mirror of
https://github.com/golang/go
synced 2024-11-26 13:58:48 -07:00
fc5073bc15
Cleanup and friction reduction For #65355. Change-Id: Ia14c9dc584a529a35b97801dd3e95b9acc99a511 Reviewed-on: https://go-review.googlesource.com/c/go/+/600436 Reviewed-by: Keith Randall <khr@google.com> LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com> Reviewed-by: Keith Randall <khr@golang.org>
554 lines
19 KiB
Go
554 lines
19 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Garbage collector: finalizers and block profiling.
|
|
|
|
package runtime
|
|
|
|
import (
|
|
"internal/abi"
|
|
"internal/goarch"
|
|
"internal/runtime/atomic"
|
|
"internal/runtime/sys"
|
|
"unsafe"
|
|
)
|
|
|
|
// finblock is an array of finalizers to be executed. finblocks are
|
|
// arranged in a linked list for the finalizer queue.
|
|
//
|
|
// finblock is allocated from non-GC'd memory, so any heap pointers
|
|
// must be specially handled. GC currently assumes that the finalizer
|
|
// queue does not grow during marking (but it can shrink).
|
|
type finblock struct {
|
|
_ sys.NotInHeap
|
|
alllink *finblock
|
|
next *finblock
|
|
cnt uint32
|
|
_ int32
|
|
fin [(_FinBlockSize - 2*goarch.PtrSize - 2*4) / unsafe.Sizeof(finalizer{})]finalizer
|
|
}
|
|
|
|
var fingStatus atomic.Uint32
|
|
|
|
// finalizer goroutine status.
|
|
const (
|
|
fingUninitialized uint32 = iota
|
|
fingCreated uint32 = 1 << (iota - 1)
|
|
fingRunningFinalizer
|
|
fingWait
|
|
fingWake
|
|
)
|
|
|
|
var finlock mutex // protects the following variables
|
|
var fing *g // goroutine that runs finalizers
|
|
var finq *finblock // list of finalizers that are to be executed
|
|
var finc *finblock // cache of free blocks
|
|
var finptrmask [_FinBlockSize / goarch.PtrSize / 8]byte
|
|
|
|
var allfin *finblock // list of all blocks
|
|
|
|
// NOTE: Layout known to queuefinalizer.
|
|
type finalizer struct {
|
|
fn *funcval // function to call (may be a heap pointer)
|
|
arg unsafe.Pointer // ptr to object (may be a heap pointer)
|
|
nret uintptr // bytes of return values from fn
|
|
fint *_type // type of first argument of fn
|
|
ot *ptrtype // type of ptr to object (may be a heap pointer)
|
|
}
|
|
|
|
var finalizer1 = [...]byte{
|
|
// Each Finalizer is 5 words, ptr ptr INT ptr ptr (INT = uintptr here)
|
|
// Each byte describes 8 words.
|
|
// Need 8 Finalizers described by 5 bytes before pattern repeats:
|
|
// ptr ptr INT ptr ptr
|
|
// ptr ptr INT ptr ptr
|
|
// ptr ptr INT ptr ptr
|
|
// ptr ptr INT ptr ptr
|
|
// ptr ptr INT ptr ptr
|
|
// ptr ptr INT ptr ptr
|
|
// ptr ptr INT ptr ptr
|
|
// ptr ptr INT ptr ptr
|
|
// aka
|
|
//
|
|
// ptr ptr INT ptr ptr ptr ptr INT
|
|
// ptr ptr ptr ptr INT ptr ptr ptr
|
|
// ptr INT ptr ptr ptr ptr INT ptr
|
|
// ptr ptr ptr INT ptr ptr ptr ptr
|
|
// INT ptr ptr ptr ptr INT ptr ptr
|
|
//
|
|
// Assumptions about Finalizer layout checked below.
|
|
1<<0 | 1<<1 | 0<<2 | 1<<3 | 1<<4 | 1<<5 | 1<<6 | 0<<7,
|
|
1<<0 | 1<<1 | 1<<2 | 1<<3 | 0<<4 | 1<<5 | 1<<6 | 1<<7,
|
|
1<<0 | 0<<1 | 1<<2 | 1<<3 | 1<<4 | 1<<5 | 0<<6 | 1<<7,
|
|
1<<0 | 1<<1 | 1<<2 | 0<<3 | 1<<4 | 1<<5 | 1<<6 | 1<<7,
|
|
0<<0 | 1<<1 | 1<<2 | 1<<3 | 1<<4 | 0<<5 | 1<<6 | 1<<7,
|
|
}
|
|
|
|
// lockRankMayQueueFinalizer records the lock ranking effects of a
|
|
// function that may call queuefinalizer.
