.SEMICOLON {
p.next();
}
rbrace = p.expect(token.RBRACE);
p.opt_semi = true;
// convert vector
fields = make([]*ast.Field, list.Len());
for i := list.Len() - 1; i >= 0; i-- {
fields[i] = list.At(i).(*ast.Field);
}
}
return &ast.StructType{pos, lbrace, fields, rbrace};
}
func (p *parser) parsePointerType() *ast.StarExpr {
if p.trace {
defer un(trace(p, "PointerType"));
}
star := p.expect(token.MUL);
base := p.parseType();
return &ast.StarExpr{star, base};
}
func (p *parser) tryParameterType(ellipsis_ok bool) ast.Expr {
if ellipsis_ok && p.tok == token.ELLIPSIS {
pos := p.pos;
p.next();
if p.tok != token.RPAREN {
// "..." always must be at the very end of a parameter list
p.error(pos, "expected type, found '...'");
}
return &ast.Ellipsis{pos};
}
return p.tryType();
}
func (p *parser) parseParameterType(ellipsis_ok bool) ast.Expr {
typ := p.tryParameterType(ellipsis_ok);
if typ == nil {
p.error_expected(p.pos, "type");
typ = &ast.BadExpr{p.pos};
}
return typ;
}
func (p *parser) parseParameterDecl(ellipsis_ok bool) (*vector.Vector, ast.Expr) {
if p.trace {
defer un(trace(p, "ParameterDecl"));
}
// a list of identifiers looks like a list of type names
list := vector.New(0);
for {
// TODO do not allow ()'s here
list.Push(p.parseParameterType(ellipsis_ok));
if p.tok == token.COMMA {
p.next();
} else {
break;
}
}
// if we had a list of identifiers, it must be followed by a type
typ := p.tryParameterType(ellipsis_ok);
return list, typ;
}
func (p *parser) parseParameterList(ellipsis_ok bool) []*ast.Field {
if p.trace {
defer un(trace(p, "ParameterList"));
}
list, typ := p.parseParameterDecl(ellipsis_ok);
if typ != nil {
// IdentifierList Type
idents := p.makeIdentList(list);
list.Init(0);
list.Push(&ast.Field{nil, idents, typ, nil});
for p.tok == token.COMMA {
p.next();
idents := p.parseIdentList(nil);
typ := p.parseParameterType(ellipsis_ok);
list.Push(&ast.Field{nil, idents, typ, nil});
}
} else {
// Type { "," Type } (anonymous parameters)
// convert list of types into list of *Param
for i := 0; i < list.Len(); i++ {
list.Set(i, &ast.Field{nil, nil, list.At(i).(ast.Expr), nil});
}
}
// convert list
params := make([]*ast.Field, list.Len());
for i := 0; i < list.Len(); i++ {
params[i] = list.At(i).(*ast.Field);
}
return params;
}
func (p *parser) parseParameters(ellipsis_ok bool) []*ast.Field {
if p.trace {
defer un(trace(p, "Parameters"));
}
var params []*ast.Field;
p.expect(token.LPAREN);
if p.tok != token.RPAREN {
params = p.parseParameterList(ellipsis_ok);
}
p.expect(token.RPAREN);
return params;
}
func (p *parser) parseResult() []*ast.Field {
if p.trace {
defer un(trace(p, "Result"));
}
var results []*ast.Field;
if p.tok == token.LPAREN {
results = p.parseParameters(false);
} else if p.tok != token.FUNC {
typ := p.tryType();
if typ != nil {
results = make([]*ast.Field, 1);
results[0] = &ast.Field{nil, nil, typ, nil};
}
}
return results;
}
func (p *parser) parseSignature() (params []*ast.Field, results []*ast.Field) {
if p.trace {
defer un(trace(p, "Signature"));
}
params = p.parseParameters(true);
results = p.parseResult();
return params, results;
}
func (p *parser) parseFunctionType() *ast.FunctionType {
if p.trace {
defer un(trace(p, "FunctionType"));
}
pos := p.expect(token.FUNC);
params, results := p.parseSignature();
return &ast.FunctionType{pos, params, results};
}
func (p *parser) parseMethodSpec() *ast.Field {
if p.trace {
defer un(trace(p, "MethodSpec"));
}
doc := p.getDoc();
var idents []*ast.Ident;
var typ ast.Expr;
x := p.parseQualifiedIdent();
if tmp, is_ident := x.(*ast.Ident); is_ident && (p.tok == token.COMMA || p.tok == token.LPAREN) {
// methods
idents = p.parseIdentList(x);
params, results := p.parseSignature();
typ = &ast.FunctionType{noPos, params, results};
} else {
// embedded interface
typ = x;
}
return &ast.Field{doc, idents, typ, nil};
}
func (p *parser) parseInterfaceType() *ast.InterfaceType {
