mirror of
https://github.com/golang/go
synced 2024-11-24 08:50:14 -07:00
6be0bdf7bc
R=golang-dev, nigeltao CC=golang-dev https://golang.org/cl/4595055
3039 lines
93 KiB
HTML
3039 lines
93 KiB
HTML
<!-- Effective Go -->
|
|
|
|
<h2 id="introduction">Introduction</h2>
|
|
|
|
<p>
|
|
Go is a new language. Although it borrows ideas from
|
|
existing languages,
|
|
it has unusual properties that make effective Go programs
|
|
different in character from programs written in its relatives.
|
|
A straightforward translation of a C++ or Java program into Go
|
|
is unlikely to produce a satisfactory result—Java programs
|
|
are written in Java, not Go.
|
|
On the other hand, thinking about the problem from a Go
|
|
perspective could produce a successful but quite different
|
|
program.
|
|
In other words,
|
|
to write Go well, it's important to understand its properties
|
|
and idioms.
|
|
It's also important to know the established conventions for
|
|
programming in Go, such as naming, formatting, program
|
|
construction, and so on, so that programs you write
|
|
will be easy for other Go programmers to understand.
|
|
</p>
|
|
|
|
<p>
|
|
This document gives tips for writing clear, idiomatic Go code.
|
|
It augments the <a href="go_spec.html">language specification</a>
|
|
and the <a href="go_tutorial.html">tutorial</a>, both of which you
|
|
should read first.
|
|
</p>
|
|
|
|
<h3 id="examples">Examples</h3>
|
|
|
|
<p>
|
|
The <a href="/src/pkg/">Go package sources</a>
|
|
are intended to serve not
|
|
only as the core library but also as examples of how to
|
|
use the language.
|
|
If you have a question about how to approach a problem or how something
|
|
might be implemented, they can provide answers, ideas and
|
|
background.
|
|
</p>
|
|
|
|
|
|
<h2 id="formatting">Formatting</h2>
|
|
|
|
<p>
|
|
Formatting issues are the most contentious
|
|
but the least consequential.
|
|
People can adapt to different formatting styles
|
|
but it's better if they don't have to, and
|
|
less time is devoted to the topic
|
|
if everyone adheres to the same style.
|
|
The problem is how to approach this Utopia without a long
|
|
prescriptive style guide.
|
|
</p>
|
|
|
|
<p>
|
|
With Go we take an unusual
|
|
approach and let the machine
|
|
take care of most formatting issues.
|
|
The <code>gofmt</code> tool reads a Go program
|
|
and emits the source in a standard style of indentation
|
|
and vertical alignment, retaining and if necessary
|
|
reformatting comments.
|
|
If you want to know how to handle some new layout
|
|
situation, run <code>gofmt</code>; if the answer doesn't
|
|
seem right, rearrange your program (or file a bug about <code>gofmt</code>),
|
|
don't work around it.
|
|
</p>
|
|
|
|
<p>
|
|
As an example, there's no need to spend time lining up
|
|
the comments on the fields of a structure.
|
|
<code>Gofmt</code> will do that for you. Given the
|
|
declaration
|
|
</p>
|
|
|
|
<pre>
|
|
type T struct {
|
|
name string // name of the object
|
|
value int // its value
|
|
}
|
|
</pre>
|
|
|
|
<p>
|
|
<code>gofmt</code> will line up the columns:
|
|
</p>
|
|
|
|
<pre>
|
|
type T struct {
|
|
name string // name of the object
|
|
value int // its value
|
|
}
|
|
</pre>
|
|
|
|
<p>
|
|
All Go code in the standard packages has been formatted with <code>gofmt</code>.
|
|
</p>
|
|
|
|
|
|
<p>
|
|
Some formatting details remain. Very briefly,
|
|
</p>
|
|
|
|
<dl>
|
|
<dt>Indentation</dt>
|
|
<dd>We use tabs for indentation and <code>gofmt</code> emits them by default.
|
|
Use spaces only if you must.
|
|
</dd>
|
|
<dt>Line length</dt>
|
|
<dd>
|
|
Go has no line length limit. Don't worry about overflowing a punched card.
|
|
If a line feels too long, wrap it and indent with an extra tab.
|
|
</dd>
|
|
<dt>Parentheses</dt>
|
|
<dd>
|
|
Go needs fewer parentheses: control structures (<code>if</code>,
|
|
<code>for</code>, <code>switch</code>) do not require parentheses in
|
|
their syntax.
|
|
Also, the operator precedence hierarchy is shorter and clearer, so
|
|
<pre>
|
|
x<<8 + y<<16
|
|
</pre>
|
|
means what the spacing implies.
|
|
</dd>
|
|
</dl>
|
|
|
|
<h2 id="commentary">Commentary</h2>
|
|
|
|
<p>
|
|
Go provides C-style <code>/* */</code> block comments
|
|
and C++-style <code>//</code> line comments.
|
|
Line comments are the norm;
|
|
block comments appear mostly as package comments and
|
|
are also useful to disable large swaths of code.
|
|
</p>
|
|
|
|
<p>
|
|
The program—and web server—<code>godoc</code> processes
|
|
Go source files to extract documentation about the contents of the
|
|
package.
|
|
Comments that appear before top-level declarations, with no intervening newlines,
|
|
are extracted along with the declaration to serve as explanatory text for the item.
|
|
The nature and style of these comments determines the
|
|
quality of the documentation <code>godoc</code> produces.
|
|
</p>
|
|
|
|
<p>
|
|
Every package should have a <i>package comment</i>, a block
|
|
comment preceding the package clause.
|
|
For multi-file packages, the package comment only needs to be
|
|
present in one file, and any one will do.
|
|
The package comment should introduce the package and
|
|
provide information relevant to the package as a whole.
|
|
It will appear first on the <code>godoc</code> page and
|
|
should set up the detailed documentation that follows.
|
|
</p>
|
|
|
|
<pre>
|
|
/*
|
|
Package regexp implements a simple library for
|
|
regular expressions.
|
|
|
|
The syntax of the regular expressions accepted is:
|
|
|
|
regexp:
|
|
concatenation { '|' concatenation }
|
|
concatenation:
|
|
{ closure }
|
|
closure:
|
|
term [ '*' | '+' | '?' ]
|
|
term:
|
|
'^'
|
|
'$'
|
|
'.'
|
|
character
|
|
'[' [ '^' ] character-ranges ']'
|
|
'(' regexp ')'
|
|
*/
|
|
package regexp
|
|
</pre>
|
|
|
|
<p>
|
|
If the package is simple, the package comment can be brief.
|
|
</p>
|
|
|
|
<pre>
|
|
// Package path implements utility routines for
|
|
// manipulating slash-separated filename paths.
|
|
</pre>
|
|
|
|
<p>
|
|
Comments do not need extra formatting such as banners of stars.
|
|
The generated output may not even be presented in a fixed-width font, so don't depend
|
|
on spacing for alignment—<code>godoc</code>, like <code>gofmt</code>,
|
|
takes care of that.
