mirror of
https://github.com/golang/go
synced 2024-11-08 12:56:16 -07:00
c34add780b
profileBuilder.locForPC returns 0 to mean "no location" because 0 is an invalid location index. However, the code to build count profiles doesn't check the result of locForPC, so this 0 location index ends up in the profile's location list. This, in turn, causes problems later when we decode the profile because it puts a nil *Location in the sample's location slice, which can later lead to a nil pointer panic. Fix this by making printCountProfile correctly discard the result of locForPC if it returns 0. This makes this call match the other two calls of locForPC. Updates #15156. Change-Id: I4492b3652b513448bc56f4cfece4e37da5e42f94 Reviewed-on: https://go-review.googlesource.com/43630 Reviewed-by: Michael Matloob <matloob@golang.org> Run-TryBot: Austin Clements <austin@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org>
842 lines
24 KiB
Go
842 lines
24 KiB
Go
// Copyright 2010 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Package pprof writes runtime profiling data in the format expected
|
|
// by the pprof visualization tool.
|
|
//
|
|
// Profiling a Go program
|
|
//
|
|
// The first step to profiling a Go program is to enable profiling.
|
|
// Support for profiling benchmarks built with the standard testing
|
|
// package is built into go test. For example, the following command
|
|
// runs benchmarks in the current directory and writes the CPU and
|
|
// memory profiles to cpu.prof and mem.prof:
|
|
//
|
|
// go test -cpuprofile cpu.prof -memprofile mem.prof -bench .
|
|
//
|
|
// To add equivalent profiling support to a standalone program, add
|
|
// code like the following to your main function:
|
|
//
|
|
// var cpuprofile = flag.String("cpuprofile", "", "write cpu profile `file`")
|
|
// var memprofile = flag.String("memprofile", "", "write memory profile to `file`")
|
|
//
|
|
// func main() {
|
|
// flag.Parse()
|
|
// if *cpuprofile != "" {
|
|
// f, err := os.Create(*cpuprofile)
|
|
// if err != nil {
|
|
// log.Fatal("could not create CPU profile: ", err)
|
|
// }
|
|
// if err := pprof.StartCPUProfile(f); err != nil {
|
|
// log.Fatal("could not start CPU profile: ", err)
|
|
// }
|
|
// defer pprof.StopCPUProfile()
|
|
// }
|
|
//
|
|
// // ... rest of the program ...
|
|
//
|
|
// if *memprofile != "" {
|
|
// f, err := os.Create(*memprofile)
|
|
// if err != nil {
|
|
// log.Fatal("could not create memory profile: ", err)
|
|
// }
|
|
// runtime.GC() // get up-to-date statistics
|
|
// if err := pprof.WriteHeapProfile(f); err != nil {
|
|
// log.Fatal("could not write memory profile: ", err)
|
|
// }
|
|
// f.Close()
|
|
// }
|
|
// }
|
|
//
|
|
// There is also a standard HTTP interface to profiling data. Adding
|
|
// the following line will install handlers under the /debug/pprof/
|
|
// URL to download live profiles:
|
|
//
|
|
// import _ "net/http/pprof"
|
|
//
|
|
// See the net/http/pprof package for more details.
|
|
//
|
|
// Profiles can then be visualized with the pprof tool:
|
|
//
|
|
// go tool pprof cpu.prof
|
|
//
|
|
// There are many commands available from the pprof command line.
|
|
// Commonly used commands include "top", which prints a summary of the
|
|
// top program hot-spots, and "web", which opens an interactive graph
|
|
// of hot-spots and their call graphs. Use "help" for information on
|
|
// all pprof commands.
|
|
//
|
|
// For more information about pprof, see
|
|
// https://github.com/google/pprof/blob/master/doc/pprof.md.
|
|
package pprof
|
|
|
|
import (
|
|
"bufio"
|
|
"bytes"
|
|
"fmt"
|
|
"io"
|
|
"runtime"
|
|
"sort"
|
|
"strings"
|
|
"sync"
|
|
"text/tabwriter"
|
|
"time"
|
|
"unsafe"
|
|
)
|
|
|
|
// BUG(rsc): Profiles are only as good as the kernel support used to generate them.
|
|
// See https://golang.org/issue/13841 for details about known problems.
|
|
|
|
// A Profile is a collection of stack traces showing the call sequences
|
|
// that led to instances of a particular event, such as allocation.
|
|
// Packages can create and maintain their own profiles; the most common
|
|
// use is for tracking resources that must be explicitly closed, such as files
|
|
// or network connections.