if p.trace {
defer un(trace(p, "InterfaceType"));
}
pos := p.expect(token.INTERFACE);
var lbrace, rbrace token.Position;
var methods []*ast.Field;
if p.tok == token.LBRACE {
lbrace = p.pos;
p.next();
list := vector.New(0);
for p.tok == token.IDENT {
list.Push(p.parseMethodSpec());
if p.tok != token.RBRACE {
p.expect(token.SEMICOLON);
}
}
rbrace = p.expect(token.RBRACE);
p.opt_semi = true;
// convert vector
methods = make([]*ast.Field, list.Len());
for i := list.Len() - 1; i >= 0; i-- {
methods[i] = list.At(i).(*ast.Field);
}
}
return &ast.InterfaceType{pos, lbrace, methods, rbrace};
}
func (p *parser) parseMapType() *ast.MapType {
if p.trace {
defer un(trace(p, "MapType"));
}
pos := p.expect(token.MAP);
p.expect(token.LBRACK);
key := p.parseType();
p.expect(token.RBRACK);
value := p.parseType();
return &ast.MapType{pos, key, value};
}
func (p *parser) parseChannelType() *ast.ChannelType {
if p.trace {
defer un(trace(p, "ChannelType"));
}
pos := p.pos;
dir := ast.SEND | ast.RECV;
if p.tok == token.CHAN {
p.next();
if p.tok == token.ARROW {
p.next();
dir = ast.SEND;
}
} else {
p.expect(token.ARROW);
p.expect(token.CHAN);
dir = ast.RECV;
}
value := p.parseType();
return &ast.ChannelType{pos, dir, value};
}
func (p *parser) tryRawType(ellipsis_ok bool) ast.Expr {
switch p.tok {
case token.IDENT: return p.parseTypeName();
case token.LBRACK: return p.parseArrayOrSliceType(ellipsis_ok);
case token.STRUCT: return p.parseStructType();
case token.MUL: return p.parsePointerType();
case token.FUNC: return p.parseFunctionType();
case token.INTERFACE: return p.parseInterfaceType();
case token.MAP: return p.parseMapType();
case token.CHAN, token.ARROW: return p.parseChannelType();
case token.LPAREN:
lparen := p.pos;
p.next();
typ := p.parseType();
rparen := p.expect(token.RPAREN);
return &ast.ParenExpr{lparen, typ, rparen};
}
// no type found
return nil;
}
func (p *parser) tryType() ast.Expr {
return p.tryRawType(false);
}
// ----------------------------------------------------------------------------
// Blocks
func makeStmtList(list *vector.Vector) []ast.Stmt {
stats := make([]ast.Stmt, list.Len());
for i := 0; i < list.Len(); i++ {
stats[i] = list.At(i).(ast.Stmt);
}
return stats;
}
func (p *parser) parseStatementList() []ast.Stmt {
if p.trace {
defer un(trace(p, "StatementList"));
}
list := vector.New(0);
expect_semi := false;
for p.tok != token.CASE && p.tok != token.DEFAULT && p.tok != token.RBRACE && p.tok != token.EOF {
if expect_semi {
p.expect(token.SEMICOLON);
expect_semi = false;
}
list.Push(p.parseStatement());
if p.tok == token.SEMICOLON {
p.next();
} else if p.opt_semi {
p.opt_semi = false; // "consume" optional semicolon
} else {
expect_semi = true;
}
}
return makeStmtList(list);
}
func (p *parser) parseBlockStmt() *ast.BlockStmt {
if p.trace {
defer un(trace(p, "BlockStmt"));
}
lbrace := p.expect(token.LBRACE);
list := p.parseStatementList();
rbrace := p.expect(token.RBRACE);
p.opt_semi = true;
return &ast.BlockStmt{lbrace, list, rbrace};
}
// ----------------------------------------------------------------------------
// Expressions
func (p *parser) parseStringList(x *ast.StringLit) []*ast.StringLit {
if p.trace {
defer un(trace(p, "StringList"));
}
list := vector.New(0);
if x != nil {
list.Push(x);
}
for p.tok == token.STRING {
list.Push(&ast.StringLit{p.pos, p.lit});
p.next();
}
// convert list
strings := make([]*ast.StringLit, list.Len());
for i := 0; i < list.Len(); i++ {
strings[i] = list.At(i).(*ast.StringLit);
}
return strings;
}
func (p *parser) parseFunctionLit() ast.Expr {
if p.trace {
defer un(trace(p, "FunctionLit"));
}
typ := p.parseFunctionType();
p.expr_lev++;
body := p.parseBlockStmt();
p.expr_lev--;
return &ast.FunctionLit{typ, body};
}
// parseOperand may return an expression or a raw type (incl. array
// types of the form [...]T. Callers must verify the result.