|
|
The comments are uninterpreted plain text, so HTML and other
|
|
annotations such as <code>_this_</code> will reproduce <i>verbatim</i> and should
|
|
not be used.
|
|
Depending on the context, <code>godoc</code> might not even
|
|
reformat comments, so make sure they look good straight up:
|
|
use correct spelling, punctuation, and sentence structure,
|
|
fold long lines, and so on.
|
|
</p>
|
|
|
|
<p>
|
|
Inside a package, any comment immediately preceding a top-level declaration
|
|
serves as a <i>doc comment</i> for that declaration.
|
|
Every exported (capitalized) name in a program should
|
|
have a doc comment.
|
|
</p>
|
|
|
|
<p>
|
|
Doc comments work best as complete sentences, which allow
|
|
a wide variety of automated presentations.
|
|
The first sentence should be a one-sentence summary that
|
|
starts with the name being declared.
|
|
</p>
|
|
|
|
<pre>
|
|
// Compile parses a regular expression and returns, if successful, a Regexp
|
|
// object that can be used to match against text.
|
|
func Compile(str string) (regexp *Regexp, error os.Error) {
|
|
</pre>
|
|
|
|
<p>
|
|
Go's declaration syntax allows grouping of declarations.
|
|
A single doc comment can introduce a group of related constants or variables.
|
|
Since the whole declaration is presented, such a comment can often be perfunctory.
|
|
</p>
|
|
|
|
<pre>
|
|
// Error codes returned by failures to parse an expression.
|
|
var (
|
|
ErrInternal = os.NewError("regexp: internal error")
|
|
ErrUnmatchedLpar = os.NewError("regexp: unmatched '('")
|
|
ErrUnmatchedRpar = os.NewError("regexp: unmatched ')'")
|
|
...
|
|
)
|
|
</pre>
|
|
|
|
<p>
|
|
Even for private names, grouping can also indicate relationships between items,
|
|
such as the fact that a set of variables is protected by a mutex.
|
|
</p>
|
|
|
|
<pre>
|
|
var (
|
|
countLock sync.Mutex
|
|
inputCount uint32
|
|
outputCount uint32
|
|
errorCount uint32
|
|
)
|
|
</pre>
|
|
|
|
<h2 id="names">Names</h2>
|
|
|
|
<p>
|
|
Names are as important in Go as in any other language.
|
|
In some cases they even have semantic effect: for instance,
|
|
the visibility of a name outside a package is determined by whether its
|
|
first character is upper case.
|
|
It's therefore worth spending a little time talking about naming conventions
|
|
in Go programs.
|
|
</p>
|
|
|
|
|
|
<h3 id="package-names">Package names</h3>
|
|
|
|
<p>
|
|
When a package is imported, the package name becomes an accessor for the
|
|
contents. After
|
|
</p>
|
|
|
|
<pre>
|
|
import "bytes"
|
|
</pre>
|
|
|
|
<p>
|
|
the importing package can talk about <code>bytes.Buffer</code>. It's
|
|
helpful if everyone using the package can use the same name to refer to
|
|
its contents, which implies that the package name should be good:
|
|
short, concise, evocative. By convention, packages are given
|
|
lower case, single-word names; there should be no need for underscores
|
|
or mixedCaps.
|
|
Err on the side of brevity, since everyone using your
|
|
package will be typing that name.
|
|
And don't worry about collisions <i>a priori</i>.
|
|
The package name is only the default name for imports; it need not be unique
|
|
across all source code, and in the rare case of a collision the
|
|
importing package can choose a different name to use locally.
|
|
In any case, confusion is rare because the file name in the import
|
|
determines just which package is being used.
|
|
</p>
|
|
|
|
<p>
|
|
Another convention is that the package name is the base name of
|
|
its source directory;
|
|
the package in <code>src/pkg/encoding/base64</code>
|
|
is imported as <code>"encoding/base64"</code> but has name <code>base64</code>,
|
|
not <code>encoding_base64</code> and not <code>encodingBase64</code>.
|
|
</p>
|
|
|
|
<p>
|
|
The importer of a package will use the name to refer to its contents
|
|
(the <code>import .</code> notation is intended mostly for tests and other
|
|
unusual situations and should be avoided unless necessary),
|
|
so exported names in the package can use that fact
|
|
to avoid stutter.
|
|
For instance, the buffered reader type in the <code>bufio</code> package is called <code>Reader</code>,
|
|
not <code>BufReader</code>, because users see it as <code>bufio.Reader</code>,
|
|
which is a clear, concise name.
|
|
Moreover,
|
|
because imported entities are always addressed with their package name, <code>bufio.Reader</code>
|
|
does not conflict with <code>io.Reader</code>.
|
|
Similarly, the function to make new instances of <code>ring.Ring</code>—which
|
|
is the definition of a <em>constructor</em> in Go—would
|
|
normally be called <code>NewRing</code>, but since
|
|
<code>Ring</code> is the only type exported by the package, and since the
|
|
package is called <code>ring</code>, it's called just <code>New</code>,
|
|
which clients of the package see as <code>ring.New</code>.
|
|
Use the package structure to help you choose good names.
|
|
</p>
|
|
|
|
<p>
|
|
Another short example is <code>once.Do</code>;
|
|
<code>once.Do(setup)</code> reads well and would not be improved by
|
|
writing <code>once.DoOrWaitUntilDone(setup)</code>.
|
|
Long names don't automatically make things more readable.
|
|
If the name represents something intricate or subtle, it's usually better
|
|
to write a helpful doc comment than to attempt to put all the information
|
|
into the name.
|
|
</p>
|
|
|
|
<h3 id="Getters">Getters</h3>
|
|
|
|
<p>
|
|
Go doesn't provide automatic support for getters and setters.
|
|
There's nothing wrong with providing getters and setters yourself,
|
|
and it's often appropriate to do so, but it's neither idiomatic nor necessary
|
|
to put <code>Get</code> into the getter's name. If you have a field called
|
|
<code>owner</code> (lower case, unexported), the getter method should be
|
|
called <code>Owner</code> (upper case, exported), not <code>GetOwner</code>.
|
|
The use of upper-case names for export provides the hook to discriminate
|
|
the field from the method.
|
|
A setter function, if needed, will likely be called <code>SetOwner</code>.
|
|
Both names read well in practice:
|
|
</p>
|
|
<pre>
|
|
owner := obj.Owner()
|
|
if owner != user {
|
|
obj.SetOwner(user)
|
|
}
|
|
</pre>
|
|
|
|
<h3 id="interface-names">Interface names</h3>
|
|
|
|
<p>
|
|
By convention, one-method interfaces are named by
|
|
the method name plus the -er suffix: <code>Reader</code>,
|
|
<code>Writer</code>, <code>Formatter</code> etc.
|
|
</p>
|
|
|
|
<p>
|
|
There are a number of such names and it's productive to honor them and the function
|
|
names they capture.