|
|
//
|
|
// A Profile's methods can be called from multiple goroutines simultaneously.
|
|
//
|
|
// Each Profile has a unique name. A few profiles are predefined:
|
|
//
|
|
// goroutine - stack traces of all current goroutines
|
|
// heap - a sampling of all heap allocations
|
|
// threadcreate - stack traces that led to the creation of new OS threads
|
|
// block - stack traces that led to blocking on synchronization primitives
|
|
// mutex - stack traces of holders of contended mutexes
|
|
//
|
|
// These predefined profiles maintain themselves and panic on an explicit
|
|
// Add or Remove method call.
|
|
//
|
|
// The heap profile reports statistics as of the most recently completed
|
|
// garbage collection; it elides more recent allocation to avoid skewing
|
|
// the profile away from live data and toward garbage.
|
|
// If there has been no garbage collection at all, the heap profile reports
|
|
// all known allocations. This exception helps mainly in programs running
|
|
// without garbage collection enabled, usually for debugging purposes.
|
|
//
|
|
// The CPU profile is not available as a Profile. It has a special API,
|
|
// the StartCPUProfile and StopCPUProfile functions, because it streams
|
|
// output to a writer during profiling.
|
|
//
|
|
type Profile struct {
|
|
name string
|
|
mu sync.Mutex
|
|
m map[interface{}][]uintptr
|
|
count func() int
|
|
write func(io.Writer, int) error
|
|
}
|
|
|
|
// profiles records all registered profiles.
|
|
var profiles struct {
|
|
mu sync.Mutex
|
|
m map[string]*Profile
|
|
}
|
|
|
|
var goroutineProfile = &Profile{
|
|
name: "goroutine",
|
|
count: countGoroutine,
|
|
write: writeGoroutine,
|
|
}
|
|
|
|
var threadcreateProfile = &Profile{
|
|
name: "threadcreate",
|
|
count: countThreadCreate,
|
|
write: writeThreadCreate,
|
|
}
|
|
|
|
var heapProfile = &Profile{
|
|
name: "heap",
|
|
count: countHeap,
|
|
write: writeHeap,
|
|
}
|
|
|
|
var blockProfile = &Profile{
|
|
name: "block",
|
|
count: countBlock,
|
|
write: writeBlock,
|
|
}
|
|
|
|
var mutexProfile = &Profile{
|
|
name: "mutex",
|
|
count: countMutex,
|
|
write: writeMutex,
|
|
}
|
|
|
|
func lockProfiles() {
|
|
profiles.mu.Lock()
|
|
if profiles.m == nil {
|
|
// Initial built-in profiles.
|
|
profiles.m = map[string]*Profile{
|
|
"goroutine": goroutineProfile,
|
|
"threadcreate": threadcreateProfile,
|
|
"heap": heapProfile,
|
|
"block": blockProfile,
|
|
"mutex": mutexProfile,
|
|
}
|
|
}
|
|
}
|
|
|
|
func unlockProfiles() {
|
|
profiles.mu.Unlock()
|
|
}
|
|
|
|
// NewProfile creates a new profile with the given name.
|
|
// If a profile with that name already exists, NewProfile panics.
|
|
// The convention is to use a 'import/path.' prefix to create
|
|
// separate name spaces for each package.
|
|
// For compatibility with various tools that read pprof data,
|
|
// profile names should not contain spaces.
|
|
func NewProfile(name string) *Profile {
|
|
lockProfiles()
|
|
defer unlockProfiles()
|
|
if name == "" {
|
|
panic("pprof: NewProfile with empty name")
|
|
}
|
|
if profiles.m[name] != nil {
|
|
panic("pprof: NewProfile name already in use: " + name)
|
|
}
|
|
p := &Profile{
|
|
name: name,
|
|
m: map[interface{}][]uintptr{},
|
|
}
|
|
profiles.m[name] = p
|
|
return p
|
|
}
|
|
|
|
// Lookup returns the profile with the given name, or nil if no such profile exists.
|
|
func Lookup(name string) *Profile {
|
|
lockProfiles()
|
|
defer unlockProfiles()
|
|
return profiles.m[name]
|
|
}
|
|
|
|
// Profiles returns a slice of all the known profiles, sorted by name.
