1
0
mirror of https://github.com/golang/go synced 2024-11-07 12:36:27 -07:00
go/src/runtime/mgcsweep.go
Michael Anthony Knyszek f2d5bd1ad3 runtime: move internal GC statistics from memstats to gcController
This change moves certain important but internal-only GC statistics from
memstats into gcController. These statistics are mainly used in pacing
the GC, so it makes sense to keep them in the pacer's state.

This CL was mostly generated via

rf '
    ex . {
	memstats.gc_trigger -> gcController.trigger
	memstats.triggerRatio -> gcController.triggerRatio
	memstats.heap_marked -> gcController.heapMarked
	memstats.heap_live -> gcController.heapLive
	memstats.heap_scan -> gcController.heapScan
    }
'

except for a few special cases, like updating names in comments and when
these fields are used within gcControllerState methods (at which point
they're accessed through the reciever).

For #44167.

Change-Id: I6bd1602585aeeb80818ded24c07d8e6fec992b93
Reviewed-on: https://go-review.googlesource.com/c/go/+/306598
Trust: Michael Knyszek <mknyszek@google.com>
Run-TryBot: Michael Knyszek <mknyszek@google.com>
TryBot-Result: Go Bot <gobot@golang.org>
Reviewed-by: Michael Pratt <mpratt@google.com>
2021-04-13 23:42:29 +00:00

751 lines
24 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Garbage collector: sweeping
// The sweeper consists of two different algorithms:
//
// * The object reclaimer finds and frees unmarked slots in spans. It
// can free a whole span if none of the objects are marked, but that
// isn't its goal. This can be driven either synchronously by
// mcentral.cacheSpan for mcentral spans, or asynchronously by
// sweepone, which looks at all the mcentral lists.
//
// * The span reclaimer looks for spans that contain no marked objects
// and frees whole spans. This is a separate algorithm because
// freeing whole spans is the hardest task for the object reclaimer,
// but is critical when allocating new spans. The entry point for
// this is mheap_.reclaim and it's driven by a sequential scan of
// the page marks bitmap in the heap arenas.
//
// Both algorithms ultimately call mspan.sweep, which sweeps a single
// heap span.
package runtime
import (
"runtime/internal/atomic"
"unsafe"
)
var sweep sweepdata
// State of background sweep.
type sweepdata struct {
lock mutex
g *g
parked bool
started bool
nbgsweep uint32
npausesweep uint32
// centralIndex is the current unswept span class.
// It represents an index into the mcentral span
// sets. Accessed and updated via its load and
// update methods. Not protected by a lock.
//
// Reset at mark termination.
// Used by mheap.nextSpanForSweep.
centralIndex sweepClass
}
// sweepClass is a spanClass and one bit to represent whether we're currently
// sweeping partial or full spans.
type sweepClass uint32
const (
numSweepClasses = numSpanClasses * 2
sweepClassDone sweepClass = sweepClass(^uint32(0))
)
func (s *sweepClass) load() sweepClass {
return sweepClass(atomic.Load((*uint32)(s)))
}
func (s *sweepClass) update(sNew sweepClass) {
// Only update *s if its current value is less than sNew,
// since *s increases monotonically.
sOld := s.load()
for sOld < sNew && !atomic.Cas((*uint32)(s), uint32(sOld), uint32(sNew)) {
sOld = s.load()
}
// TODO(mknyszek): This isn't the only place we have
// an atomic monotonically increasing counter. It would
// be nice to have an "atomic max" which is just implemented
// as the above on most architectures. Some architectures
// like RISC-V however have native support for an atomic max.
}
func (s *sweepClass) clear() {
atomic.Store((*uint32)(s), 0)
}
// split returns the underlying span class as well as
// whether we're interested in the full or partial
// unswept lists for that class, indicated as a boolean
// (true means "full").
func (s sweepClass) split() (spc spanClass, full bool) {
return spanClass(s >> 1), s&1 == 0
}
// nextSpanForSweep finds and pops the next span for sweeping from the
// central sweep buffers. It returns ownership of the span to the caller.