|
|
<code>Read</code>, <code>Write</code>, <code>Close</code>, <code>Flush</code>,
|
|
<code>String</code> and so on have
|
|
canonical signatures and meanings. To avoid confusion,
|
|
don't give your method one of those names unless it
|
|
has the same signature and meaning.
|
|
Conversely, if your type implements a method with the
|
|
same meaning as a method on a well-known type,
|
|
give it the same name and signature;
|
|
call your string-converter method <code>String</code> not <code>ToString</code>.
|
|
</p>
|
|
|
|
<h3 id="mixed-caps">MixedCaps</h3>
|
|
|
|
<p>
|
|
Finally, the convention in Go is to use <code>MixedCaps</code>
|
|
or <code>mixedCaps</code> rather than underscores to write
|
|
multiword names.
|
|
</p>
|
|
|
|
<h2 id="semicolons">Semicolons</h2>
|
|
|
|
<p>
|
|
Like C, Go's formal grammar uses semicolons to terminate statements;
|
|
unlike C, those semicolons do not appear in the source.
|
|
Instead the lexer uses a simple rule to insert semicolons automatically
|
|
as it scans, so the input text is mostly free of them.
|
|
</p>
|
|
|
|
<p>
|
|
The rule is this. If the last token before a newline is an identifier
|
|
(which includes words like <code>int</code> and <code>float64</code>),
|
|
a basic literal such as a number or string constant, or one of the
|
|
tokens
|
|
</p>
|
|
<pre>
|
|
break continue fallthrough return ++ -- ) }
|
|
</pre>
|
|
<p>
|
|
the lexer always inserts a semicolon after the token.
|
|
This could be summarized as, “if the newline comes
|
|
after a token that could end a statement, add a semicolon”.
|
|
</p>
|
|
|
|
<p>
|
|
A semicolon can also be omitted immediately before a closing brace,
|
|
so a statement such as
|
|
</p>
|
|
<pre>
|
|
go func() { for { dst <- <-src } }()
|
|
</pre>
|
|
<p>
|
|
needs no semicolons.
|
|
Idiomatic Go programs have semicolons only in places such as
|
|
<code>for</code> loop clauses, to separate the initializer, condition, and
|
|
continuation elements. They are also necessary to separate multiple
|
|
statements on a line, should you write code that way.
|
|
</p>
|
|
|
|
<p>
|
|
One caveat. You should never put the opening brace of a
|
|
control structure (<code>if</code>, <code>for</code>, <code>switch</code>,
|
|
or <code>select</code>) on the next line. If you do, a semicolon
|
|
will be inserted before the brace, which could cause unwanted
|
|
effects. Write them like this
|
|
</p>
|
|
|
|
<pre>
|
|
if i < f() {
|
|
g()
|
|
}
|
|
</pre>
|
|
<p>
|
|
not like this
|
|
</p>
|
|
<pre>
|
|
if i < f() // wrong!
|
|
{ // wrong!
|
|
g()
|
|
}
|
|
</pre>
|
|
|
|
|
|
<h2 id="control-structures">Control structures</h2>
|
|
|
|
<p>
|
|
The control structures of Go are related to those of C but differ
|
|
in important ways.
|
|
There is no <code>do</code> or <code>while</code> loop, only a
|
|
slightly generalized
|
|
<code>for</code>;
|
|
<code>switch</code> is more flexible;
|
|
<code>if</code> and <code>switch</code> accept an optional
|
|
initialization statement like that of <code>for</code>;
|
|
and there are new control structures including a type switch and a
|
|
multiway communications multiplexer, <code>select</code>.
|
|
The syntax is also slightly different:
|
|
parentheses are not required
|
|
and the bodies must always be brace-delimited.
|
|
</p>
|
|
|
|
<h3 id="if">If</h3>
|
|
|
|
<p>
|
|
In Go a simple <code>if</code> looks like this:
|
|
</p>
|
|
<pre>
|
|
if x > 0 {
|
|
return y
|
|
}
|
|
</pre>
|
|
|
|
<p>
|
|
Mandatory braces encourage writing simple <code>if</code> statements
|
|
on multiple lines. It's good style to do so anyway,
|
|
especially when the body contains a control statement such as a
|
|
<code>return</code> or <code>break</code>.
|
|
</p>
|
|
|
|
<p>
|
|
Since <code>if</code> and <code>switch</code> accept an initialization
|
|
statement, it's common to see one used to set up a local variable.
|
|
</p>
|
|
|
|
<pre>
|
|
if err := file.Chmod(0664); err != nil {
|
|
log.Print(err)
|
|
return err
|
|
}
|
|
</pre>
|
|
|
|
<p id="else">
|
|
In the Go libraries, you'll find that
|
|
when an <code>if</code> statement doesn't flow into the next statement—that is,
|
|
the body ends in <code>break</code>, <code>continue</code>,
|
|
<code>goto</code>, or <code>return</code>—the unnecessary
|
|
<code>else</code> is omitted.
|
|
</p>
|
|
|
|
<pre>
|
|
f, err := os.Open(name)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
codeUsing(f)
|
|
</pre>
|
|
|
|
<p>
|
|
This is an example of a common situation where code must guard against a
|
|
sequence of error conditions. The code reads well if the
|
|
successful flow of control runs down the page, eliminating error cases
|
|
as they arise. Since error cases tend to end in <code>return</code>
|
|
statements, the resulting code needs no <code>else</code> statements.
|
|
</p>
|
|
|
|
<pre>
|
|
f, err := os.Open(name)
|
|
if err != nil {
|
|
return err
|
|
}
|
|
d, err := f.Stat()
|
|
if err != nil {
|
|
return err
|
|
}
|
|
codeUsing(f, d)
|
|
</pre>
|
|
|
|
|
|
<h3 id="for">For</h3>
|
|
|
|
<p>
|
|
The Go <code>for</code> loop is similar to—but not the same as—C's.
|
|
It unifies <code>for</code>
|
|
and <code>while</code> and there is no <code>do-while</code>.
|
|
There are three forms, only one of which has semicolons.
|
|
</p>
|
|
<pre>
|
|
// Like a C for
|
|
for init; condition; post { }
|
|
|
|
// Like a C while
|
|
for condition { }
|
|
|
|
// Like a C for(;;)
|
|
for { }
|
|
</pre>
|
|
|
|
<p>
|
|
Short declarations make it easy to declare the index variable right in the loop.
|
|
</p>
|
|
<pre>
|
|
sum := 0
|
|
for i := 0; i < 10; i++ {
|
|
sum += i
|
|
}
|
|
</pre>
|
|
|
|
<p>
|
|
If you're looping over an array, slice, string, or map,
|
|
or reading from a channel, a <code>range</code> clause can
|
|
manage the loop for you.
|
|
</p>
|
|
<pre>
|
|
var m map[string]int
|
|
sum := 0
|
|
for _, value := range m { // key is unused
|
|
sum += value
|
|
}
|
|
</pre>
|
|
|
|
<p>
|
|
For strings, the <code>range</code> does more work for you, breaking out individual
|
|
Unicode characters by parsing the UTF-8.