|
|
func Profiles() []*Profile {
|
|
lockProfiles()
|
|
defer unlockProfiles()
|
|
|
|
all := make([]*Profile, 0, len(profiles.m))
|
|
for _, p := range profiles.m {
|
|
all = append(all, p)
|
|
}
|
|
|
|
sort.Slice(all, func(i, j int) bool { return all[i].name < all[j].name })
|
|
return all
|
|
}
|
|
|
|
// Name returns this profile's name, which can be passed to Lookup to reobtain the profile.
|
|
func (p *Profile) Name() string {
|
|
return p.name
|
|
}
|
|
|
|
// Count returns the number of execution stacks currently in the profile.
|
|
func (p *Profile) Count() int {
|
|
p.mu.Lock()
|
|
defer p.mu.Unlock()
|
|
if p.count != nil {
|
|
return p.count()
|
|
}
|
|
return len(p.m)
|
|
}
|
|
|
|
// Add adds the current execution stack to the profile, associated with value.
|
|
// Add stores value in an internal map, so value must be suitable for use as
|
|
// a map key and will not be garbage collected until the corresponding
|
|
// call to Remove. Add panics if the profile already contains a stack for value.
|
|
//
|
|
// The skip parameter has the same meaning as runtime.Caller's skip
|
|
// and controls where the stack trace begins. Passing skip=0 begins the
|
|
// trace in the function calling Add. For example, given this
|
|
// execution stack:
|
|
//
|
|
// Add
|
|
// called from rpc.NewClient
|
|
// called from mypkg.Run
|
|
// called from main.main
|
|
//
|
|
// Passing skip=0 begins the stack trace at the call to Add inside rpc.NewClient.
|
|
// Passing skip=1 begins the stack trace at the call to NewClient inside mypkg.Run.
|
|
//
|
|
func (p *Profile) Add(value interface{}, skip int) {
|
|
if p.name == "" {
|
|
panic("pprof: use of uninitialized Profile")
|
|
}
|
|
if p.write != nil {
|
|
panic("pprof: Add called on built-in Profile " + p.name)
|
|
}
|
|
|
|
stk := make([]uintptr, 32)
|
|
n := runtime.Callers(skip+1, stk[:])
|
|
stk = stk[:n]
|
|
if len(stk) == 0 {
|
|
// The value for skip is too large, and there's no stack trace to record.
|
|
stk = []uintptr{funcPC(lostProfileEvent)}
|
|
}
|
|
|
|
p.mu.Lock()
|
|
defer p.mu.Unlock()
|
|
if p.m[value] != nil {
|
|
panic("pprof: Profile.Add of duplicate value")
|
|
}
|
|
p.m[value] = stk
|
|
}
|
|
|
|
// Remove removes the execution stack associated with value from the profile.
|
|
// It is a no-op if the value is not in the profile.
|
|
func (p *Profile) Remove(value interface{}) {
|
|
p.mu.Lock()
|
|
defer p.mu.Unlock()
|
|
delete(p.m, value)
|
|
}
|
|
|
|
// WriteTo writes a pprof-formatted snapshot of the profile to w.
|
|
// If a write to w returns an error, WriteTo returns that error.
|
|
// Otherwise, WriteTo returns nil.
|
|
//
|
|
// The debug parameter enables additional output.
|
|
// Passing debug=0 prints only the hexadecimal addresses that pprof needs.
|
|
// Passing debug=1 adds comments translating addresses to function names
|
|
// and line numbers, so that a programmer can read the profile without tools.
|
|
//
|
|
// The predefined profiles may assign meaning to other debug values;
|
|
// for example, when printing the "goroutine" profile, debug=2 means to
|
|
// print the goroutine stacks in the same form that a Go program uses
|
|
// when dying due to an unrecovered panic.
|
|
func (p *Profile) WriteTo(w io.Writer, debug int) error {
|
|
if p.name == "" {
|
|
panic("pprof: use of zero Profile")
|
|
}
|
|
if p.write != nil {
|
|
return p.write(w, debug)
|
|
}
|
|
|
|
// Obtain consistent snapshot under lock; then process without lock.
|
|
p.mu.Lock()
|
|
all := make([][]uintptr, 0, len(p.m))
|
|
for _, stk := range p.m {
|
|
all = append(all, stk)
|
|
}
|
|
p.mu.Unlock()
|
|
|
|
// Map order is non-deterministic; make output deterministic.