// Returns nil if no such span exists.
func (h *mheap) nextSpanForSweep() *mspan {
sg := h.sweepgen
for sc := sweep.centralIndex.load(); sc < numSweepClasses; sc++ {
spc, full := sc.split()
c := &h.central[spc].mcentral
var s *mspan
if full {
s = c.fullUnswept(sg).pop()
} else {
s = c.partialUnswept(sg).pop()
}
if s != nil {
// Write down that we found something so future sweepers
// can start from here.
sweep.centralIndex.update(sc)
return s
}
}
// Write down that we found nothing.
sweep.centralIndex.update(sweepClassDone)
return nil
}
// finishsweep_m ensures that all spans are swept.
//
// The world must be stopped. This ensures there are no sweeps in
// progress.
//
//go:nowritebarrier
func finishsweep_m() {
assertWorldStopped()
// Sweeping must be complete before marking commences, so
// sweep any unswept spans. If this is a concurrent GC, there
// shouldn't be any spans left to sweep, so this should finish
// instantly. If GC was forced before the concurrent sweep
// finished, there may be spans to sweep.
for sweepone() != ^uintptr(0) {
sweep.npausesweep++
}
// Reset all the unswept buffers, which should be empty.
// Do this in sweep termination as opposed to mark termination
// so that we can catch unswept spans and reclaim blocks as
// soon as possible.
sg := mheap_.sweepgen
for i := range mheap_.central {
c := &mheap_.central[i].mcentral
c.partialUnswept(sg).reset()
c.fullUnswept(sg).reset()
}
// Sweeping is done, so if the scavenger isn't already awake,
// wake it up. There's definitely work for it to do at this
// point.
wakeScavenger()
nextMarkBitArenaEpoch()
}
func bgsweep() {
sweep.g = getg()
lockInit(&sweep.lock, lockRankSweep)
lock(&sweep.lock)
sweep.parked = true
gcenable_setup <- 1
goparkunlock(&sweep.lock, waitReasonGCSweepWait, traceEvGoBlock, 1)
for {
for sweepone() != ^uintptr(0) {
sweep.nbgsweep++
Gosched()
}
for freeSomeWbufs(true) {
Gosched()
}
lock(&sweep.lock)
if !isSweepDone() {
// This can happen if a GC runs between
// gosweepone returning ^0 above
// and the lock being acquired.
unlock(&sweep.lock)
continue
}
sweep.parked = true
goparkunlock(&sweep.lock, waitReasonGCSweepWait, traceEvGoBlock, 1)
}
}
// sweepLocker acquires sweep ownership of spans and blocks sweep
// completion.
type sweepLocker struct {
// sweepGen is the sweep generation of the heap.
sweepGen uint32
// blocking indicates that this tracker is blocking sweep
// completion, usually as a result of acquiring sweep
// ownership of at least one span.
blocking bool
}
// sweepLocked represents sweep ownership of a span.
type sweepLocked struct {
*mspan
}
func newSweepLocker() sweepLocker {
return sweepLocker{
sweepGen: mheap_.sweepgen,
}
}
// tryAcquire attempts to acquire sweep ownership of span s. If it
// successfully acquires ownership, it blocks sweep completion.
func (l *sweepLocker) tryAcquire(s *mspan) (sweepLocked, bool) {
// Check before attempting to CAS.
if atomic.Load(&s.sweepgen) != l.sweepGen-2 {
return sweepLocked{}, false
}
// Add ourselves to sweepers before potentially taking
// ownership.
l.blockCompletion()
// Attempt to acquire sweep ownership of s.
if !atomic.Cas(&s.sweepgen, l.sweepGen-2, l.sweepGen-1) {
return sweepLocked{}, false
}
return sweepLocked{s}, true
}
// blockCompletion blocks sweep completion without acquiring any
// specific spans.
func (l *sweepLocker) blockCompletion() {
if !l.blocking {
atomic.Xadd(&mheap_.sweepers, +1)
l.blocking = true
}
}
func (l *sweepLocker) dispose() {
if !l.blocking {
return
}
// Decrement the number of active sweepers and if this is the
// last one, mark sweep as complete.
l.blocking = false
if atomic.Xadd(&mheap_.sweepers, -1) == 0 && atomic.Load(&mheap_.sweepDrained) != 0 {
l.sweepIsDone()
}
}
func (l *sweepLocker) sweepIsDone() {
if debug.gcpacertrace > 0 {
print("pacer: sweep done at heap size ", gcController.heapLive>>20, "MB; allocated ", (gcController.heapLive-mheap_.sweepHeapLiveBasis)>>20, "MB during sweep; swept ", mheap_.pagesSwept, " pages at ", mheap_.sweepPagesPerByte, " pages/byte\n")
}
}
// sweepone sweeps some unswept heap span and returns the number of pages returned
// to the heap, or ^uintptr(0) if there was nothing to sweep.