|
|
Erroneous encodings consume one byte and produce the
|
|
replacement rune U+FFFD. The loop
|
|
</p>
|
|
<pre>
|
|
for pos, char := range "日本語" {
|
|
fmt.Printf("character %c starts at byte position %d\n", char, pos)
|
|
}
|
|
</pre>
|
|
<p>
|
|
prints
|
|
</p>
|
|
<pre>
|
|
character 日 starts at byte position 0
|
|
character 本 starts at byte position 3
|
|
character 語 starts at byte position 6
|
|
</pre>
|
|
|
|
<p>
|
|
Finally, Go has no comma operator and <code>++</code> and <code>--</code>
|
|
are statements not expressions.
|
|
Thus if you want to run multiple variables in a <code>for</code>
|
|
you should use parallel assignment.
|
|
</p>
|
|
<pre>
|
|
// Reverse a
|
|
for i, j := 0, len(a)-1; i < j; i, j = i+1, j-1 {
|
|
a[i], a[j] = a[j], a[i]
|
|
}
|
|
</pre>
|
|
|
|
<h3 id="switch">Switch</h3>
|
|
|
|
<p>
|
|
Go's <code>switch</code> is more general than C's.
|
|
The expressions need not be constants or even integers,
|
|
the cases are evaluated top to bottom until a match is found,
|
|
and if the <code>switch</code> has no expression it switches on
|
|
<code>true</code>.
|
|
It's therefore possible—and idiomatic—to write an
|
|
<code>if</code>-<code>else</code>-<code>if</code>-<code>else</code>
|
|
chain as a <code>switch</code>.
|
|
</p>
|
|
|
|
<pre>
|
|
func unhex(c byte) byte {
|
|
switch {
|
|
case '0' <= c && c <= '9':
|
|
return c - '0'
|
|
case 'a' <= c && c <= 'f':
|
|
return c - 'a' + 10
|
|
case 'A' <= c && c <= 'F':
|
|
return c - 'A' + 10
|
|
}
|
|
return 0
|
|
}
|
|
</pre>
|
|
|
|
<p>
|
|
There is no automatic fall through, but cases can be presented
|
|
in comma-separated lists.
|
|
<pre>
|
|
func shouldEscape(c byte) bool {
|
|
switch c {
|
|
case ' ', '?', '&', '=', '#', '+', '%':
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
</pre>
|
|
|
|
<p>
|
|
Here's a comparison routine for byte arrays that uses two
|
|
<code>switch</code> statements:
|
|
<pre>
|
|
// Compare returns an integer comparing the two byte arrays
|
|
// lexicographically.
|
|
// The result will be 0 if a == b, -1 if a < b, and +1 if a > b
|
|
func Compare(a, b []byte) int {
|
|
for i := 0; i < len(a) && i < len(b); i++ {
|
|
switch {
|
|
case a[i] > b[i]:
|
|
return 1
|
|
case a[i] < b[i]:
|
|
return -1
|
|
}
|
|
}
|
|
switch {
|
|
case len(a) < len(b):
|
|
return -1
|
|
case len(a) > len(b):
|
|
return 1
|
|
}
|
|
return 0
|
|
}
|
|
</pre>
|
|
|
|
<p>
|
|
A switch can also be used to discover the dynamic type of an interface
|
|
variable. Such a <em>type switch</em> uses the syntax of a type
|
|
assertion with the keyword <code>type</code> inside the parentheses.
|
|
If the switch declares a variable in the expression, the variable will
|
|
have the corresponding type in each clause.
|
|
</p>
|
|
<pre>
|
|
switch t := interfaceValue.(type) {
|
|
default:
|
|
fmt.Printf("unexpected type %T", t) // %T prints type
|
|
case bool:
|
|
fmt.Printf("boolean %t\n", t)
|
|
case int:
|
|
fmt.Printf("integer %d\n", t)
|
|
case *bool:
|
|
fmt.Printf("pointer to boolean %t\n", *t)
|
|
case *int:
|
|
fmt.Printf("pointer to integer %d\n", *t)
|
|
}
|
|
</pre>
|
|
|
|
<h2 id="functions">Functions</h2>
|
|
|
|
<h3 id="multiple-returns">Multiple return values</h3>
|
|
|
|
<p>
|
|
One of Go's unusual features is that functions and methods
|
|
can return multiple values. This form can be used to
|
|
improve on a couple of clumsy idioms in C programs: in-band
|
|
error returns (such as <code>-1</code> for <code>EOF</code>)
|
|
and modifying an argument.
|
|
</p>
|
|
|
|
<p>
|
|
In C, a write error is signaled by a negative count with the
|
|
error code secreted away in a volatile location.
|
|
In Go, <code>Write</code>
|
|
can return a count <i>and</i> an error: “Yes, you wrote some
|
|
bytes but not all of them because you filled the device”.
|
|
The signature of <code>*File.Write</code> in package <code>os</code> is:
|
|
</p>
|
|
|
|
<pre>
|
|
func (file *File) Write(b []byte) (n int, err Error)
|
|
</pre>
|
|
|
|
<p>
|
|
and as the documentation says, it returns the number of bytes
|
|
written and a non-nil <code>Error</code> when <code>n</code>
|
|
<code>!=</code> <code>len(b)</code>.
|
|
This is a common style; see the section on error handling for more examples.
|
|
</p>
|
|
|
|
<p>
|
|
A similar approach obviates the need to pass a pointer to a return
|
|
value to simulate a reference parameter.
|
|
Here's a simple-minded function to
|
|
grab a number from a position in a byte array, returning the number
|
|
and the next position.
|
|
</p>
|
|
|
|
<pre>
|
|
func nextInt(b []byte, i int) (int, int) {
|
|
for ; i < len(b) && !isDigit(b[i]); i++ {
|
|
}
|
|
x := 0
|
|
for ; i < len(b) && isDigit(b[i]); i++ {
|
|
x = x*10 + int(b[i])-'0'
|
|
}
|
|
return x, i
|
|
}
|
|
</pre>
|
|
|
|
<p>
|
|
You could use it to scan the numbers in an input array <code>a</code> like this:
|
|
</p>
|
|
|
|
<pre>
|
|
for i := 0; i < len(a); {
|
|
x, i = nextInt(a, i)
|
|
fmt.Println(x)
|
|
}
|
|
</pre>
|
|
|
|
<h3 id="named-results">Named result parameters</h3>
|
|
|
|
<p>
|
|
The return or result "parameters" of a Go function can be given names and
|
|
used as regular variables, just like the incoming parameters.
|
|
When named, they are initialized to the zero values for their types when
|
|
the function begins; if the function executes a <code>return</code> statement
|
|
with no arguments, the current values of the result parameters are
|
|
used as the returned values.
|
|
</p>
|
|
|
|
<p>
|
|
The names are not mandatory but they can make code shorter and clearer:
|
|
they're documentation.
|
|
If we name the results of <code>nextInt</code> it becomes
|
|
obvious which returned <code>int</code>
|
|
is which.