//
func (p *parser) parseOperand() ast.Expr {
if p.trace {
defer un(trace(p, "Operand"));
}
switch p.tok {
case token.IDENT:
return p.parseIdent();
case token.INT:
x := &ast.IntLit{p.pos, p.lit};
p.next();
return x;
case token.FLOAT:
x := &ast.FloatLit{p.pos, p.lit};
p.next();
return x;
case token.CHAR:
x := &ast.CharLit{p.pos, p.lit};
p.next();
return x;
case token.STRING:
x := &ast.StringLit{p.pos, p.lit};
p.next();
if p.tok == token.STRING {
return &ast.StringList{p.parseStringList(x)};
}
return x;
case token.LPAREN:
lparen := p.pos;
p.next();
p.expr_lev++;
x := p.parseExpression();
p.expr_lev--;
rparen := p.expect(token.RPAREN);
return &ast.ParenExpr{lparen, x, rparen};
case token.FUNC:
return p.parseFunctionLit();
default:
t := p.tryRawType(true); // could be type for composite literal
if t != nil {
return t;
}
}
p.error_expected(p.pos, "operand");
p.next(); // make progress
return &ast.BadExpr{p.pos};
}
func (p *parser) parseSelectorOrTypeAssertion(x ast.Expr) ast.Expr {
if p.trace {
defer un(trace(p, "SelectorOrTypeAssertion"));
}
p.expect(token.PERIOD);
if p.tok == token.IDENT {
// selector
sel := p.parseIdent();
return &ast.SelectorExpr{x, sel};
}
// type assertion
p.expect(token.LPAREN);
var typ ast.Expr;
if p.tok == token.TYPE {
// special case for type switch
typ = &ast.Ident{p.pos, p.lit};
p.next();
} else {
typ = p.parseType();
}
p.expect(token.RPAREN);
return &ast.TypeAssertExpr{x, typ};
}
func (p *parser) parseIndexOrSlice(x ast.Expr) ast.Expr {
if p.trace {
defer un(trace(p, "IndexOrSlice"));
}
p.expect(token.LBRACK);
p.expr_lev++;
begin := p.parseExpression();
var end ast.Expr;
if p.tok == token.COLON {
p.next();
end = p.parseExpression();
}
p.expr_lev--;
p.expect(token.RBRACK);
if end != nil {
return &ast.SliceExpr{x, begin, end};
}
return &ast.IndexExpr{x, begin};
}
func (p *parser) parseCallOrConversion(fun ast.Expr) *ast.CallExpr {
if p.trace {
defer un(trace(p, "CallOrConversion"));
}
lparen := p.expect(token.LPAREN);
var args []ast.Expr;
if p.tok != token.RPAREN {
args = p.parseExpressionList();
}
rparen := p.expect(token.RPAREN);
return &ast.CallExpr{fun, lparen, args, rparen};
}
func (p *parser) parseKeyValueExpr() ast.Expr {
if p.trace {
defer un(trace(p, "KeyValueExpr"));
}
key := p.parseExpression();
if p.tok == token.COLON {
colon := p.pos;
p.next();
value := p.parseExpression();
return &ast.KeyValueExpr{key, colon, value};
}
return key;
}
func isPair(x ast.Expr) bool {
tmp, is_pair := x.(*ast.KeyValueExpr);
return is_pair;
}
func (p *parser) parseExpressionOrKeyValueList() []ast.Expr {
if p.trace {
defer un(trace(p, "ExpressionOrKeyValueList"));
}
var pairs bool;
list := vector.New(0);
for p.tok != token.RBRACE && p.tok != token.EOF {
x := p.parseKeyValueExpr();
if list.Len() == 0 {
pairs = isPair(x);
} else {
// not the first element - check syntax
if pairs != isPair(x) {
p.error_expected(x.Pos(), "all single expressions or all key-value pairs");
}
}
list.Push(x);
if p.tok == token.COMMA {
p.next();
} else {
break;
}
}
// convert list
elts := make([]ast.Expr, list.Len());
for i := 0; i < list.Len(); i++ {
elts[i] = list.At(i).(ast.Expr);
}
return elts;
}
func (p *parser) parseCompositeLit(typ ast.Expr) ast.Expr {
if p.trace {
defer un(trace(p, "CompositeLit"));
}
lbrace := p.expect(token.LBRACE);
var elts []ast.Expr;
if p.tok != token.RBRACE {
elts = p.parseExpressionOrKeyValueList();
}
rbrace := p.expect(token.RBRACE);
return &ast.CompositeLit{typ, lbrace, elts, rbrace};
}
// TODO Consider different approach to checking syntax after parsing:
// Provide a arguments (set of flags) to parsing functions
// restricting what they are syupposed to accept depending
// on context.