|
|
func lockRankMayQueueFinalizer() {
|
|
lockWithRankMayAcquire(&finlock, getLockRank(&finlock))
|
|
}
|
|
|
|
func queuefinalizer(p unsafe.Pointer, fn *funcval, nret uintptr, fint *_type, ot *ptrtype) {
|
|
if gcphase != _GCoff {
|
|
// Currently we assume that the finalizer queue won't
|
|
// grow during marking so we don't have to rescan it
|
|
// during mark termination. If we ever need to lift
|
|
// this assumption, we can do it by adding the
|
|
// necessary barriers to queuefinalizer (which it may
|
|
// have automatically).
|
|
throw("queuefinalizer during GC")
|
|
}
|
|
|
|
lock(&finlock)
|
|
if finq == nil || finq.cnt == uint32(len(finq.fin)) {
|
|
if finc == nil {
|
|
finc = (*finblock)(persistentalloc(_FinBlockSize, 0, &memstats.gcMiscSys))
|
|
finc.alllink = allfin
|
|
allfin = finc
|
|
if finptrmask[0] == 0 {
|
|
// Build pointer mask for Finalizer array in block.
|
|
// Check assumptions made in finalizer1 array above.
|
|
if (unsafe.Sizeof(finalizer{}) != 5*goarch.PtrSize ||
|
|
unsafe.Offsetof(finalizer{}.fn) != 0 ||
|
|
unsafe.Offsetof(finalizer{}.arg) != goarch.PtrSize ||
|
|
unsafe.Offsetof(finalizer{}.nret) != 2*goarch.PtrSize ||
|
|
unsafe.Offsetof(finalizer{}.fint) != 3*goarch.PtrSize ||
|
|
unsafe.Offsetof(finalizer{}.ot) != 4*goarch.PtrSize) {
|
|
throw("finalizer out of sync")
|
|
}
|
|
for i := range finptrmask {
|
|
finptrmask[i] = finalizer1[i%len(finalizer1)]
|
|
}
|
|
}
|
|
}
|
|
block := finc
|
|
finc = block.next
|
|
block.next = finq
|
|
finq = block
|
|
}
|
|
f := &finq.fin[finq.cnt]
|
|
atomic.Xadd(&finq.cnt, +1) // Sync with markroots
|
|
f.fn = fn
|
|
f.nret = nret
|
|
f.fint = fint
|
|
f.ot = ot
|
|
f.arg = p
|
|
unlock(&finlock)
|
|
fingStatus.Or(fingWake)
|
|
}
|
|
|
|
//go:nowritebarrier
|
|
func iterate_finq(callback func(*funcval, unsafe.Pointer, uintptr, *_type, *ptrtype)) {
|
|
for fb := allfin; fb != nil; fb = fb.alllink {
|
|
for i := uint32(0); i < fb.cnt; i++ {
|
|
f := &fb.fin[i]
|
|
callback(f.fn, f.arg, f.nret, f.fint, f.ot)
|
|
}
|
|
}
|
|
}
|
|
|
|
func wakefing() *g {
|
|
if ok := fingStatus.CompareAndSwap(fingCreated|fingWait|fingWake, fingCreated); ok {
|
|
return fing
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func createfing() {
|
|
// start the finalizer goroutine exactly once
|
|
if fingStatus.Load() == fingUninitialized && fingStatus.CompareAndSwap(fingUninitialized, fingCreated) {
|
|
go runfinq()
|
|
}
|
|
}
|
|
|
|
func finalizercommit(gp *g, lock unsafe.Pointer) bool {
|
|
unlock((*mutex)(lock))
|
|
// fingStatus should be modified after fing is put into a waiting state
|
|
// to avoid waking fing in running state, even if it is about to be parked.
|
|
fingStatus.Or(fingWait)
|
|
return true
|
|
}
|
|
|
|
// This is the goroutine that runs all of the finalizers.