|
|
sort.Sort(stackProfile(all))
|
|
|
|
return printCountProfile(w, debug, p.name, stackProfile(all))
|
|
}
|
|
|
|
type stackProfile [][]uintptr
|
|
|
|
func (x stackProfile) Len() int { return len(x) }
|
|
func (x stackProfile) Stack(i int) []uintptr { return x[i] }
|
|
func (x stackProfile) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
|
|
func (x stackProfile) Less(i, j int) bool {
|
|
t, u := x[i], x[j]
|
|
for k := 0; k < len(t) && k < len(u); k++ {
|
|
if t[k] != u[k] {
|
|
return t[k] < u[k]
|
|
}
|
|
}
|
|
return len(t) < len(u)
|
|
}
|
|
|
|
// A countProfile is a set of stack traces to be printed as counts
|
|
// grouped by stack trace. There are multiple implementations:
|
|
// all that matters is that we can find out how many traces there are
|
|
// and obtain each trace in turn.
|
|
type countProfile interface {
|
|
Len() int
|
|
Stack(i int) []uintptr
|
|
}
|
|
|
|
// printCountProfile prints a countProfile at the specified debug level.
|
|
// The profile will be in compressed proto format unless debug is nonzero.
|
|
func printCountProfile(w io.Writer, debug int, name string, p countProfile) error {
|
|
// Build count of each stack.
|
|
var buf bytes.Buffer
|
|
key := func(stk []uintptr) string {
|
|
buf.Reset()
|
|
fmt.Fprintf(&buf, "@")
|
|
for _, pc := range stk {
|
|
fmt.Fprintf(&buf, " %#x", pc)
|
|
}
|
|
return buf.String()
|
|
}
|
|
count := map[string]int{}
|
|
index := map[string]int{}
|
|
var keys []string
|
|
n := p.Len()
|
|
for i := 0; i < n; i++ {
|
|
k := key(p.Stack(i))
|
|
if count[k] == 0 {
|
|
index[k] = i
|
|
keys = append(keys, k)
|
|
}
|
|
count[k]++
|
|
}
|
|
|
|
sort.Sort(&keysByCount{keys, count})
|
|
|
|
if debug > 0 {
|
|
// Print debug profile in legacy format
|
|
tw := tabwriter.NewWriter(w, 1, 8, 1, '\t', 0)
|
|
fmt.Fprintf(tw, "%s profile: total %d\n", name, p.Len())
|
|
for _, k := range keys {
|
|
fmt.Fprintf(tw, "%d %s\n", count[k], k)
|
|
printStackRecord(tw, p.Stack(index[k]), false)
|
|
}
|
|
return tw.Flush()
|
|
}
|
|
|
|
// Output profile in protobuf form.
|
|
b := newProfileBuilder(w)
|
|
b.pbValueType(tagProfile_PeriodType, name, "count")
|
|
b.pb.int64Opt(tagProfile_Period, 1)
|
|
b.pbValueType(tagProfile_SampleType, name, "count")
|
|
|
|
values := []int64{0}
|
|
var locs []uint64
|
|
for _, k := range keys {
|
|
values[0] = int64(count[k])
|
|
locs = locs[:0]
|
|
for _, addr := range p.Stack(index[k]) {
|
|
// For count profiles, all stack addresses are
|
|
// return PCs, which is what locForPC expects.
|
|
l := b.locForPC(addr)
|
|
if l == 0 { // runtime.goexit
|
|
continue
|
|
}
|
|
locs = append(locs, l)
|
|
}
|
|
b.pbSample(values, locs, nil)
|
|
}
|
|
b.build()
|
|
return nil
|
|
}
|
|
|
|
// keysByCount sorts keys with higher counts first, breaking ties by key string order.
|
|
type keysByCount struct {
|
|
keys []string
|
|
count map[string]int
|
|
}
|
|
|
|
func (x *keysByCount) Len() int { return len(x.keys) }
|
|
func (x *keysByCount) Swap(i, j int) { x.keys[i], x.keys[j] = x.keys[j], x.keys[i] }
|
|
func (x *keysByCount) Less(i, j int) bool {
|
|
ki, kj := x.keys[i], x.keys[j]
|
|
ci, cj := x.count[ki], x.count[kj]
|
|
if ci != cj {
|
|
return ci > cj
|
|
}
|
|
return ki < kj
|
|
}
|
|
|
|
// printStackRecord prints the function + source line information
|
|
// for a single stack trace.
|
|
func printStackRecord(w io.Writer, stk []uintptr, allFrames bool) {
|
|
show := allFrames
|
|
frames := runtime.CallersFrames(stk)
|
|
for {
|
|
frame, more := frames.Next()
|
|
name := frame.Function
|
|
if name == "" {
|
|
show = true
|
|
fmt.Fprintf(w, "#\t%#x\n", frame.PC)
|
|
} else if name != "runtime.goexit" && (show || !strings.HasPrefix(name, "runtime.")) {
|
|
// Hide runtime.goexit and any runtime functions at the beginning.