|
|
</p>
|
|
|
|
<pre>
|
|
func nextInt(b []byte, pos int) (value, nextPos int) {
|
|
</pre>
|
|
|
|
<p>
|
|
Because named results are initialized and tied to an unadorned return, they can simplify
|
|
as well as clarify. Here's a version
|
|
of <code>io.ReadFull</code> that uses them well:
|
|
</p>
|
|
|
|
<pre>
|
|
func ReadFull(r Reader, buf []byte) (n int, err os.Error) {
|
|
for len(buf) > 0 && err == nil {
|
|
var nr int
|
|
nr, err = r.Read(buf)
|
|
n += nr
|
|
buf = buf[nr:len(buf)]
|
|
}
|
|
return
|
|
}
|
|
</pre>
|
|
|
|
<h3 id="defer">Defer</h3>
|
|
|
|
<p>
|
|
Go's <code>defer</code> statement schedules a function call (the
|
|
<i>deferred</i> function) to be run immediately before the function
|
|
executing the <code>defer</code> returns. It's an unusual but
|
|
effective way to deal with situations such as resources that must be
|
|
released regardless of which path a function takes to return. The
|
|
canonical examples are unlocking a mutex or closing a file.
|
|
</p>
|
|
|
|
<pre>
|
|
// Contents returns the file's contents as a string.
|
|
func Contents(filename string) (string, os.Error) {
|
|
f, err := os.Open(filename)
|
|
if err != nil {
|
|
return "", err
|
|
}
|
|
defer f.Close() // f.Close will run when we're finished.
|
|
|
|
var result []byte
|
|
buf := make([]byte, 100)
|
|
for {
|
|
n, err := f.Read(buf[0:])
|
|
result = append(result, buf[0:n]...) // append is discussed later.
|
|
if err != nil {
|
|
if err == os.EOF {
|
|
break
|
|
}
|
|
return "", err // f will be closed if we return here.
|
|
}
|
|
}
|
|
return string(result), nil // f will be closed if we return here.
|
|
}
|
|
</pre>
|
|
|
|
<p>
|
|
Deferring a call to a function such as <code>Close</code> has two advantages. First, it
|
|
guarantees that you will never forget to close the file, a mistake
|
|
that's easy to make if you later edit the function to add a new return
|
|
path. Second, it means that the close sits near the open,
|
|
which is much clearer than placing it at the end of the function.
|
|
</p>
|
|
|
|
<p>
|
|
The arguments to the deferred function (which include the receiver if
|
|
the function is a method) are evaluated when the <i>defer</i>
|
|
executes, not when the <i>call</i> executes. Besides avoiding worries
|
|
about variables changing values as the function executes, this means
|
|
that a single deferred call site can defer multiple function
|
|
executions. Here's a silly example.
|
|
</p>
|
|
|
|
<pre>
|
|
for i := 0; i < 5; i++ {
|
|
defer fmt.Printf("%d ", i)
|
|
}
|
|
</pre>
|
|
|
|
<p>
|
|
Deferred functions are executed in LIFO order, so this code will cause
|
|
<code>4 3 2 1 0</code> to be printed when the function returns. A
|
|
more plausible example is a simple way to trace function execution
|
|
through the program. We could write a couple of simple tracing
|
|
routines like this:
|
|
</p>
|
|
|
|
<pre>
|
|
func trace(s string) { fmt.Println("entering:", s) }
|
|
func untrace(s string) { fmt.Println("leaving:", s) }
|
|
|
|
// Use them like this:
|
|
func a() {
|
|
trace("a")
|
|
defer untrace("a")
|
|
// do something....
|
|
}
|
|
</pre>
|
|
|
|
<p>
|
|
We can do better by exploiting the fact that arguments to deferred
|
|
functions are evaluated when the <code>defer</code> executes. The
|
|
tracing routine can set up the argument to the untracing routine.
|
|
This example:
|
|
</p>
|
|
|
|
<pre>
|
|
func trace(s string) string {
|
|
fmt.Println("entering:", s)
|
|
return s
|
|
}
|
|
|
|
func un(s string) {
|
|
fmt.Println("leaving:", s)
|
|
}
|
|
|
|
func a() {
|
|
defer un(trace("a"))
|
|
fmt.Println("in a")
|
|
}
|
|
|
|
func b() {
|
|
defer un(trace("b"))
|
|
fmt.Println("in b")
|
|
a()
|
|
}
|
|
|
|
func main() {
|
|
b()
|
|
}
|
|
</pre>
|
|
|
|
<p>
|
|
prints
|
|
</p>
|
|
|
|
<pre>
|
|
entering: b
|
|
in b
|
|
entering: a
|
|
in a
|
|
leaving: a
|
|
leaving: b
|
|
</pre>
|
|
|
|
<p>
|
|
For programmers accustomed to block-level resource management from
|
|
other languages, <code>defer</code> may seem peculiar, but its most
|
|
interesting and powerful applications come precisely from the fact
|
|
that it's not block-based but function-based. In the section on
|
|
<code>panic</code> and <code>recover</code> we'll see another
|
|
example of its possibilities.
|
|
</p>
|
|
|
|
<h2 id="data">Data</h2>
|
|
|
|
<h3 id="allocation_new">Allocation with <code>new</code></h3>
|
|
|
|
<p>
|
|
Go has two allocation primitives, the built-in functions
|
|
<code>new</code> and <code>make</code>.
|
|
They do different things and apply to different types, which can be confusing,
|
|
but the rules are simple.
|
|
Let's talk about <code>new</code> first.
|
|
It's a built-in function essentially the same as its namesakes
|
|
in other languages: <code>new(T)</code> allocates zeroed storage for a new item of type
|
|
<code>T</code> and returns its address, a value of type <code>*T</code>.
|
|
In Go terminology, it returns a pointer to a newly allocated zero value of type
|
|
<code>T</code>.
|
|
</p>
|
|
|
|
<p>
|
|
Since the memory returned by <code>new</code> is zeroed, it's helpful to arrange that the
|
|
zeroed object can be used without further initialization. This means a user of
|
|
the data structure can create one with <code>new</code> and get right to
|
|
work.
|
|
For example, the documentation for <code>bytes.Buffer</code> states that
|
|
"the zero value for <code>Buffer</code> is an empty buffer ready to use."
|
|
Similarly, <code>sync.Mutex</code> does not
|
|
have an explicit constructor or <code>Init</code> method.
|
|
Instead, the zero value for a <code>sync.Mutex</code>
|
|
is defined to be an unlocked mutex.
|
|
</p>
|
|
|
|
<p>
|
|
The zero-value-is-useful property works transitively. Consider this type declaration.
|
|
</p>
|
|
|
|
<pre>
|
|
type SyncedBuffer struct {
|
|
lock sync.Mutex
|
|
buffer bytes.Buffer
|
|
}
|
|
</pre>
|
|
|
|
<p>
|
|
Values of type <code>SyncedBuffer</code> are also ready to use immediately upon allocation
|
|
or just declaration. In the next snippet, both <code>p</code> and <code>v</code> will work
|
|
correctly without further arrangement.