|
|
func runfinq() {
|
|
var (
|
|
frame unsafe.Pointer
|
|
framecap uintptr
|
|
argRegs int
|
|
)
|
|
|
|
gp := getg()
|
|
lock(&finlock)
|
|
fing = gp
|
|
unlock(&finlock)
|
|
|
|
for {
|
|
lock(&finlock)
|
|
fb := finq
|
|
finq = nil
|
|
if fb == nil {
|
|
gopark(finalizercommit, unsafe.Pointer(&finlock), waitReasonFinalizerWait, traceBlockSystemGoroutine, 1)
|
|
continue
|
|
}
|
|
argRegs = intArgRegs
|
|
unlock(&finlock)
|
|
if raceenabled {
|
|
racefingo()
|
|
}
|
|
for fb != nil {
|
|
for i := fb.cnt; i > 0; i-- {
|
|
f := &fb.fin[i-1]
|
|
|
|
var regs abi.RegArgs
|
|
// The args may be passed in registers or on stack. Even for
|
|
// the register case, we still need the spill slots.
|
|
// TODO: revisit if we remove spill slots.
|
|
//
|
|
// Unfortunately because we can have an arbitrary
|
|
// amount of returns and it would be complex to try and
|
|
// figure out how many of those can get passed in registers,
|
|
// just conservatively assume none of them do.
|
|
framesz := unsafe.Sizeof((any)(nil)) + f.nret
|
|
if framecap < framesz {
|
|
// The frame does not contain pointers interesting for GC,
|
|
// all not yet finalized objects are stored in finq.
|
|
// If we do not mark it as FlagNoScan,
|
|
// the last finalized object is not collected.
|
|
frame = mallocgc(framesz, nil, true)
|
|
framecap = framesz
|
|
}
|
|
|
|
if f.fint == nil {
|
|
throw("missing type in runfinq")
|
|
}
|
|
r := frame
|
|
if argRegs > 0 {
|
|
r = unsafe.Pointer(®s.Ints)
|
|
} else {
|
|
// frame is effectively uninitialized
|
|
// memory. That means we have to clear
|
|
// it before writing to it to avoid
|
|
// confusing the write barrier.
|
|
*(*[2]uintptr)(frame) = [2]uintptr{}
|
|
}
|
|
switch f.fint.Kind_ & abi.KindMask {
|
|
case abi.Pointer:
|
|
// direct use of pointer
|
|
*(*unsafe.Pointer)(r) = f.arg
|
|
case abi.Interface:
|
|
ityp := (*interfacetype)(unsafe.Pointer(f.fint))
|
|
// set up with empty interface
|
|
(*eface)(r)._type = &f.ot.Type
|
|
(*eface)(r).data = f.arg
|
|
if len(ityp.Methods) != 0 {
|
|
// convert to interface with methods
|
|
// this conversion is guaranteed to succeed - we checked in SetFinalizer
|
|
(*iface)(r).tab = assertE2I(ityp, (*eface)(r)._type)
|
|
}
|
|
default:
|
|
throw("bad kind in runfinq")
|
|
}
|
|
fingStatus.Or(fingRunningFinalizer)
|
|
reflectcall(nil, unsafe.Pointer(f.fn), frame, uint32(framesz), uint32(framesz), uint32(framesz), ®s)
|
|
fingStatus.And(^fingRunningFinalizer)
|
|
|
|
// Drop finalizer queue heap references
|
|
// before hiding them from markroot.
|
|
// This also ensures these will be
|
|
// clear if we reuse the finalizer.
|
|
f.fn = nil
|
|
f.arg = nil
|
|
f.ot = nil
|
|
atomic.Store(&fb.cnt, i-1)
|
|
}
|
|
next := fb.next
|
|
lock(&finlock)
|
|
fb.next = finc
|
|
finc = fb
|
|
unlock(&finlock)
|
|
fb = next
|
|
}
|
|
}
|
|
}
|
|
|
|
func isGoPointerWithoutSpan(p unsafe.Pointer) bool {
|
|
// 0-length objects are okay.
|
|
if p == unsafe.Pointer(&zerobase) {
|
|
return true
|
|
}
|
|
|
|
// Global initializers might be linker-allocated.
|
|
// var Foo = &Object{}
|
|
// func main() {
|
|
// runtime.SetFinalizer(Foo, nil)
|
|
// }
|
|
// The relevant segments are: noptrdata, data, bss, noptrbss.
|
|
// We cannot assume they are in any order or even contiguous,
|
|
// due to external linking.