// checkExpr checks that x is an expression (and not a type).
func (p *parser) checkExpr(x ast.Expr) ast.Expr {
// TODO should provide predicate in AST nodes
switch t := x.(type) {
case *ast.BadExpr:
case *ast.Ident:
case *ast.IntLit:
case *ast.FloatLit:
case *ast.CharLit:
case *ast.StringLit:
case *ast.StringList:
case *ast.FunctionLit:
case *ast.CompositeLit:
case *ast.ParenExpr:
case *ast.SelectorExpr:
case *ast.IndexExpr:
case *ast.SliceExpr:
case *ast.TypeAssertExpr:
case *ast.CallExpr:
case *ast.StarExpr:
case *ast.UnaryExpr:
if t.Op == token.RANGE {
// the range operator is only allowed at the top of a for statement
p.error_expected(x.Pos(), "expression");
x = &ast.BadExpr{x.Pos()};
}
case *ast.BinaryExpr:
default:
// all other nodes are not proper expressions
p.error_expected(x.Pos(), "expression");
x = &ast.BadExpr{x.Pos()};
}
return x;
}
// checkTypeName checks that x is type name.
func (p *parser) checkTypeName(x ast.Expr) ast.Expr {
// TODO should provide predicate in AST nodes
switch t := x.(type) {
case *ast.BadExpr:
case *ast.Ident:
case *ast.ParenExpr: p.checkTypeName(t.X); // TODO should (TypeName) be illegal?
case *ast.SelectorExpr: p.checkTypeName(t.X);
default:
// all other nodes are not type names
p.error_expected(x.Pos(), "type name");
x = &ast.BadExpr{x.Pos()};
}
return x;
}
// checkCompositeLitType checks that x is a legal composite literal type.
func (p *parser) checkCompositeLitType(x ast.Expr) ast.Expr {
// TODO should provide predicate in AST nodes
switch t := x.(type) {
case *ast.BadExpr: return x;
case *ast.Ident: return x;
case *ast.ParenExpr: p.checkCompositeLitType(t.X);
case *ast.SelectorExpr: p.checkTypeName(t.X);
case *ast.ArrayType: return x;
case *ast.SliceType: return x;
case *ast.StructType: return x;
case *ast.MapType: return x;
default:
// all other nodes are not legal composite literal types
p.error_expected(x.Pos(), "composite literal type");
x = &ast.BadExpr{x.Pos()};
}
return x;
}
// checkExprOrType checks that x is an expression or a type
// (and not a raw type such as [...]T).
//
func (p *parser) checkExprOrType(x ast.Expr) ast.Expr {
// TODO should provide predicate in AST nodes
switch t := x.(type) {
case *ast.UnaryExpr:
if t.Op == token.RANGE {
// the range operator is only allowed at the top of a for statement
p.error_expected(x.Pos(), "expression");
x = &ast.BadExpr{x.Pos()};
}
case *ast.ArrayType:
if len, is_ellipsis := t.Len.(*ast.Ellipsis); is_ellipsis {
p.error(len.Pos(), "expected array length, found '...'");
x = &ast.BadExpr{x.Pos()};
}
}
// all other nodes are expressions or types
return x;
}
func (p *parser) parsePrimaryExpr() ast.Expr {
if p.trace {
defer un(trace(p, "PrimaryExpr"));
}
x := p.parseOperand();
for {
switch p.tok {
case token.PERIOD: x = p.parseSelectorOrTypeAssertion(p.checkExpr(x));
case token.LBRACK: x = p.parseIndexOrSlice(p.checkExpr(x));
case token.LPAREN: x = p.parseCallOrConversion(p.checkExprOrType(x));
case token.LBRACE:
if p.expr_lev >= 0 {
x = p.parseCompositeLit(p.checkCompositeLitType(x));
} else {
return p.checkExprOrType(x);
}
default:
return p.checkExprOrType(x);
}
}
panic(); // unreachable
return nil;
}
func (p *parser) parseUnaryExpr() ast.Expr {
if p.trace {
defer un(trace(p, "UnaryExpr"));
}
switch p.tok {
case token.ADD, token.SUB, token.NOT, token.XOR, token.ARROW, token.AND, token.RANGE:
pos, op := p.pos, p.tok;
p.next();
x := p.parseUnaryExpr();
return &ast.UnaryExpr{pos, op, p.checkExpr(x)};
case token.MUL:
// unary "*" expression or pointer type
pos := p.pos;
p.next();
x := p.parseUnaryExpr();
return &ast.StarExpr{pos, p.checkExprOrType(x)};
}
return p.parsePrimaryExpr();
}
func (p *parser) parseBinaryExpr(prec1 int) ast.Expr {
if p.trace {
defer un(trace(p, "BinaryExpr"));
}
x := p.parseUnaryExpr();
for prec := p.tok.Precedence(); prec >= prec1; prec-- {
for p.tok.Precedence() == prec {
pos, op := p.pos, p.tok;
p.next();
y := p.parseBinaryExpr(prec + 1);
x = &ast.BinaryExpr{p.checkExpr(x), pos, op, p.checkExpr(y)};
