1
0
mirror of https://github.com/golang/go synced 2024-11-15 00:20:30 -07:00
go/src/sync/pool_test.go
Ian Lance Taylor b0b1d42db3 all: change from sort functions to slices functions where feasible
Doing this because the slices functions are slightly faster and
slightly easier to use. It also removes one dependency layer.

This CL does not change packages that are used during bootstrap,
as the bootstrap compiler does not have the required slices functions.
It does not change the go/scanner package because the ErrorList
Len, Swap, and Less methods are part of the Go 1 API.

Change-Id: If52899be791c829198e11d2408727720b91ebe8a
Reviewed-on: https://go-review.googlesource.com/c/go/+/587655
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
Reviewed-by: Ian Lance Taylor <iant@google.com>
Auto-Submit: Ian Lance Taylor <iant@google.com>
Commit-Queue: Ian Lance Taylor <iant@google.com>
Reviewed-by: Damien Neil <dneil@google.com>
2024-05-23 01:00:11 +00:00

396 lines
8.0 KiB
Go

// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Pool is no-op under race detector, so all these tests do not work.
//
//go:build !race
package sync_test
import (
"runtime"
"runtime/debug"
"slices"
. "sync"
"sync/atomic"
"testing"
"time"
)
func TestPool(t *testing.T) {
// disable GC so we can control when it happens.
defer debug.SetGCPercent(debug.SetGCPercent(-1))
var p Pool
if p.Get() != nil {
t.Fatal("expected empty")
}
// Make sure that the goroutine doesn't migrate to another P
// between Put and Get calls.
Runtime_procPin()
p.Put("a")
p.Put("b")
if g := p.Get(); g != "a" {
t.Fatalf("got %#v; want a", g)
}
if g := p.Get(); g != "b" {
t.Fatalf("got %#v; want b", g)
}
if g := p.Get(); g != nil {
t.Fatalf("got %#v; want nil", g)
}
Runtime_procUnpin()
// Put in a large number of objects so they spill into
// stealable space.
for i := 0; i < 100; i++ {
p.Put("c")
}
// After one GC, the victim cache should keep them alive.
runtime.GC()
if g := p.Get(); g != "c" {
t.Fatalf("got %#v; want c after GC", g)
}
// A second GC should drop the victim cache.
runtime.GC()
if g := p.Get(); g != nil {
t.Fatalf("got %#v; want nil after second GC", g)
}
}
func TestPoolNew(t *testing.T) {
// disable GC so we can control when it happens.
defer debug.SetGCPercent(debug.SetGCPercent(-1))
i := 0
p := Pool{
New: func() any {
i++
return i
},
}
if v := p.Get(); v != 1 {
t.Fatalf("got %v; want 1", v)
}
if v := p.Get(); v != 2 {
t.Fatalf("got %v; want 2", v)
}
// Make sure that the goroutine doesn't migrate to another P
// between Put and Get calls.
Runtime_procPin()
p.Put(42)
if v := p.Get(); v != 42 {
t.Fatalf("got %v; want 42", v)
}
Runtime_procUnpin()
if v := p.Get(); v != 3 {
t.Fatalf("got %v; want 3", v)
}
}
// Test that Pool does not hold pointers to previously cached resources.
func TestPoolGC(t *testing.T) {
testPool(t, true)
}
// Test that Pool releases resources on GC.
func TestPoolRelease(t *testing.T) {
testPool(t, false)
}
func testPool(t *testing.T, drain bool) {
var p Pool
const N = 100
loop:
for try := 0; try < 3; try++ {
if try == 1 && testing.Short() {
break
}
var fin, fin1 uint32
for i := 0; i < N; i++ {
v := new(string)
runtime.SetFinalizer(v, func(vv *string) {
atomic.AddUint32(&fin, 1)
})
p.Put(v)
}
if drain {
for i := 0; i < N; i++ {
p.Get()
}
}
for i := 0; i < 5; i++ {
runtime.GC()
time.Sleep(time.Duration(i*100+10) * time.Millisecond)
// 1 pointer can remain on stack or elsewhere
if fin1 = atomic.LoadUint32(&fin); fin1 >= N-1 {
continue loop
}
}
t.Fatalf("only %v out of %v resources are finalized on try %v", fin1, N, try)
}
}
func TestPoolStress(t *testing.T) {
const P = 10
N := int(1e6)
if testing.Short() {
N /= 100
}
var p Pool
done := make(chan bool)
for i := 0; i < P; i++ {
go func() {
var v any = 0
for j := 0; j < N; j++ {
if v == nil {
v = 0
}
p.Put(v)
v = p.Get()
if v != nil && v.(int) != 0 {
t.Errorf("expect 0, got %v", v)
break
}
}
done <- true
}()
}
for i := 0; i < P; i++ {
<-done
}
}
func TestPoolDequeue(t *testing.T) {
testPoolDequeue(t, NewPoolDequeue(16))
}
func TestPoolChain(t *testing.T) {
testPoolDequeue(t, NewPoolChain())
}
func testPoolDequeue(t *testing.T, d PoolDequeue) {
const P = 10
var N int = 2e6
if testing.Short() {
N = 1e3
}
have := make([]int32, N)