|
|
for datap := &firstmoduledata; datap != nil; datap = datap.next {
|
|
if datap.noptrdata <= uintptr(p) && uintptr(p) < datap.enoptrdata ||
|
|
datap.data <= uintptr(p) && uintptr(p) < datap.edata ||
|
|
datap.bss <= uintptr(p) && uintptr(p) < datap.ebss ||
|
|
datap.noptrbss <= uintptr(p) && uintptr(p) < datap.enoptrbss {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// blockUntilEmptyFinalizerQueue blocks until either the finalizer
|
|
// queue is emptied (and the finalizers have executed) or the timeout
|
|
// is reached. Returns true if the finalizer queue was emptied.
|
|
// This is used by the runtime and sync tests.
|
|
func blockUntilEmptyFinalizerQueue(timeout int64) bool {
|
|
start := nanotime()
|
|
for nanotime()-start < timeout {
|
|
lock(&finlock)
|
|
// We know the queue has been drained when both finq is nil
|
|
// and the finalizer g has stopped executing.
|
|
empty := finq == nil
|
|
empty = empty && readgstatus(fing) == _Gwaiting && fing.waitreason == waitReasonFinalizerWait
|
|
unlock(&finlock)
|
|
if empty {
|
|
return true
|
|
}
|
|
Gosched()
|
|
}
|
|
return false
|
|
}
|
|
|
|
// SetFinalizer sets the finalizer associated with obj to the provided
|
|
// finalizer function. When the garbage collector finds an unreachable block
|
|
// with an associated finalizer, it clears the association and runs
|
|
// finalizer(obj) in a separate goroutine. This makes obj reachable again,
|
|
// but now without an associated finalizer. Assuming that SetFinalizer
|
|
// is not called again, the next time the garbage collector sees
|
|
// that obj is unreachable, it will free obj.
|
|
//
|
|
// SetFinalizer(obj, nil) clears any finalizer associated with obj.
|
|
//
|
|
// The argument obj must be a pointer to an object allocated by calling
|
|
// new, by taking the address of a composite literal, or by taking the
|
|
// address of a local variable.
|
|
// The argument finalizer must be a function that takes a single argument
|
|
// to which obj's type can be assigned, and can have arbitrary ignored return
|
|
// values. If either of these is not true, SetFinalizer may abort the
|
|
// program.
|
|
//
|
|
// Finalizers are run in dependency order: if A points at B, both have
|
|
// finalizers, and they are otherwise unreachable, only the finalizer
|
|
// for A runs; once A is freed, the finalizer for B can run.
|
|
// If a cyclic structure includes a block with a finalizer, that
|
|
// cycle is not guaranteed to be garbage collected and the finalizer
|
|
// is not guaranteed to run, because there is no ordering that
|
|
// respects the dependencies.
|
|
//
|
|
// The finalizer is scheduled to run at some arbitrary time after the
|
|
// program can no longer reach the object to which obj points.
|
|
// There is no guarantee that finalizers will run before a program exits,
|
|
// so typically they are useful only for releasing non-memory resources
|
|
// associated with an object during a long-running program.
|
|
// For example, an [os.File] object could use a finalizer to close the
|
|
// associated operating system file descriptor when a program discards
|
|
// an os.File without calling Close, but it would be a mistake
|
|
// to depend on a finalizer to flush an in-memory I/O buffer such as a
|
|
// [bufio.Writer], because the buffer would not be flushed at program exit.
|
|
//
|
|
// It is not guaranteed that a finalizer will run if the size of *obj is
|
|
// zero bytes, because it may share same address with other zero-size
|
|
// objects in memory. See https://go.dev/ref/spec#Size_and_alignment_guarantees.
|
|
//
|
|
// It is not guaranteed that a finalizer will run for objects allocated
|
|
// in initializers for package-level variables. Such objects may be
|
|
// linker-allocated, not heap-allocated.
|
|
//
|
|
// Note that because finalizers may execute arbitrarily far into the future
|
|
// after an object is no longer referenced, the runtime is allowed to perform
|
|
// a space-saving optimization that batches objects together in a single
|
|
// allocation slot. The finalizer for an unreferenced object in such an
|
|
// allocation may never run if it always exists in the same batch as a
|
|
// referenced object. Typically, this batching only happens for tiny
|
|
// (on the order of 16 bytes or less) and pointer-free objects.
|
|
//
|
|
// A finalizer may run as soon as an object becomes unreachable.