|
|
</p>
|
|
|
|
<pre>
|
|
p := new(SyncedBuffer) // type *SyncedBuffer
|
|
var v SyncedBuffer // type SyncedBuffer
|
|
</pre>
|
|
|
|
<h3 id="composite_literals">Constructors and composite literals</h3>
|
|
|
|
<p>
|
|
Sometimes the zero value isn't good enough and an initializing
|
|
constructor is necessary, as in this example derived from
|
|
package <code>os</code>.
|
|
</p>
|
|
|
|
<pre>
|
|
func NewFile(fd int, name string) *File {
|
|
if fd < 0 {
|
|
return nil
|
|
}
|
|
f := new(File)
|
|
f.fd = fd
|
|
f.name = name
|
|
f.dirinfo = nil
|
|
f.nepipe = 0
|
|
return f
|
|
}
|
|
</pre>
|
|
|
|
<p>
|
|
There's a lot of boiler plate in there. We can simplify it
|
|
using a <i>composite literal</i>, which is
|
|
an expression that creates a
|
|
new instance each time it is evaluated.
|
|
</p>
|
|
|
|
<pre>
|
|
func NewFile(fd int, name string) *File {
|
|
if fd < 0 {
|
|
return nil
|
|
}
|
|
f := File{fd, name, nil, 0}
|
|
return &f
|
|
}
|
|
</pre>
|
|
|
|
<p>
|
|
Note that, unlike in C, it's perfectly OK to return the address of a local variable;
|
|
the storage associated with the variable survives after the function
|
|
returns.
|
|
In fact, taking the address of a composite literal
|
|
allocates a fresh instance each time it is evaluated,
|
|
so we can combine these last two lines.
|
|
</p>
|
|
|
|
<pre>
|
|
return &File{fd, name, nil, 0}
|
|
</pre>
|
|
|
|
<p>
|
|
The fields of a composite literal are laid out in order and must all be present.
|
|
However, by labeling the elements explicitly as <i>field</i><code>:</code><i>value</i>
|
|
pairs, the initializers can appear in any
|
|
order, with the missing ones left as their respective zero values. Thus we could say
|
|
</p>
|
|
|
|
<pre>
|
|
return &File{fd: fd, name: name}
|
|
</pre>
|
|
|
|
<p>
|
|
As a limiting case, if a composite literal contains no fields at all, it creates
|
|
a zero value for the type. The expressions <code>new(File)</code> and <code>&File{}</code> are equivalent.
|
|
</p>
|
|
|
|
<p>
|
|
Composite literals can also be created for arrays, slices, and maps,
|
|
with the field labels being indices or map keys as appropriate.
|
|
In these examples, the initializations work regardless of the values of <code>Enone</code>,
|
|
<code>Eio</code>, and <code>Einval</code>, as long as they are distinct.
|
|
</p>
|
|
|
|
<pre>
|
|
a := [...]string {Enone: "no error", Eio: "Eio", Einval: "invalid argument"}
|
|
s := []string {Enone: "no error", Eio: "Eio", Einval: "invalid argument"}
|
|
m := map[int]string{Enone: "no error", Eio: "Eio", Einval: "invalid argument"}
|
|
</pre>
|
|
|
|
<h3 id="allocation_make">Allocation with <code>make</code></h3>
|
|
|
|
<p>
|
|
Back to allocation.
|
|
The built-in function <code>make(T, </code><i>args</i><code>)</code> serves
|
|
a purpose different from <code>new(T)</code>.
|
|
It creates slices, maps, and channels only, and it returns an initialized (not zero)
|
|
value of type <code>T</code>, not <code>*T</code>.
|
|
The reason for the distinction
|
|
is that these three types are, under the covers, references to data structures that
|
|
must be initialized before use.
|
|
A slice, for example, is a three-item descriptor
|
|
containing a pointer to the data (inside an array), the length, and the
|
|
capacity, and until those items are initialized, the slice is <code>nil</code>.
|
|
For slices, maps, and channels,
|
|
<code>make</code> initializes the internal data structure and prepares
|
|
the value for use.
|
|
For instance,
|
|
</p>
|
|
|
|
<pre>
|
|
make([]int, 10, 100)
|
|
</pre>
|
|
|
|
<p>
|
|
allocates an array of 100 ints and then creates a slice
|
|
structure with length 10 and a capacity of 100 pointing at the first
|
|
10 elements of the array.
|
|
(When making a slice, the capacity can be omitted; see the section on slices
|
|
for more information.)
|
|
In contrast, <code>new([]int)</code> returns a pointer to a newly allocated, zeroed slice
|
|
structure, that is, a pointer to a <code>nil</code> slice value.
|
|
|
|
<p>
|
|
These examples illustrate the difference between <code>new</code> and
|
|
<code>make</code>.
|
|
</p>
|
|
|
|
<pre>
|
|
var p *[]int = new([]int) // allocates slice structure; *p == nil; rarely useful
|
|
var v []int = make([]int, 100) // the slice v now refers to a new array of 100 ints
|
|
|
|
// Unnecessarily complex:
|
|
var p *[]int = new([]int)
|
|
*p = make([]int, 100, 100)
|
|
|
|
// Idiomatic:
|
|
v := make([]int, 100)
|
|
</pre>
|
|
|
|
<p>
|
|
Remember that <code>make</code> applies only to maps, slices and channels
|
|
and does not return a pointer.
|
|
To obtain an explicit pointer allocate with <code>new</code>.
|
|
</p>
|
|
|
|
<h3 id="arrays">Arrays</h3>
|
|
|
|
<p>
|
|
Arrays are useful when planning the detailed layout of memory and sometimes
|
|
can help avoid allocation, but primarily
|
|
they are a building block for slices, the subject of the next section.
|
|
To lay the foundation for that topic, here are a few words about arrays.
|
|
</p>
|
|
|
|
<p>
|
|
There are major differences between the ways arrays work in Go and C.
|
|
In Go,
|
|
</p>
|
|
<ul>
|
|
<li>
|
|
Arrays are values. Assigning one array to another copies all the elements.
|
|
</li>
|
|
<li>
|
|
In particular, if you pass an array to a function, it
|
|
will receive a <i>copy</i> of the array, not a pointer to it.
|
|
<li>
|
|
The size of an array is part of its type. The types <code>[10]int</code>
|
|
and <code>[20]int</code> are distinct.
|
|
</li>
|
|
</ul>
|
|
|
|
<p>
|
|
The value property can be useful but also expensive; if you want C-like behavior and efficiency,
|
|
you can pass a pointer to the array.
|
|
</p>
|
|
|
|
<pre>
|
|
func Sum(a *[3]float64) (sum float64) {
|
|
for _, v := range *a {
|
|
sum += v
|
|
}
|
|
return
|
|
}
|
|
|
|
array := [...]float64{7.0, 8.5, 9.1}
|
|
x := Sum(&array) // Note the explicit address-of operator
|
|
</pre>
|
|
|
|
<p>
|
|
But even this style isn't idiomatic Go. Slices are.