func sweepone() uintptr {
_g_ := getg()
// increment locks to ensure that the goroutine is not preempted
// in the middle of sweep thus leaving the span in an inconsistent state for next GC
_g_.m.locks++
if atomic.Load(&mheap_.sweepDrained) != 0 {
_g_.m.locks--
return ^uintptr(0)
}
// TODO(austin): sweepone is almost always called in a loop;
// lift the sweepLocker into its callers.
sl := newSweepLocker()
// Find a span to sweep.
npages := ^uintptr(0)
var noMoreWork bool
for {
s := mheap_.nextSpanForSweep()
if s == nil {
noMoreWork = atomic.Cas(&mheap_.sweepDrained, 0, 1)
break
}
if state := s.state.get(); state != mSpanInUse {
// This can happen if direct sweeping already
// swept this span, but in that case the sweep
// generation should always be up-to-date.
if !(s.sweepgen == sl.sweepGen || s.sweepgen == sl.sweepGen+3) {
print("runtime: bad span s.state=", state, " s.sweepgen=", s.sweepgen, " sweepgen=", sl.sweepGen, "\n")
throw("non in-use span in unswept list")
}
continue
}
if s, ok := sl.tryAcquire(s); ok {
// Sweep the span we found.
npages = s.npages
if s.sweep(false) {
// Whole span was freed. Count it toward the
// page reclaimer credit since these pages can
// now be used for span allocation.
atomic.Xadduintptr(&mheap_.reclaimCredit, npages)
} else {
// Span is still in-use, so this returned no
// pages to the heap and the span needs to
// move to the swept in-use list.
npages = 0
}
break
}
}
sl.dispose()
if noMoreWork {
// The sweep list is empty. There may still be
// concurrent sweeps running, but we're at least very
// close to done sweeping.
// Move the scavenge gen forward (signalling
// that there's new work to do) and wake the scavenger.
//
// The scavenger is signaled by the last sweeper because once
// sweeping is done, we will definitely have useful work for
// the scavenger to do, since the scavenger only runs over the
// heap once per GC cyle. This update is not done during sweep
// termination because in some cases there may be a long delay
// between sweep done and sweep termination (e.g. not enough
// allocations to trigger a GC) which would be nice to fill in
// with scavenging work.
systemstack(func() {
lock(&mheap_.lock)
mheap_.pages.scavengeStartGen()
unlock(&mheap_.lock)
})
// Since we might sweep in an allocation path, it's not possible
// for us to wake the scavenger directly via wakeScavenger, since
// it could allocate. Ask sysmon to do it for us instead.
readyForScavenger()
}
_g_.m.locks--
return npages
}
// isSweepDone reports whether all spans are swept.
//
// Note that this condition may transition from false to true at any
// time as the sweeper runs. It may transition from true to false if a
// GC runs; to prevent that the caller must be non-preemptible or must
// somehow block GC progress.
func isSweepDone() bool {
// Check that all spans have at least begun sweeping and there
// are no active sweepers. If both are true, then all spans
// have finished sweeping.
return atomic.Load(&mheap_.sweepDrained) != 0 && atomic.Load(&mheap_.sweepers) == 0
}
// Returns only when span s has been swept.
//go:nowritebarrier
func (s *mspan) ensureSwept() {
// Caller must disable preemption.
// Otherwise when this function returns the span can become unswept again
// (if GC is triggered on another goroutine).
_g_ := getg()
if _g_.m.locks == 0 && _g_.m.mallocing == 0 && _g_ != _g_.m.g0 {
throw("mspan.ensureSwept: m is not locked")
}
sl := newSweepLocker()
// The caller must be sure that the span is a mSpanInUse span.
if s, ok := sl.tryAcquire(s); ok {
s.sweep(false)
sl.dispose()
return
}
sl.dispose()
// unfortunate condition, and we don't have efficient means to wait
for {
spangen := atomic.Load(&s.sweepgen)
if spangen == sl.sweepGen || spangen == sl.sweepGen+3 {
break
}
osyield()
}
}
// Sweep frees or collects finalizers for blocks not marked in the mark phase.