}
}
return x;
}
func (p *parser) parseExpression() ast.Expr {
if p.trace {
defer un(trace(p, "Expression"));
}
return p.parseBinaryExpr(token.LowestPrec + 1);
}
// ----------------------------------------------------------------------------
// Statements
func (p *parser) parseSimpleStmt(label_ok bool) ast.Stmt {
if p.trace {
defer un(trace(p, "SimpleStmt"));
}
x := p.parseExpressionList();
switch p.tok {
case token.COLON:
// labeled statement
p.next();
if label_ok && len(x) == 1 {
if label, is_ident := x[0].(*ast.Ident); is_ident {
return &ast.LabeledStmt{label, p.parseStatement()};
}
}
p.error(x[0].Pos(), "illegal label declaration");
return &ast.BadStmt{x[0].Pos()};
case
token.DEFINE, token.ASSIGN, token.ADD_ASSIGN,
token.SUB_ASSIGN, token.MUL_ASSIGN, token.QUO_ASSIGN,
token.REM_ASSIGN, token.AND_ASSIGN, token.OR_ASSIGN,
token.XOR_ASSIGN, token.SHL_ASSIGN, token.SHR_ASSIGN:
// assignment statement
pos, tok := p.pos, p.tok;
p.next();
y := p.parseExpressionList();
if len(x) > 1 && len(y) > 1 && len(x) != len(y) {
p.error(x[0].Pos(), "arity of lhs doesn't match rhs");
}
return &ast.AssignStmt{x, pos, tok, y};
}
if len(x) > 1 {
p.error(x[0].Pos(), "only one expression allowed");
// continue with first expression
}
if p.tok == token.INC || p.tok == token.DEC {
// increment or decrement
s := &ast.IncDecStmt{x[0], p.tok};
p.next(); // consume "++" or "--"
return s;
}
// expression
return &ast.ExprStmt{x[0]};
}
func (p *parser) parseCallExpr() *ast.CallExpr {
x := p.parseExpression();
if call, is_call := x.(*ast.CallExpr); is_call {
return call;
}
p.error_expected(x.Pos(), "function/method call");
return nil;
}
func (p *parser) parseGoStmt() ast.Stmt {
if p.trace {
defer un(trace(p, "GoStmt"));
}
pos := p.expect(token.GO);
call := p.parseCallExpr();
if call != nil {
return &ast.GoStmt{pos, call};
}
return &ast.BadStmt{pos};
}
func (p *parser) parseDeferStmt() ast.Stmt {
if p.trace {
defer un(trace(p, "DeferStmt"));
}
pos := p.expect(token.DEFER);
call := p.parseCallExpr();
if call != nil {
return &ast.DeferStmt{pos, call};
}
return &ast.BadStmt{pos};
}
func (p *parser) parseReturnStmt() *ast.ReturnStmt {
if p.trace {
defer un(trace(p, "ReturnStmt"));
}
pos := p.pos;
p.expect(token.RETURN);
var x []ast.Expr;
if p.tok != token.SEMICOLON && p.tok != token.RBRACE {
x = p.parseExpressionList();
}
return &ast.ReturnStmt{pos, x};
}
func (p *parser) parseBranchStmt(tok token.Token) *ast.BranchStmt {
if p.trace {
defer un(trace(p, "BranchStmt"));
}
s := &ast.BranchStmt{p.pos, tok, nil};
p.expect(tok);
if tok != token.FALLTHROUGH && p.tok == token.IDENT {
s.Label = p.parseIdent();
}
return s;
}
func (p *parser) isExpr(s ast.Stmt) bool {
if s == nil {
return true;
}
dummy, is_expr := s.(*ast.ExprStmt);
return is_expr;
}
func (p *parser) makeExpr(s ast.Stmt) ast.Expr {
if s == nil {
return nil;
}
if es, is_expr := s.(*ast.ExprStmt); is_expr {
return p.checkExpr(es.X);
}
p.error(s.Pos(), "expected condition, found simple statement");
return &ast.BadExpr{s.Pos()};
}
func (p *parser) parseControlClause(isForStmt bool) (s1, s2, s3 ast.Stmt) {
if p.tok != token.LBRACE {
prev_lev := p.expr_lev;
p.expr_lev = -1;
if p.tok != token.SEMICOLON {
s1 = p.parseSimpleStmt(false);
}
if p.tok == token.SEMICOLON {
p.next();
if p.tok != token.LBRACE && p.tok != token.SEMICOLON {
s2 = p.parseSimpleStmt(false);
}
if isForStmt {
// for statements have a 3rd section
p.expect(token.SEMICOLON);
if p.tok != token.LBRACE {
s3 = p.parseSimpleStmt(false);
}
}
} else {
s1, s2 = nil, s1;
}
p.expr_lev = prev_lev;
}
return s1, s2, s3;
}
func (p *parser) parseIfStmt() *ast.IfStmt {
if p.trace {
defer un(trace(p, "IfStmt"));
}
pos := p.expect(token.IF);
s1, s2, dummy := p.parseControlClause(false);
body := p.parseBlockStmt();
var else_ ast.Stmt;
if p.tok == token.ELSE {
p.next();
else_ = p.parseStatement();
}
return &ast.IfStmt{pos, s1, p.makeExpr(s2), body, else_};
}
func (p *parser) parseCaseClause() *ast.CaseClause {
