1
0
mirror of https://github.com/golang/go synced 2024-11-26 13:58:48 -07:00
go/src/runtime/syscall_windows.go
Russ Cox ef225d1c57 all: document legacy //go:linkname for modules with ≥100,000 dependents
For #67401.

Change-Id: I51f5b561ee11eb242e3b1585d591281d0df4fc24
Reviewed-on: https://go-review.googlesource.com/c/go/+/587215
Auto-Submit: Russ Cox <rsc@golang.org>
Reviewed-by: Cherry Mui <cherryyz@google.com>
LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com>
2024-05-22 20:12:46 +00:00

526 lines
17 KiB
Go

// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime
import (
"internal/abi"
"internal/goarch"
"unsafe"
)
// cbs stores all registered Go callbacks.
var cbs struct {
lock mutex // use cbsLock / cbsUnlock for race instrumentation.
ctxt [cb_max]winCallback
index map[winCallbackKey]int
n int
}
func cbsLock() {
lock(&cbs.lock)
// compileCallback is used by goenvs prior to completion of schedinit.
// raceacquire involves a racecallback to get the proc, which is not
// safe prior to scheduler initialization. Thus avoid instrumentation
// until then.
if raceenabled && mainStarted {
raceacquire(unsafe.Pointer(&cbs.lock))
}
}
func cbsUnlock() {
if raceenabled && mainStarted {
racerelease(unsafe.Pointer(&cbs.lock))
}
unlock(&cbs.lock)
}
// winCallback records information about a registered Go callback.
type winCallback struct {
fn *funcval // Go function
retPop uintptr // For 386 cdecl, how many bytes to pop on return
abiMap abiDesc
}
// abiPartKind is the action an abiPart should take.
type abiPartKind int
const (
abiPartBad abiPartKind = iota
abiPartStack // Move a value from memory to the stack.
abiPartReg // Move a value from memory to a register.
)
// abiPart encodes a step in translating between calling ABIs.
type abiPart struct {
kind abiPartKind
srcStackOffset uintptr
dstStackOffset uintptr // used if kind == abiPartStack
dstRegister int // used if kind == abiPartReg
len uintptr
}
func (a *abiPart) tryMerge(b abiPart) bool {
if a.kind != abiPartStack || b.kind != abiPartStack {
return false
}
if a.srcStackOffset+a.len == b.srcStackOffset && a.dstStackOffset+a.len == b.dstStackOffset {
a.len += b.len
return true
}
return false
}
// abiDesc specifies how to translate from a C frame to a Go
// frame. This does not specify how to translate back because
// the result is always a uintptr. If the C ABI is fastcall,
// this assumes the four fastcall registers were first spilled
// to the shadow space.
type abiDesc struct {
parts []abiPart
srcStackSize uintptr // stdcall/fastcall stack space tracking
dstStackSize uintptr // Go stack space used
dstSpill uintptr // Extra stack space for argument spill slots
dstRegisters int // Go ABI int argument registers used
// retOffset is the offset of the uintptr-sized result in the Go
// frame.
retOffset uintptr
}
func (p *abiDesc) assignArg(t *_type) {
if t.Size_ > goarch.PtrSize {
// We don't support this right now. In
// stdcall/cdecl, 64-bit ints and doubles are
// passed as two words (little endian); and
// structs are pushed on the stack. In
// fastcall, arguments larger than the word
// size are passed by reference. On arm,
// 8-byte aligned arguments round up to the
// next even register and can be split across
// registers and the stack.
panic("compileCallback: argument size is larger than uintptr")
}
if k := t.Kind_ & abi.KindMask; GOARCH != "386" && (k == abi.Float32 || k == abi.Float64) {
// In fastcall, floating-point arguments in
// the first four positions are passed in
// floating-point registers, which we don't
// currently spill. arm passes floating-point
// arguments in VFP registers, which we also
// don't support.
// So basically we only support 386.
panic("compileCallback: float arguments not supported")
}
if t.Size_ == 0 {
// The Go ABI aligns for zero-sized types.
p.dstStackSize = alignUp(p.dstStackSize, uintptr(t.Align_))
return
}
// In the C ABI, we're already on a word boundary.
// Also, sub-word-sized fastcall register arguments
// are stored to the least-significant bytes of the
// argument word and all supported Windows
// architectures are little endian, so srcStackOffset
// is already pointing to the right place for smaller
// arguments. The same is true on arm.
oldParts := p.parts
if p.tryRegAssignArg(t, 0) {
// Account for spill space.
//
// TODO(mknyszek): Remove this when we no longer have
// caller reserved spill space.
p.dstSpill = alignUp(p.dstSpill, uintptr(t.Align_))
p.dstSpill += t.Size_
} else {
// Register assignment failed.