|
|
// In order to use finalizers correctly, the program must ensure that
|
|
// the object is reachable until it is no longer required.
|
|
// Objects stored in global variables, or that can be found by tracing
|
|
// pointers from a global variable, are reachable. A function argument or
|
|
// receiver may become unreachable at the last point where the function
|
|
// mentions it. To make an unreachable object reachable, pass the object
|
|
// to a call of the [KeepAlive] function to mark the last point in the
|
|
// function where the object must be reachable.
|
|
//
|
|
// For example, if p points to a struct, such as os.File, that contains
|
|
// a file descriptor d, and p has a finalizer that closes that file
|
|
// descriptor, and if the last use of p in a function is a call to
|
|
// syscall.Write(p.d, buf, size), then p may be unreachable as soon as
|
|
// the program enters [syscall.Write]. The finalizer may run at that moment,
|
|
// closing p.d, causing syscall.Write to fail because it is writing to
|
|
// a closed file descriptor (or, worse, to an entirely different
|
|
// file descriptor opened by a different goroutine). To avoid this problem,
|
|
// call KeepAlive(p) after the call to syscall.Write.
|
|
//
|
|
// A single goroutine runs all finalizers for a program, sequentially.
|
|
// If a finalizer must run for a long time, it should do so by starting
|
|
// a new goroutine.
|
|
//
|
|
// In the terminology of the Go memory model, a call
|
|
// SetFinalizer(x, f) “synchronizes before” the finalization call f(x).
|
|
// However, there is no guarantee that KeepAlive(x) or any other use of x
|
|
// “synchronizes before” f(x), so in general a finalizer should use a mutex
|
|
// or other synchronization mechanism if it needs to access mutable state in x.
|
|
// For example, consider a finalizer that inspects a mutable field in x
|
|
// that is modified from time to time in the main program before x
|
|
// becomes unreachable and the finalizer is invoked.
|
|
// The modifications in the main program and the inspection in the finalizer
|
|
// need to use appropriate synchronization, such as mutexes or atomic updates,
|
|
// to avoid read-write races.
|
|
func SetFinalizer(obj any, finalizer any) {
|
|
if debug.sbrk != 0 {
|
|
// debug.sbrk never frees memory, so no finalizers run
|
|
// (and we don't have the data structures to record them).
|
|
return
|
|
}
|
|
e := efaceOf(&obj)
|
|
etyp := e._type
|
|
if etyp == nil {
|
|
throw("runtime.SetFinalizer: first argument is nil")
|
|
}
|
|
if etyp.Kind_&abi.KindMask != abi.Pointer {
|
|
throw("runtime.SetFinalizer: first argument is " + toRType(etyp).string() + ", not pointer")
|
|
}
|
|
ot := (*ptrtype)(unsafe.Pointer(etyp))
|
|
if ot.Elem == nil {
|
|
throw("nil elem type!")
|
|
}
|
|
|
|
if inUserArenaChunk(uintptr(e.data)) {
|
|
// Arena-allocated objects are not eligible for finalizers.
|
|
throw("runtime.SetFinalizer: first argument was allocated into an arena")
|
|
}
|
|
|
|
// find the containing object
|
|
base, span, _ := findObject(uintptr(e.data), 0, 0)
|
|
|
|
if base == 0 {
|
|
if isGoPointerWithoutSpan(e.data) {
|
|
return
|
|
}
|
|
throw("runtime.SetFinalizer: pointer not in allocated block")
|
|
}
|
|
|
|
// Move base forward if we've got an allocation header.
|
|
if !span.spanclass.noscan() && !heapBitsInSpan(span.elemsize) && span.spanclass.sizeclass() != 0 {
|
|
base += mallocHeaderSize
|
|
}
|
|
|
|
if uintptr(e.data) != base {
|
|
// As an implementation detail we allow to set finalizers for an inner byte
|
|
// of an object if it could come from tiny alloc (see mallocgc for details).