if p.trace {
defer un(trace(p, "CaseClause"));
}
// SwitchCase
pos := p.pos;
var x []ast.Expr;
if p.tok == token.CASE {
p.next();
x = p.parseExpressionList();
} else {
p.expect(token.DEFAULT);
}
colon := p.expect(token.COLON);
body := p.parseStatementList();
return &ast.CaseClause{pos, x, colon, body};
}
func (p *parser) parseTypeCaseClause() *ast.TypeCaseClause {
if p.trace {
defer un(trace(p, "CaseClause"));
}
// TypeSwitchCase
pos := p.pos;
var typ ast.Expr;
if p.tok == token.CASE {
p.next();
typ = p.parseType();
} else {
p.expect(token.DEFAULT);
}
colon := p.expect(token.COLON);
body := p.parseStatementList();
return &ast.TypeCaseClause{pos, typ, colon, body};
}
func (p *parser) parseSwitchStmt() ast.Stmt {
if p.trace {
defer un(trace(p, "SwitchStmt"));
}
pos := p.expect(token.SWITCH);
s1, s2, dummy := p.parseControlClause(false);
if p.isExpr(s2) {
// expression switch
lbrace := p.expect(token.LBRACE);
cases := vector.New(0);
for p.tok == token.CASE || p.tok == token.DEFAULT {
cases.Push(p.parseCaseClause());
}
rbrace := p.expect(token.RBRACE);
p.opt_semi = true;
body := &ast.BlockStmt{lbrace, makeStmtList(cases), rbrace};
return &ast.SwitchStmt{pos, s1, p.makeExpr(s2), body};
}
// type switch
// TODO do all the checks!
lbrace := p.expect(token.LBRACE);
cases := vector.New(0);
for p.tok == token.CASE || p.tok == token.DEFAULT {
cases.Push(p.parseTypeCaseClause());
}
rbrace := p.expect(token.RBRACE);
p.opt_semi = true;
body := &ast.BlockStmt{lbrace, makeStmtList(cases), rbrace};
return &ast.TypeSwitchStmt{pos, s1, s2, body};
}
func (p *parser) parseCommClause() *ast.CommClause {
if p.trace {
defer un(trace(p, "CommClause"));
}
// CommCase
pos := p.pos;
var tok token.Token;
var lhs, rhs ast.Expr;
if p.tok == token.CASE {
p.next();
if p.tok == token.ARROW {
// RecvExpr without assignment
rhs = p.parseExpression();
} else {
// SendExpr or RecvExpr
rhs = p.parseExpression();
if p.tok == token.ASSIGN || p.tok == token.DEFINE {
// RecvExpr with assignment
tok = p.tok;
p.next();
lhs = rhs;
if p.tok == token.ARROW {
rhs = p.parseExpression();
} else {
p.expect(token.ARROW); // use expect() error handling
}
}
// else SendExpr
}
} else {
p.expect(token.DEFAULT);
}
colon := p.expect(token.COLON);
body := p.parseStatementList();
return &ast.CommClause{pos, tok, lhs, rhs, colon, body};
}
func (p *parser) parseSelectStmt() *ast.SelectStmt {
if p.trace {
defer un(trace(p, "SelectStmt"));
}
pos := p.expect(token.SELECT);
lbrace := p.expect(token.LBRACE);
cases := vector.New(0);
for p.tok == token.CASE || p.tok == token.DEFAULT {
cases.Push(p.parseCommClause());
}
rbrace := p.expect(token.RBRACE);
p.opt_semi = true;
body := &ast.BlockStmt{lbrace, makeStmtList(cases), rbrace};
return &ast.SelectStmt{pos, body};
}
func (p *parser) parseForStmt() ast.Stmt {
if p.trace {
defer un(trace(p, "ForStmt"));
}
pos := p.expect(token.FOR);
s1, s2, s3 := p.parseControlClause(true);
body := p.parseBlockStmt();
if as, is_as := s2.(*ast.AssignStmt); is_as {
// possibly a for statement with a range clause; check assignment operator
if as.Tok != token.ASSIGN && as.Tok != token.DEFINE {
p.error_expected(as.TokPos, "'=' or ':='");
return &ast.BadStmt{pos};
}
// check lhs
var key, value ast.Expr;
switch len(as.Lhs) {
case 2:
value = as.Lhs[1];
fallthrough;
case 1:
key = as.Lhs[0];
default:
p.error_expected(as.Lhs[0].Pos(), "1 or 2 expressions");
return &ast.BadStmt{pos};
}
// check rhs
if len(as.Rhs) != 1 {
p.error_expected(as.Rhs[0].Pos(), "1 expressions");
return &ast.BadStmt{pos};
}
if rhs, is_unary := as.Rhs[0].(*ast.UnaryExpr); is_unary && rhs.Op == token.RANGE {
// rhs is range expression; check lhs
return &ast.RangeStmt{pos, key, value, as.TokPos, as.Tok, rhs.X, body}
} else {
p.error_expected(s2.Pos(), "range clause");
return &ast.BadStmt{pos};
}
} else {
// regular for statement
return &ast.ForStmt{pos, s1, p.makeExpr(s2), s3, body};
}
panic(); // unreachable
return nil;
}
func (p *parser) parseStatement() ast.Stmt {