|
|
</p>
|
|
|
|
<h3 id="slices">Slices</h3>
|
|
|
|
<p>
|
|
Slices wrap arrays to give a more general, powerful, and convenient
|
|
interface to sequences of data. Except for items with explicit
|
|
dimension such as transformation matrices, most array programming in
|
|
Go is done with slices rather than simple arrays.
|
|
</p>
|
|
<p>
|
|
Slices are <i>reference types</i>, which means that if you assign one
|
|
slice to another, both refer to the same underlying array. For
|
|
instance, if a function takes a slice argument, changes it makes to
|
|
the elements of the slice will be visible to the caller, analogous to
|
|
passing a pointer to the underlying array. A <code>Read</code>
|
|
function can therefore accept a slice argument rather than a pointer
|
|
and a count; the length within the slice sets an upper
|
|
limit of how much data to read. Here is the signature of the
|
|
<code>Read</code> method of the <code>File</code> type in package
|
|
<code>os</code>:
|
|
</p>
|
|
<pre>
|
|
func (file *File) Read(buf []byte) (n int, err os.Error)
|
|
</pre>
|
|
<p>
|
|
The method returns the number of bytes read and an error value, if
|
|
any. To read into the first 32 bytes of a larger buffer
|
|
<code>b</code>, <i>slice</i> (here used as a verb) the buffer.
|
|
</p>
|
|
<pre>
|
|
n, err := f.Read(buf[0:32])
|
|
</pre>
|
|
<p>
|
|
Such slicing is common and efficient. In fact, leaving efficiency aside for
|
|
the moment, this snippet would also read the first 32 bytes of the buffer.
|
|
</p>
|
|
<pre>
|
|
var n int
|
|
var err os.Error
|
|
for i := 0; i < 32; i++ {
|
|
nbytes, e := f.Read(buf[i:i+1]) // Read one byte.
|
|
if nbytes == 0 || e != nil {
|
|
err = e
|
|
break
|
|
}
|
|
n += nbytes
|
|
}
|
|
</pre>
|
|
<p>
|
|
The length of a slice may be changed as long as it still fits within
|
|
the limits of the underlying array; just assign it to a slice of
|
|
itself. The <i>capacity</i> of a slice, accessible by the built-in
|
|
function <code>cap</code>, reports the maximum length the slice may
|
|
assume. Here is a function to append data to a slice. If the data
|
|
exceeds the capacity, the slice is reallocated. The
|
|
resulting slice is returned. The function uses the fact that
|
|
<code>len</code> and <code>cap</code> are legal when applied to the
|
|
<code>nil</code> slice, and return 0.
|
|
</p>
|
|
<pre>
|
|
func Append(slice, data[]byte) []byte {
|
|
l := len(slice)
|
|
if l + len(data) > cap(slice) { // reallocate
|
|
// Allocate double what's needed, for future growth.
|
|
newSlice := make([]byte, (l+len(data))*2)
|
|
// The copy function is predeclared and works for any slice type.
|
|
copy(newSlice, slice)
|
|
slice = newSlice
|
|
}
|
|
slice = slice[0:l+len(data)]
|
|
for i, c := range data {
|
|
slice[l+i] = c
|
|
}
|
|
return slice
|
|
}
|
|
</pre>
|
|
<p>
|
|
We must return the slice afterwards because, although <code>Append</code>
|
|
can modify the elements of <code>slice</code>, the slice itself (the run-time data
|
|
structure holding the pointer, length, and capacity) is passed by value.
|
|
<p>
|
|
The idea of appending to a slice is so useful it's captured by the
|
|
<code>append</code> built-in function. To understand that function's
|
|
design, though, we need a little more information, so we'll return
|
|
to it later.
|
|
</p>
|
|
|
|
|
|
<h3 id="maps">Maps</h3>
|
|
|
|
<p>
|
|
Maps are a convenient and powerful built-in data structure to associate
|
|
values of different types.
|
|
The key can be of any type for which the equality operator is defined,
|
|
such as integers,
|
|
floating point and complex numbers,
|
|
strings, pointers, and interfaces (as long as the dynamic type
|
|
supports equality). Structs, arrays and slices cannot be used as map keys,
|
|
because equality is not defined on those types.
|
|
Like slices, maps are a reference type. If you pass a map to a function
|
|
that changes the contents of the map, the changes will be visible
|
|
in the caller.
|
|
</p>
|
|
<p>
|
|
Maps can be constructed using the usual composite literal syntax
|
|
with colon-separated key-value pairs,
|
|
so it's easy to build them during initialization.
|
|
</p>
|
|
<pre>
|
|
var timeZone = map[string] int {
|
|
"UTC": 0*60*60,
|
|
"EST": -5*60*60,
|
|
"CST": -6*60*60,
|
|
"MST": -7*60*60,
|
|
"PST": -8*60*60,
|
|
}
|
|
</pre>
|
|
<p>
|
|
Assigning and fetching map values looks syntactically just like
|
|
doing the same for arrays except that the index doesn't need to
|
|
be an integer.
|
|
</p>
|
|
<pre>
|
|
offset := timeZone["EST"]
|
|
</pre>
|
|
<p>
|
|
An attempt to fetch a map value with a key that
|
|
is not present in the map will return the zero value for the type
|
|
of the entries
|
|
in the map. For instance, if the map contains integers, looking
|
|
up a non-existent key will return <code>0</code>.
|
|
A set can be implemented as a map with value type <code>bool</code>.
|
|
Set the map entry to <code>true</code> to put the value in the set, and then
|
|
test it by simple indexing.
|
|
</p>
|
|
<pre>
|
|
attended := map[string] bool {
|
|
"Ann": true,
|
|
"Joe": true,
|
|
...
|
|
}
|
|
|
|
if attended[person] { // will be false if person is not in the map
|
|
fmt.Println(person, "was at the meeting")
|
|
}
|
|
</pre>
|
|
<p>
|
|
Sometimes you need to distinguish a missing entry from
|
|
a zero value. Is there an entry for <code>"UTC"</code>
|
|
or is that zero value because it's not in the map at all?
|
|
You can discriminate with a form of multiple assignment.
|
|
</p>
|
|
<pre>
|
|
var seconds int
|
|
var ok bool
|
|
seconds, ok = timeZone[tz]
|
|
</pre>
|
|
<p>
|
|
For obvious reasons this is called the “comma ok” idiom.
|
|
In this example, if <code>tz</code> is present, <code>seconds</code>
|
|
will be set appropriately and <code>ok</code> will be true; if not,
|
|
<code>seconds</code> will be set to zero and <code>ok</code> will
|
|
be false.
|
|
Here's a function that puts it together with a nice error report:
|
|
</p>
|
|
<pre>
|
|
func offset(tz string) int {
|
|
if seconds, ok := timeZone[tz]; ok {
|
|
return seconds
|
|
}
|
|
log.Println("unknown time zone:", tz)
|
|
return 0
|
|
}
|
|
</pre>
|
|
<p>
|
|
To test for presence in the map without worrying about the actual value,
|
|
you can use the <em>blank identifier</em>, a simple underscore (<code>_</code>).