|
|
// This is useful mainly for allocation traces.
|
|
show = true
|
|
fmt.Fprintf(w, "#\t%#x\t%s+%#x\t%s:%d\n", frame.PC, name, frame.PC-frame.Entry, frame.File, frame.Line)
|
|
}
|
|
if !more {
|
|
break
|
|
}
|
|
}
|
|
if !show {
|
|
// We didn't print anything; do it again,
|
|
// and this time include runtime functions.
|
|
printStackRecord(w, stk, true)
|
|
return
|
|
}
|
|
fmt.Fprintf(w, "\n")
|
|
}
|
|
|
|
// Interface to system profiles.
|
|
|
|
// WriteHeapProfile is shorthand for Lookup("heap").WriteTo(w, 0).
|
|
// It is preserved for backwards compatibility.
|
|
func WriteHeapProfile(w io.Writer) error {
|
|
return writeHeap(w, 0)
|
|
}
|
|
|
|
// countHeap returns the number of records in the heap profile.
|
|
func countHeap() int {
|
|
n, _ := runtime.MemProfile(nil, true)
|
|
return n
|
|
}
|
|
|
|
// writeHeap writes the current runtime heap profile to w.
|
|
func writeHeap(w io.Writer, debug int) error {
|
|
// Find out how many records there are (MemProfile(nil, true)),
|
|
// allocate that many records, and get the data.
|
|
// There's a race—more records might be added between
|
|
// the two calls—so allocate a few extra records for safety
|
|
// and also try again if we're very unlucky.
|
|
// The loop should only execute one iteration in the common case.
|
|
var p []runtime.MemProfileRecord
|
|
n, ok := runtime.MemProfile(nil, true)
|
|
for {
|
|
// Allocate room for a slightly bigger profile,
|
|
// in case a few more entries have been added
|
|
// since the call to MemProfile.
|
|
p = make([]runtime.MemProfileRecord, n+50)
|
|
n, ok = runtime.MemProfile(p, true)
|
|
if ok {
|
|
p = p[0:n]
|
|
break
|
|
}
|
|
// Profile grew; try again.
|
|
}
|
|
|
|
if debug == 0 {
|
|
return writeHeapProto(w, p, int64(runtime.MemProfileRate))
|
|
}
|
|
|
|
sort.Slice(p, func(i, j int) bool { return p[i].InUseBytes() > p[j].InUseBytes() })
|
|
|
|
b := bufio.NewWriter(w)
|
|
tw := tabwriter.NewWriter(b, 1, 8, 1, '\t', 0)
|
|
w = tw
|
|
|
|
var total runtime.MemProfileRecord
|
|
for i := range p {
|
|
r := &p[i]
|
|
total.AllocBytes += r.AllocBytes
|
|
total.AllocObjects += r.AllocObjects
|
|
total.FreeBytes += r.FreeBytes
|
|
total.FreeObjects += r.FreeObjects
|
|
}
|
|
|
|
// Technically the rate is MemProfileRate not 2*MemProfileRate,
|
|
// but early versions of the C++ heap profiler reported 2*MemProfileRate,
|
|
// so that's what pprof has come to expect.
|
|
fmt.Fprintf(w, "heap profile: %d: %d [%d: %d] @ heap/%d\n",
|
|
total.InUseObjects(), total.InUseBytes(),
|
|
total.AllocObjects, total.AllocBytes,
|
|
2*runtime.MemProfileRate)
|
|
|
|
for i := range p {
|
|
r := &p[i]
|
|
fmt.Fprintf(w, "%d: %d [%d: %d] @",
|
|
r.InUseObjects(), r.InUseBytes(),
|
|
r.AllocObjects, r.AllocBytes)
|
|
for _, pc := range r.Stack() {
|
|
fmt.Fprintf(w, " %#x", pc)
|
|
}
|
|
fmt.Fprintf(w, "\n")
|
|
printStackRecord(w, r.Stack(), false)
|
|
}
|
|
|
|
// Print memstats information too.