if p.trace {
defer un(trace(p, "Statement"));
}
switch p.tok {
case token.CONST, token.TYPE, token.VAR:
return &ast.DeclStmt{p.parseDeclaration()};
case
// tokens that may start a top-level expression
token.IDENT, token.INT, token.FLOAT, token.CHAR, token.STRING, token.FUNC, token.LPAREN, // operand
token.LBRACK, token.STRUCT, // composite type
token.MUL, token.AND, token.ARROW: // unary operators
return p.parseSimpleStmt(true);
case token.GO:
return p.parseGoStmt();
case token.DEFER:
return p.parseDeferStmt();
case token.RETURN:
return p.parseReturnStmt();
case token.BREAK, token.CONTINUE, token.GOTO, token.FALLTHROUGH:
return p.parseBranchStmt(p.tok);
case token.LBRACE:
return p.parseBlockStmt();
case token.IF:
return p.parseIfStmt();
case token.SWITCH:
return p.parseSwitchStmt();
case token.SELECT:
return p.parseSelectStmt();
case token.FOR:
return p.parseForStmt();
case token.SEMICOLON, token.RBRACE:
// don't consume the ";", it is the separator following the empty statement
return &ast.EmptyStmt{p.pos};
}
// no statement found
p.error_expected(p.pos, "statement");
return &ast.BadStmt{p.pos};
}
// ----------------------------------------------------------------------------
// Declarations
func (p *parser) parseImportSpec(pos token.Position, doc ast.Comments) *ast.ImportDecl {
if p.trace {
defer un(trace(p, "ImportSpec"));
}
var ident *ast.Ident;
if p.tok == token.PERIOD {
p.error(p.pos, `"import ." not yet handled properly`);
p.next();
} else if p.tok == token.IDENT {
ident = p.parseIdent();
}
var path []*ast.StringLit;
if p.tok == token.STRING {
path = p.parseStringList(nil);
} else {
p.expect(token.STRING); // use expect() error handling
}
return &ast.ImportDecl{doc, pos, ident, path};
}
func (p *parser) parseConstSpec(pos token.Position, doc ast.Comments) *ast.ConstDecl {
if p.trace {
defer un(trace(p, "ConstSpec"));
}
idents := p.parseIdentList(nil);
typ := p.tryType();
var values []ast.Expr;
if typ != nil || p.tok == token.ASSIGN {
p.expect(token.ASSIGN);
values = p.parseExpressionList();
}
return &ast.ConstDecl{doc, pos, idents, typ, values};
}
func (p *parser) parseTypeSpec(pos token.Position, doc ast.Comments) *ast.TypeDecl {
if p.trace {
defer un(trace(p, "TypeSpec"));
}
ident := p.parseIdent();
typ := p.parseType();
return &ast.TypeDecl{doc, pos, ident, typ};
}
func (p *parser) parseVarSpec(pos token.Position, doc ast.Comments) *ast.VarDecl {
if p.trace {
defer un(trace(p, "VarSpec"));
}
idents := p.parseIdentList(nil);
typ := p.tryType();
var values []ast.Expr;
if typ == nil || p.tok == token.ASSIGN {
p.expect(token.ASSIGN);
values = p.parseExpressionList();
}
return &ast.VarDecl{doc, pos, idents, typ, values};
}
func (p *parser) parseSpec(pos token.Position, doc ast.Comments, keyword int) ast.Decl {
switch keyword {
case token.IMPORT: return p.parseImportSpec(pos, doc);
case token.CONST: return p.parseConstSpec(pos, doc);
case token.TYPE: return p.parseTypeSpec(pos, doc);
case token.VAR: return p.parseVarSpec(pos, doc);
}
panic(); // unreachable
return nil;
}
func (p *parser) parseDecl(keyword int) ast.Decl {
if p.trace {
defer un(trace(p, "Decl"));
}
doc := p.getDoc();
pos := p.expect(keyword);
if p.tok == token.LPAREN {
lparen := p.pos;
p.next();
list := vector.New(0);
for p.tok != token.RPAREN && p.tok != token.EOF {
list.Push(p.parseSpec(noPos, nil, keyword));
if p.tok == token.SEMICOLON {
p.next();
} else {
break;
}
}
rparen := p.expect(token.RPAREN);
p.opt_semi = true;
// convert vector
decls := make([]ast.Decl, list.Len());
for i := 0; i < list.Len(); i++ {
decls[i] = list.At(i).(ast.Decl);
}
return &ast.DeclList{doc, pos, keyword, lparen, decls, rparen};
}
return p.parseSpec(pos, doc, keyword);
}
func (p *parser) parseReceiver() *ast.Field {
if p.trace {
defer un(trace(p, "Receiver"));
}
pos := p.pos;
par := p.parseParameters(false);
// must have exactly one receiver
if len(par) != 1 || len(par) == 1 && len(par[0].Names) > 1 {
p.error_expected(pos, "exactly one receiver");