var stop int32
var wg WaitGroup
record := func(val int) {
atomic.AddInt32(&have[val], 1)
if val == N-1 {
atomic.StoreInt32(&stop, 1)
}
}
// Start P-1 consumers.
for i := 1; i < P; i++ {
wg.Add(1)
go func() {
fail := 0
for atomic.LoadInt32(&stop) == 0 {
val, ok := d.PopTail()
if ok {
fail = 0
record(val.(int))
} else {
// Speed up the test by
// allowing the pusher to run.
if fail++; fail%100 == 0 {
runtime.Gosched()
}
}
}
wg.Done()
}()
}
// Start 1 producer.
nPopHead := 0
wg.Add(1)
go func() {
for j := 0; j < N; j++ {
for !d.PushHead(j) {
// Allow a popper to run.
runtime.Gosched()
}
if j%10 == 0 {
val, ok := d.PopHead()
if ok {
nPopHead++
record(val.(int))
}
}
}
wg.Done()
}()
wg.Wait()
// Check results.
for i, count := range have {
if count != 1 {
t.Errorf("expected have[%d] = 1, got %d", i, count)
}
}
// Check that at least some PopHeads succeeded. We skip this
// check in short mode because it's common enough that the
// queue will stay nearly empty all the time and a PopTail
// will happen during the window between every PushHead and
// PopHead.
if !testing.Short() && nPopHead == 0 {
t.Errorf("popHead never succeeded")
}
}
func TestNilPool(t *testing.T) {
catch := func() {
if recover() == nil {
t.Error("expected panic")
}
}
var p *Pool
t.Run("Get", func(t *testing.T) {
defer catch()
if p.Get() != nil {
t.Error("expected empty")
}
t.Error("should have panicked already")
})
t.Run("Put", func(t *testing.T) {
defer catch()
p.Put("a")
t.Error("should have panicked already")
})
}
func BenchmarkPool(b *testing.B) {
var p Pool
b.RunParallel(func(pb *testing.PB) {
for pb.Next() {
p.Put(1)
p.Get()
}
})
}
func BenchmarkPoolOverflow(b *testing.B) {
var p Pool
b.RunParallel(func(pb *testing.PB) {
for pb.Next() {
for b := 0; b < 100; b++ {
p.Put(1)
}
for b := 0; b < 100; b++ {
p.Get()
}
}
})
}
// Simulate object starvation in order to force Ps to steal objects
// from other Ps.
func BenchmarkPoolStarvation(b *testing.B) {
var p Pool
count := 100
// Reduce number of putted objects by 33 %. It creates objects starvation
// that force P-local storage to steal objects from other Ps.
countStarved := count - int(float32(count)*0.33)
b.RunParallel(func(pb *testing.PB) {
for pb.Next() {
for b := 0; b < countStarved; b++ {
p.Put(1)
}
for b := 0; b < count; b++ {
p.Get()
}
}
})
}
var globalSink any
func BenchmarkPoolSTW(b *testing.B) {
// Take control of GC.
defer debug.SetGCPercent(debug.SetGCPercent(-1))
var mstats runtime.MemStats
var pauses []uint64
var p Pool
for i := 0; i < b.N; i++ {
// Put a large number of items into a pool.
const N = 100000
var item any = 42
for i := 0; i < N; i++ {
p.Put(item)
}
// Do a GC.
runtime.GC()
// Record pause time.
runtime.ReadMemStats(&mstats)
pauses = append(pauses, mstats.PauseNs[(mstats.NumGC+255)%256])
}
// Get pause time stats.
slices.Sort(pauses)
var total uint64
for _, ns := range pauses {
total += ns
}
// ns/op for this benchmark is average STW time.
b.ReportMetric(float64(total)/float64(b.N), "ns/op")
b.ReportMetric(float64(pauses[len(pauses)*95/100]), "p95-ns/STW")
b.ReportMetric(float64(pauses[len(pauses)*50/100]), "p50-ns/STW")
}
func BenchmarkPoolExpensiveNew(b *testing.B) {
// Populate a pool with items that are expensive to construct
// to stress pool cleanup and subsequent reconstruction.
// Create a ballast so the GC has a non-zero heap size and
// runs at reasonable times.
globalSink = make([]byte, 8<<20)
defer func() { globalSink = nil }()
// Create a pool that's "expensive" to fill.
var p Pool
var nNew uint64
p.New = func() any {
atomic.AddUint64(&nNew, 1)
time.Sleep(time.Millisecond)
return 42
}
var mstats1, mstats2 runtime.MemStats
runtime.ReadMemStats(&mstats1)
b.RunParallel(func(pb *testing.PB) {
// Simulate 100X the number of goroutines having items
// checked out from the Pool simultaneously.
items := make([]any, 100)
var sink []byte
for pb.Next() {
// Stress the pool.
for i := range items {
items[i] = p.Get()
// Simulate doing some work with this
// item checked out.
sink = make([]byte, 32<<10)
}
for i, v := range items {
p.Put(v)
items[i] = nil
}
}
_ = sink
})
runtime.ReadMemStats(&mstats2)
b.ReportMetric(float64(mstats2.NumGC-mstats1.NumGC)/float64(b.N), "GCs/op")
b.ReportMetric(float64(nNew)/float64(b.N), "New/op")
}