// It clears the mark bits in preparation for the next GC round.
// Returns true if the span was returned to heap.
// If preserve=true, don't return it to heap nor relink in mcentral lists;
// caller takes care of it.
func (sl *sweepLocked) sweep(preserve bool) bool {
// It's critical that we enter this function with preemption disabled,
// GC must not start while we are in the middle of this function.
_g_ := getg()
if _g_.m.locks == 0 && _g_.m.mallocing == 0 && _g_ != _g_.m.g0 {
throw("mspan.sweep: m is not locked")
}
s := sl.mspan
if !preserve {
// We'll release ownership of this span. Nil it out to
// prevent the caller from accidentally using it.
sl.mspan = nil
}
sweepgen := mheap_.sweepgen
if state := s.state.get(); state != mSpanInUse || s.sweepgen != sweepgen-1 {
print("mspan.sweep: state=", state, " sweepgen=", s.sweepgen, " mheap.sweepgen=", sweepgen, "\n")
throw("mspan.sweep: bad span state")
}
if trace.enabled {
traceGCSweepSpan(s.npages * _PageSize)
}
atomic.Xadd64(&mheap_.pagesSwept, int64(s.npages))
spc := s.spanclass
size := s.elemsize
// The allocBits indicate which unmarked objects don't need to be
// processed since they were free at the end of the last GC cycle
// and were not allocated since then.
// If the allocBits index is >= s.freeindex and the bit
// is not marked then the object remains unallocated
// since the last GC.
// This situation is analogous to being on a freelist.
// Unlink & free special records for any objects we're about to free.
// Two complications here:
// 1. An object can have both finalizer and profile special records.
// In such case we need to queue finalizer for execution,
// mark the object as live and preserve the profile special.
// 2. A tiny object can have several finalizers setup for different offsets.
// If such object is not marked, we need to queue all finalizers at once.
// Both 1 and 2 are possible at the same time.
hadSpecials := s.specials != nil
siter := newSpecialsIter(s)
for siter.valid() {
// A finalizer can be set for an inner byte of an object, find object beginning.
objIndex := uintptr(siter.s.offset) / size
p := s.base() + objIndex*size
mbits := s.markBitsForIndex(objIndex)
if !mbits.isMarked() {
// This object is not marked and has at least one special record.
// Pass 1: see if it has at least one finalizer.
hasFin := false
endOffset := p - s.base() + size
for tmp := siter.s; tmp != nil && uintptr(tmp.offset) < endOffset; tmp = tmp.next {
if tmp.kind == _KindSpecialFinalizer {
// Stop freeing of object if it has a finalizer.
mbits.setMarkedNonAtomic()
hasFin = true
break
}
}
// Pass 2: queue all finalizers _or_ handle profile record.
for siter.valid() && uintptr(siter.s.offset) < endOffset {
// Find the exact byte for which the special was setup
// (as opposed to object beginning).
special := siter.s
p := s.base() + uintptr(special.offset)
if special.kind == _KindSpecialFinalizer || !hasFin {
siter.unlinkAndNext()
freeSpecial(special, unsafe.Pointer(p), size)
} else {
// The object has finalizers, so we're keeping it alive.
// All other specials only apply when an object is freed,
// so just keep the special record.
siter.next()
}
}
} else {
// object is still live
if siter.s.kind == _KindSpecialReachable {
special := siter.unlinkAndNext()
(*specialReachable)(unsafe.Pointer(special)).reachable = true
freeSpecial(special, unsafe.Pointer(p), size)
} else {
// keep special record
siter.next()
}
}
}
if hadSpecials && s.specials == nil {
spanHasNoSpecials(s)
}
if debug.allocfreetrace != 0 || debug.clobberfree != 0 || raceenabled || msanenabled {
// Find all newly freed objects. This doesn't have to
// efficient; allocfreetrace has massive overhead.
mbits := s.markBitsForBase()
abits := s.allocBitsForIndex(0)
for i := uintptr(0); i < s.nelems; i++ {
if !mbits.isMarked() && (abits.index < s.freeindex || abits.isMarked()) {
x := s.base() + i*s.elemsize
if debug.allocfreetrace != 0 {
tracefree(unsafe.Pointer(x), size)
}
if debug.clobberfree != 0 {
clobberfree(unsafe.Pointer(x), size)
}
if raceenabled {
racefree(unsafe.Pointer(x), size)
}
if msanenabled {
msanfree(unsafe.Pointer(x), size)
}
}
mbits.advance()
abits.advance()
}
}
// Check for zombie objects.
if s.freeindex < s.nelems {
// Everything < freeindex is allocated and hence
// cannot be zombies.