|
|
// Pprof will ignore, but useful for people
|
|
s := new(runtime.MemStats)
|
|
runtime.ReadMemStats(s)
|
|
fmt.Fprintf(w, "\n# runtime.MemStats\n")
|
|
fmt.Fprintf(w, "# Alloc = %d\n", s.Alloc)
|
|
fmt.Fprintf(w, "# TotalAlloc = %d\n", s.TotalAlloc)
|
|
fmt.Fprintf(w, "# Sys = %d\n", s.Sys)
|
|
fmt.Fprintf(w, "# Lookups = %d\n", s.Lookups)
|
|
fmt.Fprintf(w, "# Mallocs = %d\n", s.Mallocs)
|
|
fmt.Fprintf(w, "# Frees = %d\n", s.Frees)
|
|
|
|
fmt.Fprintf(w, "# HeapAlloc = %d\n", s.HeapAlloc)
|
|
fmt.Fprintf(w, "# HeapSys = %d\n", s.HeapSys)
|
|
fmt.Fprintf(w, "# HeapIdle = %d\n", s.HeapIdle)
|
|
fmt.Fprintf(w, "# HeapInuse = %d\n", s.HeapInuse)
|
|
fmt.Fprintf(w, "# HeapReleased = %d\n", s.HeapReleased)
|
|
fmt.Fprintf(w, "# HeapObjects = %d\n", s.HeapObjects)
|
|
|
|
fmt.Fprintf(w, "# Stack = %d / %d\n", s.StackInuse, s.StackSys)
|
|
fmt.Fprintf(w, "# MSpan = %d / %d\n", s.MSpanInuse, s.MSpanSys)
|
|
fmt.Fprintf(w, "# MCache = %d / %d\n", s.MCacheInuse, s.MCacheSys)
|
|
fmt.Fprintf(w, "# BuckHashSys = %d\n", s.BuckHashSys)
|
|
fmt.Fprintf(w, "# GCSys = %d\n", s.GCSys)
|
|
fmt.Fprintf(w, "# OtherSys = %d\n", s.OtherSys)
|
|
|
|
fmt.Fprintf(w, "# NextGC = %d\n", s.NextGC)
|
|
fmt.Fprintf(w, "# LastGC = %d\n", s.LastGC)
|
|
fmt.Fprintf(w, "# PauseNs = %d\n", s.PauseNs)
|
|
fmt.Fprintf(w, "# PauseEnd = %d\n", s.PauseEnd)
|
|
fmt.Fprintf(w, "# NumGC = %d\n", s.NumGC)
|
|
fmt.Fprintf(w, "# NumForcedGC = %d\n", s.NumForcedGC)
|
|
fmt.Fprintf(w, "# GCCPUFraction = %v\n", s.GCCPUFraction)
|
|
fmt.Fprintf(w, "# DebugGC = %v\n", s.DebugGC)
|
|
|
|
tw.Flush()
|
|
return b.Flush()
|
|
}
|
|
|
|
// countThreadCreate returns the size of the current ThreadCreateProfile.
|
|
func countThreadCreate() int {
|
|
n, _ := runtime.ThreadCreateProfile(nil)
|
|
return n
|
|
}
|
|
|
|
// writeThreadCreate writes the current runtime ThreadCreateProfile to w.
|
|
func writeThreadCreate(w io.Writer, debug int) error {
|
|
return writeRuntimeProfile(w, debug, "threadcreate", runtime.ThreadCreateProfile)
|
|
}
|
|
|
|
// countGoroutine returns the number of goroutines.
|
|
func countGoroutine() int {
|
|
return runtime.NumGoroutine()
|
|
}
|
|
|
|
// writeGoroutine writes the current runtime GoroutineProfile to w.
|
|
func writeGoroutine(w io.Writer, debug int) error {
|
|
if debug >= 2 {
|
|
return writeGoroutineStacks(w)
|
|
}
|
|
return writeRuntimeProfile(w, debug, "goroutine", runtime.GoroutineProfile)
|
|
}
|
|
|
|
func writeGoroutineStacks(w io.Writer) error {
|
|
// We don't know how big the buffer needs to be to collect
|
|
// all the goroutines. Start with 1 MB and try a few times, doubling each time.
|
|
// Give up and use a truncated trace if 64 MB is not enough.
|
|
buf := make([]byte, 1<<20)
|
|
for i := 0; ; i++ {
|
|
n := runtime.Stack(buf, true)
|
|
if n < len(buf) {
|
|
buf = buf[:n]
|
|
break
|
|
}
|
|
if len(buf) >= 64<<20 {
|
|
// Filled 64 MB - stop there.