// Undo the work and stack assign.
p.parts = oldParts
// The Go ABI aligns arguments.
p.dstStackSize = alignUp(p.dstStackSize, uintptr(t.Align_))
// Copy just the size of the argument. Note that this
// could be a small by-value struct, but C and Go
// struct layouts are compatible, so we can copy these
// directly, too.
part := abiPart{
kind: abiPartStack,
srcStackOffset: p.srcStackSize,
dstStackOffset: p.dstStackSize,
len: t.Size_,
}
// Add this step to the adapter.
if len(p.parts) == 0 || !p.parts[len(p.parts)-1].tryMerge(part) {
p.parts = append(p.parts, part)
}
// The Go ABI packs arguments.
p.dstStackSize += t.Size_
}
// cdecl, stdcall, fastcall, and arm pad arguments to word size.
// TODO(rsc): On arm and arm64 do we need to skip the caller's saved LR?
p.srcStackSize += goarch.PtrSize
}
// tryRegAssignArg tries to register-assign a value of type t.
// If this type is nested in an aggregate type, then offset is the
// offset of this type within its parent type.
// Assumes t.size <= goarch.PtrSize and t.size != 0.
//
// Returns whether the assignment succeeded.
func (p *abiDesc) tryRegAssignArg(t *_type, offset uintptr) bool {
switch k := t.Kind_ & abi.KindMask; k {
case abi.Bool, abi.Int, abi.Int8, abi.Int16, abi.Int32, abi.Uint, abi.Uint8, abi.Uint16, abi.Uint32, abi.Uintptr, abi.Pointer, abi.UnsafePointer:
// Assign a register for all these types.
return p.assignReg(t.Size_, offset)
case abi.Int64, abi.Uint64:
// Only register-assign if the registers are big enough.
if goarch.PtrSize == 8 {
return p.assignReg(t.Size_, offset)
}
case abi.Array:
at := (*arraytype)(unsafe.Pointer(t))
if at.Len == 1 {
return p.tryRegAssignArg(at.Elem, offset) // TODO fix when runtime is fully commoned up w/ abi.Type
}
case abi.Struct:
st := (*structtype)(unsafe.Pointer(t))
for i := range st.Fields {
f := &st.Fields[i]
if !p.tryRegAssignArg(f.Typ, offset+f.Offset) {
return false
}
}
return true
}
// Pointer-sized types such as maps and channels are currently
// not supported.
panic("compileCallback: type " + toRType(t).string() + " is currently not supported for use in system callbacks")
}
// assignReg attempts to assign a single register for an
// argument with the given size, at the given offset into the
// value in the C ABI space.
//
// Returns whether the assignment was successful.
func (p *abiDesc) assignReg(size, offset uintptr) bool {
if p.dstRegisters >= intArgRegs {
return false
}
p.parts = append(p.parts, abiPart{
kind: abiPartReg,
srcStackOffset: p.srcStackSize + offset,
dstRegister: p.dstRegisters,
len: size,
})
p.dstRegisters++
return true
}
type winCallbackKey struct {
fn *funcval
cdecl bool
}
func callbackasm()
// callbackasmAddr returns address of runtime.callbackasm
// function adjusted by i.
// On x86 and amd64, runtime.callbackasm is a series of CALL instructions,
// and we want callback to arrive at
// correspondent call instruction instead of start of
// runtime.callbackasm.
// On ARM, runtime.callbackasm is a series of mov and branch instructions.
// R12 is loaded with the callback index. Each entry is two instructions,
// hence 8 bytes.
func callbackasmAddr(i int) uintptr {
var entrySize int
switch GOARCH {
default:
panic("unsupported architecture")
case "386", "amd64":
entrySize = 5
case "arm", "arm64":
// On ARM and ARM64, each entry is a MOV instruction
// followed by a branch instruction
entrySize = 8
}
return abi.FuncPCABI0(callbackasm) + uintptr(i*entrySize)
}
const callbackMaxFrame = 64 * goarch.PtrSize
// compileCallback converts a Go function fn into a C function pointer
// that can be passed to Windows APIs.
//
// On 386, if cdecl is true, the returned C function will use the
// cdecl calling convention; otherwise, it will use stdcall. On amd64,
// it always uses fastcall. On arm, it always uses the ARM convention.