//
// Check the first bitmap byte, where we have to be
// careful with freeindex.
obj := s.freeindex
if (*s.gcmarkBits.bytep(obj / 8)&^*s.allocBits.bytep(obj / 8))>>(obj%8) != 0 {
s.reportZombies()
}
// Check remaining bytes.
for i := obj/8 + 1; i < divRoundUp(s.nelems, 8); i++ {
if *s.gcmarkBits.bytep(i)&^*s.allocBits.bytep(i) != 0 {
s.reportZombies()
}
}
}
// Count the number of free objects in this span.
nalloc := uint16(s.countAlloc())
nfreed := s.allocCount - nalloc
if nalloc > s.allocCount {
// The zombie check above should have caught this in
// more detail.
print("runtime: nelems=", s.nelems, " nalloc=", nalloc, " previous allocCount=", s.allocCount, " nfreed=", nfreed, "\n")
throw("sweep increased allocation count")
}
s.allocCount = nalloc
s.freeindex = 0 // reset allocation index to start of span.
if trace.enabled {
getg().m.p.ptr().traceReclaimed += uintptr(nfreed) * s.elemsize
}
// gcmarkBits becomes the allocBits.
// get a fresh cleared gcmarkBits in preparation for next GC
s.allocBits = s.gcmarkBits
s.gcmarkBits = newMarkBits(s.nelems)
// Initialize alloc bits cache.
s.refillAllocCache(0)
// The span must be in our exclusive ownership until we update sweepgen,
// check for potential races.
if state := s.state.get(); state != mSpanInUse || s.sweepgen != sweepgen-1 {
print("mspan.sweep: state=", state, " sweepgen=", s.sweepgen, " mheap.sweepgen=", sweepgen, "\n")
throw("mspan.sweep: bad span state after sweep")
}
if s.sweepgen == sweepgen+1 || s.sweepgen == sweepgen+3 {
throw("swept cached span")
}
// We need to set s.sweepgen = h.sweepgen only when all blocks are swept,
// because of the potential for a concurrent free/SetFinalizer.
//
// But we need to set it before we make the span available for allocation
// (return it to heap or mcentral), because allocation code assumes that a
// span is already swept if available for allocation.
//
// Serialization point.
// At this point the mark bits are cleared and allocation ready
// to go so release the span.
atomic.Store(&s.sweepgen, sweepgen)
if spc.sizeclass() != 0 {
// Handle spans for small objects.
if nfreed > 0 {
// Only mark the span as needing zeroing if we've freed any
// objects, because a fresh span that had been allocated into,
// wasn't totally filled, but then swept, still has all of its
// free slots zeroed.
s.needzero = 1
stats := memstats.heapStats.acquire()
atomic.Xadduintptr(&stats.smallFreeCount[spc.sizeclass()], uintptr(nfreed))
memstats.heapStats.release()
}
if !preserve {
// The caller may not have removed this span from whatever
// unswept set its on but taken ownership of the span for
// sweeping by updating sweepgen. If this span still is in
// an unswept set, then the mcentral will pop it off the
// set, check its sweepgen, and ignore it.
if nalloc == 0 {
// Free totally free span directly back to the heap.
mheap_.freeSpan(s)
return true
}
// Return span back to the right mcentral list.
if uintptr(nalloc) == s.nelems {
mheap_.central[spc].mcentral.fullSwept(sweepgen).push(s)
} else {
mheap_.central[spc].mcentral.partialSwept(sweepgen).push(s)
}
}
} else if !preserve {
// Handle spans for large objects.
if nfreed != 0 {
// Free large object span to heap.
// NOTE(rsc,dvyukov): The original implementation of efence
// in CL 22060046 used sysFree instead of sysFault, so that
// the operating system would eventually give the memory
// back to us again, so that an efence program could run
// longer without running out of memory. Unfortunately,
// calling sysFree here without any kind of adjustment of the
// heap data structures means that when the memory does
// come back to us, we have the wrong metadata for it, either in
// the mspan structures or in the garbage collection bitmap.