|
|
if ot.Elem == nil || ot.Elem.Pointers() || ot.Elem.Size_ >= maxTinySize {
|
|
throw("runtime.SetFinalizer: pointer not at beginning of allocated block")
|
|
}
|
|
}
|
|
|
|
f := efaceOf(&finalizer)
|
|
ftyp := f._type
|
|
if ftyp == nil {
|
|
// switch to system stack and remove finalizer
|
|
systemstack(func() {
|
|
removefinalizer(e.data)
|
|
})
|
|
return
|
|
}
|
|
|
|
if ftyp.Kind_&abi.KindMask != abi.Func {
|
|
throw("runtime.SetFinalizer: second argument is " + toRType(ftyp).string() + ", not a function")
|
|
}
|
|
ft := (*functype)(unsafe.Pointer(ftyp))
|
|
if ft.IsVariadic() {
|
|
throw("runtime.SetFinalizer: cannot pass " + toRType(etyp).string() + " to finalizer " + toRType(ftyp).string() + " because dotdotdot")
|
|
}
|
|
if ft.InCount != 1 {
|
|
throw("runtime.SetFinalizer: cannot pass " + toRType(etyp).string() + " to finalizer " + toRType(ftyp).string())
|
|
}
|
|
fint := ft.InSlice()[0]
|
|
switch {
|
|
case fint == etyp:
|
|
// ok - same type
|
|
goto okarg
|
|
case fint.Kind_&abi.KindMask == abi.Pointer:
|
|
if (fint.Uncommon() == nil || etyp.Uncommon() == nil) && (*ptrtype)(unsafe.Pointer(fint)).Elem == ot.Elem {
|
|
// ok - not same type, but both pointers,
|
|
// one or the other is unnamed, and same element type, so assignable.
|
|
goto okarg
|
|
}
|
|
case fint.Kind_&abi.KindMask == abi.Interface:
|
|
ityp := (*interfacetype)(unsafe.Pointer(fint))
|
|
if len(ityp.Methods) == 0 {
|
|
// ok - satisfies empty interface
|
|
goto okarg
|
|
}
|
|
if itab := assertE2I2(ityp, efaceOf(&obj)._type); itab != nil {
|
|
goto okarg
|
|
}
|
|
}
|
|
throw("runtime.SetFinalizer: cannot pass " + toRType(etyp).string() + " to finalizer " + toRType(ftyp).string())
|
|
okarg:
|
|
// compute size needed for return parameters
|
|
nret := uintptr(0)
|
|
for _, t := range ft.OutSlice() {
|
|
nret = alignUp(nret, uintptr(t.Align_)) + t.Size_
|
|
}
|
|
nret = alignUp(nret, goarch.PtrSize)
|
|
|
|
// make sure we have a finalizer goroutine
|
|
createfing()
|
|
|
|
systemstack(func() {
|
|
if !addfinalizer(e.data, (*funcval)(f.data), nret, fint, ot) {
|
|
throw("runtime.SetFinalizer: finalizer already set")
|
|
}
|
|
})
|
|
}
|
|
|
|
// Mark KeepAlive as noinline so that it is easily detectable as an intrinsic.
|
|
//
|
|
//go:noinline
|
|
|
|
// KeepAlive marks its argument as currently reachable.
|
|
// This ensures that the object is not freed, and its finalizer is not run,
|
|
// before the point in the program where KeepAlive is called.
|
|
//
|
|
// A very simplified example showing where KeepAlive is required:
|
|
//
|
|
// type File struct { d int }
|
|
// d, err := syscall.Open("/file/path", syscall.O_RDONLY, 0)
|
|
// // ... do something if err != nil ...
|
|
// p := &File{d}
|
|
// runtime.SetFinalizer(p, func(p *File) { syscall.Close(p.d) })
|
|
// var buf [10]byte
|
|
// n, err := syscall.Read(p.d, buf[:])
|
|
// // Ensure p is not finalized until Read returns.
|
|
// runtime.KeepAlive(p)
|
|
// // No more uses of p after this point.
|
|
//
|
|
// Without the KeepAlive call, the finalizer could run at the start of
|
|
// [syscall.Read], closing the file descriptor before syscall.Read makes
|
|
// the actual system call.
|
|
//
|
|
// Note: KeepAlive should only be used to prevent finalizers from
|
|
// running prematurely. In particular, when used with [unsafe.Pointer],
|
|
// the rules for valid uses of unsafe.Pointer still apply.
|
|
func KeepAlive(x any) {
|
|
// Introduce a use of x that the compiler can't eliminate.
|
|
// This makes sure x is alive on entry. We need x to be alive
|
|
// on entry for "defer runtime.KeepAlive(x)"; see issue 21402.
|
|
if cgoAlwaysFalse {
|
|
println(x)
|
|
}
|
|
}
|