//
//go:linkname compileCallback syscall.compileCallback
func compileCallback(fn eface, cdecl bool) (code uintptr) {
if GOARCH != "386" {
// cdecl is only meaningful on 386.
cdecl = false
}
if fn._type == nil || (fn._type.Kind_&abi.KindMask) != abi.Func {
panic("compileCallback: expected function with one uintptr-sized result")
}
ft := (*functype)(unsafe.Pointer(fn._type))
// Check arguments and construct ABI translation.
var abiMap abiDesc
for _, t := range ft.InSlice() {
abiMap.assignArg(t)
}
// The Go ABI aligns the result to the word size. src is
// already aligned.
abiMap.dstStackSize = alignUp(abiMap.dstStackSize, goarch.PtrSize)
abiMap.retOffset = abiMap.dstStackSize
if len(ft.OutSlice()) != 1 {
panic("compileCallback: expected function with one uintptr-sized result")
}
if ft.OutSlice()[0].Size_ != goarch.PtrSize {
panic("compileCallback: expected function with one uintptr-sized result")
}
if k := ft.OutSlice()[0].Kind_ & abi.KindMask; k == abi.Float32 || k == abi.Float64 {
// In cdecl and stdcall, float results are returned in
// ST(0). In fastcall, they're returned in XMM0.
// Either way, it's not AX.
panic("compileCallback: float results not supported")
}
if intArgRegs == 0 {
// Make room for the uintptr-sized result.
// If there are argument registers, the return value will
// be passed in the first register.
abiMap.dstStackSize += goarch.PtrSize
}
// TODO(mknyszek): Remove dstSpill from this calculation when we no longer have
// caller reserved spill space.
frameSize := alignUp(abiMap.dstStackSize, goarch.PtrSize)
frameSize += abiMap.dstSpill
if frameSize > callbackMaxFrame {
panic("compileCallback: function argument frame too large")
}
// For cdecl, the callee is responsible for popping its
// arguments from the C stack.
var retPop uintptr
if cdecl {
retPop = abiMap.srcStackSize
}
key := winCallbackKey{(*funcval)(fn.data), cdecl}
cbsLock()
// Check if this callback is already registered.
if n, ok := cbs.index[key]; ok {
cbsUnlock()
return callbackasmAddr(n)
}
// Register the callback.
if cbs.index == nil {
cbs.index = make(map[winCallbackKey]int)
}
n := cbs.n
if n >= len(cbs.ctxt) {
cbsUnlock()
throw("too many callback functions")
}
c := winCallback{key.fn, retPop, abiMap}
cbs.ctxt[n] = c
cbs.index[key] = n
cbs.n++
cbsUnlock()
return callbackasmAddr(n)
}
type callbackArgs struct {
index uintptr
// args points to the argument block.
//
// For cdecl and stdcall, all arguments are on the stack.
//
// For fastcall, the trampoline spills register arguments to
// the reserved spill slots below the stack arguments,
// resulting in a layout equivalent to stdcall.
//
// For arm, the trampoline stores the register arguments just
// below the stack arguments, so again we can treat it as one
// big stack arguments frame.
args unsafe.Pointer
// Below are out-args from callbackWrap
result uintptr
retPop uintptr // For 386 cdecl, how many bytes to pop on return
}
// callbackWrap is called by callbackasm to invoke a registered C callback.
func callbackWrap(a *callbackArgs) {
c := cbs.ctxt[a.index]
a.retPop = c.retPop
// Convert from C to Go ABI.
var regs abi.RegArgs
var frame [callbackMaxFrame]byte
goArgs := unsafe.Pointer(&frame)
for _, part := range c.abiMap.parts {
switch part.kind {
case abiPartStack:
memmove(add(goArgs, part.dstStackOffset), add(a.args, part.srcStackOffset), part.len)
case abiPartReg:
goReg := unsafe.Pointer(&regs.Ints[part.dstRegister])
memmove(goReg, add(a.args, part.srcStackOffset), part.len)
default:
panic("bad ABI description")
}
}
// TODO(mknyszek): Remove this when we no longer have
// caller reserved spill space.
frameSize := alignUp(c.abiMap.dstStackSize, goarch.PtrSize)
frameSize += c.abiMap.dstSpill
// Even though this is copying back results, we can pass a nil
// type because those results must not require write barriers.
reflectcall(nil, unsafe.Pointer(c.fn), noescape(goArgs), uint32(c.abiMap.dstStackSize), uint32(c.abiMap.retOffset), uint32(frameSize), &regs)
// Extract the result.
//
// There's always exactly one return value, one pointer in size.