|
|
break
|
|
}
|
|
buf = make([]byte, 2*len(buf))
|
|
}
|
|
_, err := w.Write(buf)
|
|
return err
|
|
}
|
|
|
|
func writeRuntimeProfile(w io.Writer, debug int, name string, fetch func([]runtime.StackRecord) (int, bool)) error {
|
|
// Find out how many records there are (fetch(nil)),
|
|
// allocate that many records, and get the data.
|
|
// There's a race—more records might be added between
|
|
// the two calls—so allocate a few extra records for safety
|
|
// and also try again if we're very unlucky.
|
|
// The loop should only execute one iteration in the common case.
|
|
var p []runtime.StackRecord
|
|
n, ok := fetch(nil)
|
|
for {
|
|
// Allocate room for a slightly bigger profile,
|
|
// in case a few more entries have been added
|
|
// since the call to ThreadProfile.
|
|
p = make([]runtime.StackRecord, n+10)
|
|
n, ok = fetch(p)
|
|
if ok {
|
|
p = p[0:n]
|
|
break
|
|
}
|
|
// Profile grew; try again.
|
|
}
|
|
|
|
return printCountProfile(w, debug, name, runtimeProfile(p))
|
|
}
|
|
|
|
type runtimeProfile []runtime.StackRecord
|
|
|
|
func (p runtimeProfile) Len() int { return len(p) }
|
|
func (p runtimeProfile) Stack(i int) []uintptr { return p[i].Stack() }
|
|
|
|
var cpu struct {
|
|
sync.Mutex
|
|
profiling bool
|
|
done chan bool
|
|
}
|
|
|
|
// StartCPUProfile enables CPU profiling for the current process.
|
|
// While profiling, the profile will be buffered and written to w.
|
|
// StartCPUProfile returns an error if profiling is already enabled.
|
|
//
|
|
// On Unix-like systems, StartCPUProfile does not work by default for
|
|
// Go code built with -buildmode=c-archive or -buildmode=c-shared.
|
|
// StartCPUProfile relies on the SIGPROF signal, but that signal will
|
|
// be delivered to the main program's SIGPROF signal handler (if any)
|
|
// not to the one used by Go. To make it work, call os/signal.Notify
|
|
// for syscall.SIGPROF, but note that doing so may break any profiling
|
|
// being done by the main program.
|
|
func StartCPUProfile(w io.Writer) error {
|
|
// The runtime routines allow a variable profiling rate,
|
|
// but in practice operating systems cannot trigger signals
|
|
// at more than about 500 Hz, and our processing of the
|
|
// signal is not cheap (mostly getting the stack trace).
|
|
// 100 Hz is a reasonable choice: it is frequent enough to
|
|
// produce useful data, rare enough not to bog down the
|
|
// system, and a nice round number to make it easy to
|
|
// convert sample counts to seconds. Instead of requiring
|
|
// each client to specify the frequency, we hard code it.
|
|
const hz = 100
|
|
|
|
cpu.Lock()
|
|
defer cpu.Unlock()
|
|
if cpu.done == nil {
|
|
cpu.done = make(chan bool)
|
|
}
|
|
// Double-check.
|
|
if cpu.profiling {
|
|
return fmt.Errorf("cpu profiling already in use")
|
|
}
|
|
cpu.profiling = true
|
|
runtime.SetCPUProfileRate(hz)
|
|
go profileWriter(w)
|
|
return nil
|
|
}
|
|
|
|
// readProfile, provided by the runtime, returns the next chunk of
|
|
// binary CPU profiling stack trace data, blocking until data is available.
|
|
// If profiling is turned off and all the profile data accumulated while it was
|
|
// on has been returned, readProfile returns eof=true.
|
|
// The caller must save the returned data and tags before calling readProfile again.
|
|
func readProfile() (data []uint64, tags []unsafe.Pointer, eof bool)
|
|
|
|
func profileWriter(w io.Writer) {
|
|
b := newProfileBuilder(w)
|
|
var err error
|
|
for {
|
|
time.Sleep(100 * time.Millisecond)
|
|
data, tags, eof := readProfile()
|
|
if e := b.addCPUData(data, tags); e != nil && err == nil {
|
|
err = e
|
|
}
|
|
if eof {
|
|
break
|
|
}
|
|
}
|
|
if err != nil {
|
|
// The runtime should never produce an invalid or truncated profile.
|
|
// It drops records that can't fit into its log buffers.
|
|
panic("runtime/pprof: converting profile: " + err.Error())
|
|
}
|
|
b.build()
|
|
cpu.done <- true
|
|
}
|
|
|
|
// StopCPUProfile stops the current CPU profile, if any.