// Using sysFault here means that the program will run out of
// memory fairly quickly in efence mode, but at least it won't
// have mysterious crashes due to confused memory reuse.
// It should be possible to switch back to sysFree if we also
// implement and then call some kind of mheap.deleteSpan.
if debug.efence > 0 {
s.limit = 0 // prevent mlookup from finding this span
sysFault(unsafe.Pointer(s.base()), size)
} else {
mheap_.freeSpan(s)
}
stats := memstats.heapStats.acquire()
atomic.Xadduintptr(&stats.largeFreeCount, 1)
atomic.Xadduintptr(&stats.largeFree, size)
memstats.heapStats.release()
return true
}
// Add a large span directly onto the full+swept list.
mheap_.central[spc].mcentral.fullSwept(sweepgen).push(s)
}
return false
}
// reportZombies reports any marked but free objects in s and throws.
//
// This generally means one of the following:
//
// 1. User code converted a pointer to a uintptr and then back
// unsafely, and a GC ran while the uintptr was the only reference to
// an object.
//
// 2. User code (or a compiler bug) constructed a bad pointer that
// points to a free slot, often a past-the-end pointer.
//
// 3. The GC two cycles ago missed a pointer and freed a live object,
// but it was still live in the last cycle, so this GC cycle found a
// pointer to that object and marked it.
func (s *mspan) reportZombies() {
printlock()
print("runtime: marked free object in span ", s, ", elemsize=", s.elemsize, " freeindex=", s.freeindex, " (bad use of unsafe.Pointer? try -d=checkptr)\n")
mbits := s.markBitsForBase()
abits := s.allocBitsForIndex(0)
for i := uintptr(0); i < s.nelems; i++ {
addr := s.base() + i*s.elemsize
print(hex(addr))
alloc := i < s.freeindex || abits.isMarked()
if alloc {
print(" alloc")
} else {
print(" free ")
}
if mbits.isMarked() {
print(" marked ")
} else {
print(" unmarked")
}
zombie := mbits.isMarked() && !alloc
if zombie {
print(" zombie")
}
print("\n")
if zombie {
length := s.elemsize
if length > 1024 {
length = 1024
}
hexdumpWords(addr, addr+length, nil)
}
mbits.advance()
abits.advance()
}
throw("found pointer to free object")
}
// deductSweepCredit deducts sweep credit for allocating a span of
// size spanBytes. This must be performed *before* the span is
// allocated to ensure the system has enough credit. If necessary, it
// performs sweeping to prevent going in to debt. If the caller will
// also sweep pages (e.g., for a large allocation), it can pass a
// non-zero callerSweepPages to leave that many pages unswept.
//
// deductSweepCredit makes a worst-case assumption that all spanBytes
// bytes of the ultimately allocated span will be available for object
// allocation.
//
// deductSweepCredit is the core of the "proportional sweep" system.
// It uses statistics gathered by the garbage collector to perform
// enough sweeping so that all pages are swept during the concurrent
// sweep phase between GC cycles.
//
// mheap_ must NOT be locked.
func deductSweepCredit(spanBytes uintptr, callerSweepPages uintptr) {
if mheap_.sweepPagesPerByte == 0 {
// Proportional sweep is done or disabled.
return
}
if trace.enabled {
traceGCSweepStart()
}
retry:
sweptBasis := atomic.Load64(&mheap_.pagesSweptBasis)
// Fix debt if necessary.
newHeapLive := uintptr(atomic.Load64(&gcController.heapLive)-mheap_.sweepHeapLiveBasis) + spanBytes
pagesTarget := int64(mheap_.sweepPagesPerByte*float64(newHeapLive)) - int64(callerSweepPages)
for pagesTarget > int64(atomic.Load64(&mheap_.pagesSwept)-sweptBasis) {
if sweepone() == ^uintptr(0) {
mheap_.sweepPagesPerByte = 0
break
}
if atomic.Load64(&mheap_.pagesSweptBasis) != sweptBasis {
// Sweep pacing changed. Recompute debt.
goto retry
}
}
if trace.enabled {
traceGCSweepDone()
}
}
// clobberfree sets the memory content at x to bad content, for debugging
// purposes.
func clobberfree(x unsafe.Pointer, size uintptr) {
// size (span.elemsize) is always a multiple of 4.
for i := uintptr(0); i < size; i += 4 {
*(*uint32)(add(x, i)) = 0xdeadbeef
}
}