// If it's on the stack, then we will have reserved space for it
// at the end of the frame, otherwise it was passed in a register.
if c.abiMap.dstStackSize != c.abiMap.retOffset {
a.result = *(*uintptr)(unsafe.Pointer(&frame[c.abiMap.retOffset]))
} else {
var zero int
// On architectures with no registers, Ints[0] would be a compile error,
// so we use a dynamic index. These architectures will never take this
// branch, so this won't cause a runtime panic.
a.result = regs.Ints[zero]
}
}
const _LOAD_LIBRARY_SEARCH_SYSTEM32 = 0x00000800
//go:linkname syscall_loadsystemlibrary syscall.loadsystemlibrary
func syscall_loadsystemlibrary(filename *uint16) (handle, err uintptr) {
handle, _, err = syscall_SyscallN(uintptr(unsafe.Pointer(_LoadLibraryExW)), uintptr(unsafe.Pointer(filename)), 0, _LOAD_LIBRARY_SEARCH_SYSTEM32)
KeepAlive(filename)
if handle != 0 {
err = 0
}
return
}
// golang.org/x/sys linknames syscall.loadlibrary
// (in addition to standard package syscall).
// Do not remove or change the type signature.
//
//go:linkname syscall_loadlibrary syscall.loadlibrary
func syscall_loadlibrary(filename *uint16) (handle, err uintptr) {
handle, _, err = syscall_SyscallN(uintptr(unsafe.Pointer(_LoadLibraryW)), uintptr(unsafe.Pointer(filename)))
KeepAlive(filename)
if handle != 0 {
err = 0
}
return
}
// golang.org/x/sys linknames syscall.getprocaddress
// (in addition to standard package syscall).
// Do not remove or change the type signature.
//
//go:linkname syscall_getprocaddress syscall.getprocaddress
func syscall_getprocaddress(handle uintptr, procname *byte) (outhandle, err uintptr) {
outhandle, _, err = syscall_SyscallN(uintptr(unsafe.Pointer(_GetProcAddress)), handle, uintptr(unsafe.Pointer(procname)))
KeepAlive(procname)
if outhandle != 0 {
err = 0
}
return
}
//go:linkname syscall_Syscall syscall.Syscall
//go:nosplit
func syscall_Syscall(fn, nargs, a1, a2, a3 uintptr) (r1, r2, err uintptr) {
args := [...]uintptr{a1, a2, a3}
return syscall_SyscallN(fn, args[:nargs]...)
}
//go:linkname syscall_Syscall6 syscall.Syscall6
//go:nosplit
func syscall_Syscall6(fn, nargs, a1, a2, a3, a4, a5, a6 uintptr) (r1, r2, err uintptr) {
args := [...]uintptr{a1, a2, a3, a4, a5, a6}
return syscall_SyscallN(fn, args[:nargs]...)
}
//go:linkname syscall_Syscall9 syscall.Syscall9
//go:nosplit
func syscall_Syscall9(fn, nargs, a1, a2, a3, a4, a5, a6, a7, a8, a9 uintptr) (r1, r2, err uintptr) {
args := [...]uintptr{a1, a2, a3, a4, a5, a6, a7, a8, a9}
return syscall_SyscallN(fn, args[:nargs]...)
}
//go:linkname syscall_Syscall12 syscall.Syscall12
//go:nosplit
func syscall_Syscall12(fn, nargs, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12 uintptr) (r1, r2, err uintptr) {
args := [...]uintptr{a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12}
return syscall_SyscallN(fn, args[:nargs]...)
}
//go:linkname syscall_Syscall15 syscall.Syscall15
//go:nosplit
func syscall_Syscall15(fn, nargs, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15 uintptr) (r1, r2, err uintptr) {
args := [...]uintptr{a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15}
return syscall_SyscallN(fn, args[:nargs]...)
}
//go:linkname syscall_Syscall18 syscall.Syscall18
//go:nosplit
func syscall_Syscall18(fn, nargs, a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18 uintptr) (r1, r2, err uintptr) {
args := [...]uintptr{a1, a2, a3, a4, a5, a6, a7, a8, a9, a10, a11, a12, a13, a14, a15, a16, a17, a18}
return syscall_SyscallN(fn, args[:nargs]...)
}
// maxArgs should be divisible by 2, as Windows stack
// must be kept 16-byte aligned on syscall entry.
//
// Although it only permits maximum 42 parameters, it
// is arguably large enough.
const maxArgs = 42
//go:linkname syscall_SyscallN syscall.SyscallN
//go:nosplit
func syscall_SyscallN(fn uintptr, args ...uintptr) (r1, r2, err uintptr) {
if len(args) > maxArgs {
panic("runtime: SyscallN has too many arguments")
}
// The cgocall parameters are stored in m instead of in
// the stack because the stack can move during fn if it
// calls back into Go.
c := &getg().m.winsyscall
c.fn = fn
c.n = uintptr(len(args))
if c.n != 0 {
c.args = uintptr(noescape(unsafe.Pointer(&args[0])))
}
cgocall(asmstdcallAddr, unsafe.Pointer(c))
// cgocall may reschedule us on to a different M,
// but it copies the return values into the new M's
// so we can read them from there.
c = &getg().m.winsyscall
return c.r1, c.r2, c.err
}