|
|
// StopCPUProfile only returns after all the writes for the
|
|
// profile have completed.
|
|
func StopCPUProfile() {
|
|
cpu.Lock()
|
|
defer cpu.Unlock()
|
|
|
|
if !cpu.profiling {
|
|
return
|
|
}
|
|
cpu.profiling = false
|
|
runtime.SetCPUProfileRate(0)
|
|
<-cpu.done
|
|
}
|
|
|
|
// countBlock returns the number of records in the blocking profile.
|
|
func countBlock() int {
|
|
n, _ := runtime.BlockProfile(nil)
|
|
return n
|
|
}
|
|
|
|
// countMutex returns the number of records in the mutex profile.
|
|
func countMutex() int {
|
|
n, _ := runtime.MutexProfile(nil)
|
|
return n
|
|
}
|
|
|
|
// writeBlock writes the current blocking profile to w.
|
|
func writeBlock(w io.Writer, debug int) error {
|
|
var p []runtime.BlockProfileRecord
|
|
n, ok := runtime.BlockProfile(nil)
|
|
for {
|
|
p = make([]runtime.BlockProfileRecord, n+50)
|
|
n, ok = runtime.BlockProfile(p)
|
|
if ok {
|
|
p = p[:n]
|
|
break
|
|
}
|
|
}
|
|
|
|
sort.Slice(p, func(i, j int) bool { return p[i].Cycles > p[j].Cycles })
|
|
|
|
b := bufio.NewWriter(w)
|
|
var tw *tabwriter.Writer
|
|
w = b
|
|
if debug > 0 {
|
|
tw = tabwriter.NewWriter(w, 1, 8, 1, '\t', 0)
|
|
w = tw
|
|
}
|
|
|
|
fmt.Fprintf(w, "--- contention:\n")
|
|
fmt.Fprintf(w, "cycles/second=%v\n", runtime_cyclesPerSecond())
|
|
for i := range p {
|
|
r := &p[i]
|
|
fmt.Fprintf(w, "%v %v @", r.Cycles, r.Count)
|
|
for _, pc := range r.Stack() {
|
|
fmt.Fprintf(w, " %#x", pc)
|
|
}
|
|
fmt.Fprint(w, "\n")
|
|
if debug > 0 {
|
|
printStackRecord(w, r.Stack(), true)
|
|
}
|
|
}
|
|
|
|
if tw != nil {
|
|
tw.Flush()
|
|
}
|
|
return b.Flush()
|
|
}
|
|
|
|
// writeMutex writes the current mutex profile to w.
|
|
func writeMutex(w io.Writer, debug int) error {
|
|
// TODO(pjw): too much common code with writeBlock. FIX!
|
|
var p []runtime.BlockProfileRecord
|
|
n, ok := runtime.MutexProfile(nil)
|
|
for {
|
|
p = make([]runtime.BlockProfileRecord, n+50)
|
|
n, ok = runtime.MutexProfile(p)
|
|
if ok {
|
|
p = p[:n]
|
|
break
|
|
}
|
|
}
|
|
|
|
sort.Slice(p, func(i, j int) bool { return p[i].Cycles > p[j].Cycles })
|
|
|
|
b := bufio.NewWriter(w)
|
|
var tw *tabwriter.Writer
|
|
w = b
|
|
if debug > 0 {
|
|
tw = tabwriter.NewWriter(w, 1, 8, 1, '\t', 0)
|
|
w = tw
|
|
}
|
|
|
|
fmt.Fprintf(w, "--- mutex:\n")
|
|
fmt.Fprintf(w, "cycles/second=%v\n", runtime_cyclesPerSecond())
|
|
fmt.Fprintf(w, "sampling period=%d\n", runtime.SetMutexProfileFraction(-1))
|
|
for i := range p {
|
|
r := &p[i]
|
|
fmt.Fprintf(w, "%v %v @", r.Cycles, r.Count)
|
|
for _, pc := range r.Stack() {
|
|
fmt.Fprintf(w, " %#x", pc)
|
|
}
|
|
fmt.Fprint(w, "\n")
|
|
if debug > 0 {
|
|
printStackRecord(w, r.Stack(), true)
|
|
}
|
|
}
|
|
|
|
if tw != nil {
|
|
tw.Flush()
|
|
}
|
|
return b.Flush()
|
|
}
|
|
|
|
func runtime_cyclesPerSecond() int64
|