return &ast.Field{nil, nil, &ast.BadExpr{noPos}, nil};
}
recv := par[0];
// recv type must be TypeName or *TypeName
base := recv.Type;
if ptr, is_ptr := base.(*ast.StarExpr); is_ptr {
base = ptr.X;
}
p.checkTypeName(base);
return recv;
}
func (p *parser) parseFunctionDecl() *ast.FuncDecl {
if p.trace {
defer un(trace(p, "FunctionDecl"));
}
doc := p.getDoc();
pos := p.expect(token.FUNC);
var recv *ast.Field;
if p.tok == token.LPAREN {
recv = p.parseReceiver();
}
ident := p.parseIdent();
params, results := p.parseSignature();
var body *ast.BlockStmt;
if p.tok == token.LBRACE {
body = p.parseBlockStmt();
}
return &ast.FuncDecl{doc, recv, ident, &ast.FunctionType{pos, params, results}, body};
}
func (p *parser) parseDeclaration() ast.Decl {
if p.trace {
defer un(trace(p, "Declaration"));
}
switch p.tok {
case token.CONST, token.TYPE, token.VAR:
return p.parseDecl(p.tok);
case token.FUNC:
return p.parseFunctionDecl();
}
pos := p.pos;
p.error_expected(pos, "declaration");
p.next(); // make progress
return &ast.BadDecl{pos};
}
// ----------------------------------------------------------------------------
// Packages
// A set of flags (or 0) must be provided via the mode parameter to
// the Parse function. They control the amount of source code parsed
// and other optional parser functionality.
//
const (
PackageClauseOnly = 1 << iota; // parsing stops after package clause
ImportsOnly; // parsing stops after import declarations
Trace; // print a trace of parsed productions
)
func (p *parser) parsePackage() *ast.Package {
if p.trace {
defer un(trace(p, "Program"));
}
// package clause
comment := p.getDoc();
pos := p.expect(token.PACKAGE);
ident := p.parseIdent();
if p.tok == token.SEMICOLON {
// common error
p.error(p.pos, "extra semicolon");
p.next();
}
var decls []ast.Decl;
if p.mode & PackageClauseOnly == 0 {
// import decls
list := vector.New(0);
for p.tok == token.IMPORT {
list.Push(p.parseDecl(token.IMPORT));
if p.tok == token.SEMICOLON {
p.next();
}
}
if p.mode & ImportsOnly == 0 {
// rest of package body
for p.tok != token.EOF {
list.Push(p.parseDeclaration());
if p.tok == token.SEMICOLON {
p.next();
}
}
}
// convert declaration list
decls = make([]ast.Decl, list.Len());
for i := 0; i < list.Len(); i++ {
decls[i] = list.At(i).(ast.Decl);
}
}
// convert comments list
comments := make([]*ast.Comment, p.comments.Len());
for i := 0; i < p.comments.Len(); i++ {
comments[i] = p.comments.At(i).(*ast.Comment);
}
return &ast.Package{comment, pos, ident, decls, comments};
}
// ----------------------------------------------------------------------------
// Parsing of entire programs.
// Parse invokes the Go parser. It calls the scanner's Scan method repeatedly
// to obtain a token sequence which is parsed according to Go syntax. If an
// error handler is provided (err != nil), it is invoked for each syntax error
// encountered.
//
// Parse returns an AST and the number of syntax errors encountered. If the
// error count is 0, the result is the correct AST for the token sequence
// returned by the scanner (*). If the error count is > 0, the AST may only
// be constructed partially, with ast.BadX nodes representing the fragments
// of source code that contained syntax errors.
//
// The mode parameter controls the amount of source text parsed and other
// optional parser functionality.
//
// (*) Note that a scanner may find lexical syntax errors but still return
// a legal token sequence. To be sure there are no syntax errors in the
// source (and not just the token sequence corresponding to the source)
// both the parser and scanner error count must be 0.
//
func Parse(scanner Scanner, err ErrorHandler, mode uint) (*ast.Package, int) {
// initialize parser state
var p parser;
p.scanner = scanner;
p.err = err;
p.mode = mode;
p.trace = mode & Trace != 0; // for convenience (p.trace is used frequently)
p.comments.Init(0);
p.next();
// parse program
pak := p.parsePackage();
return pak, p.errorCount;
}