|
|
The blank identifier can be assigned or declared with any value of any type, with the
|
|
value discarded harmlessly. For testing just presence in a map, use the blank
|
|
identifier in place of the usual variable for the value.
|
|
</p>
|
|
<pre>
|
|
_, present := timeZone[tz]
|
|
</pre>
|
|
<p>
|
|
To delete a map entry, turn the multiple assignment around by placing
|
|
an extra boolean on the right; if the boolean is false, the entry
|
|
is deleted. It's safe to do this even if the key is already absent
|
|
from the map.
|
|
</p>
|
|
<pre>
|
|
timeZone["PDT"] = 0, false // Now on Standard Time
|
|
</pre>
|
|
|
|
<h3 id="printing">Printing</h3>
|
|
|
|
<p>
|
|
Formatted printing in Go uses a style similar to C's <code>printf</code>
|
|
family but is richer and more general. The functions live in the <code>fmt</code>
|
|
package and have capitalized names: <code>fmt.Printf</code>, <code>fmt.Fprintf</code>,
|
|
<code>fmt.Sprintf</code> and so on. The string functions (<code>Sprintf</code> etc.)
|
|
return a string rather than filling in a provided buffer.
|
|
</p>
|
|
<p>
|
|
You don't need to provide a format string. For each of <code>Printf</code>,
|
|
<code>Fprintf</code> and <code>Sprintf</code> there is another pair
|
|
of functions, for instance <code>Print</code> and <code>Println</code>.
|
|
These functions do not take a format string but instead generate a default
|
|
format for each argument. The <code>Println</code> versions also insert a blank
|
|
between arguments and append a newline to the output while
|
|
the <code>Print</code> versions add blanks only if the operand on neither side is a string.
|
|
In this example each line produces the same output.
|
|
</p>
|
|
<pre>
|
|
fmt.Printf("Hello %d\n", 23)
|
|
fmt.Fprint(os.Stdout, "Hello ", 23, "\n")
|
|
fmt.Println("Hello", 23)
|
|
fmt.Println(fmt.Sprint("Hello ", 23))
|
|
</pre>
|
|
<p>
|
|
As mentioned in
|
|
the <a href="go_tutorial.html">tutorial</a>, <code>fmt.Fprint</code>
|
|
and friends take as a first argument any object
|
|
that implements the <code>io.Writer</code> interface; the variables <code>os.Stdout</code>
|
|
and <code>os.Stderr</code> are familiar instances.
|
|
</p>
|
|
<p>
|
|
Here things start to diverge from C. First, the numeric formats such as <code>%d</code>
|
|
do not take flags for signedness or size; instead, the printing routines use the
|
|
type of the argument to decide these properties.
|
|
</p>
|
|
<pre>
|
|
var x uint64 = 1<<64 - 1
|
|
fmt.Printf("%d %x; %d %x\n", x, x, int64(x), int64(x))
|
|
</pre>
|
|
<p>
|
|
prints
|
|
</p>
|
|
<pre>
|
|
18446744073709551615 ffffffffffffffff; -1 -1
|
|
</pre>
|
|
<p>
|
|
If you just want the default conversion, such as decimal for integers, you can use
|
|
the catchall format <code>%v</code> (for “value”); the result is exactly
|
|
what <code>Print</code> and <code>Println</code> would produce.
|
|
Moreover, that format can print <em>any</em> value, even arrays, structs, and
|
|
maps. Here is a print statement for the time zone map defined in the previous section.
|
|
</p>
|
|
<pre>
|
|
fmt.Printf("%v\n", timeZone) // or just fmt.Println(timeZone)
|
|
</pre>
|
|
<p>
|
|
which gives output
|
|
</p>
|
|
<pre>
|
|
map[CST:-21600 PST:-28800 EST:-18000 UTC:0 MST:-25200]
|
|
</pre>
|
|
<p>
|
|
For maps the keys may be output in any order, of course.
|
|
When printing a struct, the modified format <code>%+v</code> annotates the
|
|
fields of the structure with their names, and for any value the alternate
|
|
format <code>%#v</code> prints the value in full Go syntax.
|
|
</p>
|
|
<pre>
|
|
type T struct {
|
|
a int
|
|
b float
|
|
c string
|
|
}
|
|
t := &T{ 7, -2.35, "abc\tdef" }
|
|
fmt.Printf("%v\n", t)
|
|
fmt.Printf("%+v\n", t)
|
|
fmt.Printf("%#v\n", t)
|
|
fmt.Printf("%#v\n", timeZone)
|
|
</pre>
|
|
<p>
|
|
prints
|
|
</p>
|
|
<pre>
|
|
&{7 -2.35 abc def}
|
|
&{a:7 b:-2.35 c:abc def}
|
|
&main.T{a:7, b:-2.35, c:"abc\tdef"}
|
|
map[string] int{"CST":-21600, "PST":-28800, "EST":-18000, "UTC":0, "MST":-25200}
|
|
</pre>
|
|
<p>
|
|
(Note the ampersands.)
|
|
That quoted string format is also available through <code>%q</code> when
|
|
applied to a value of type <code>string</code> or <code>[]byte</code>;
|
|
the alternate format <code>%#q</code> will use backquotes instead if possible.
|
|
Also, <code>%x</code> works on strings and arrays of bytes as well as on integers,
|
|
generating a long hexadecimal string, and with
|
|
a space in the format (<code>% x</code>) it puts spaces between the bytes.
|
|
</p>
|
|
<p>
|
|
Another handy format is <code>%T</code>, which prints the <em>type</em> of a value.
|
|
<pre>
|
|
fmt.Printf("%T\n", timeZone)
|
|
</pre>
|
|
<p>
|
|
prints
|
|
</p>
|
|
<pre>
|
|
map[string] int
|
|
</pre>
|
|
<p>
|
|
If you want to control the default format for a custom type, all that's required is to define
|
|
a method with the signature <code>String() string</code> on the type.
|
|
For our simple type <code>T</code>, that might look like this.
|
|
</p>
|
|
<pre>
|
|
func (t *T) String() string {
|
|
return fmt.Sprintf("%d/%g/%q", t.a, t.b, t.c)
|
|
}
|
|
fmt.Printf("%v\n", t)
|
|
</pre>
|
|
<p>
|
|
to print in the format
|
|
</p>
|
|
<pre>
|
|
7/-2.35/"abc\tdef"
|
|
</pre>
|
|
<p>
|
|
(If you need to print <em>values</em> of type <code>T</code> as well as pointers to <code>T</code>,
|
|
the receiver for <code>String</code> must be of value type; this example used a pointer because
|
|
that's more efficient and idiomatic for struct types.
|
|
See the section below on <a href="#pointers_vs_values">pointers vs. value receivers</a> for more information.)
|
|
</p>
|
|
<p>
|
|
Our <code>String</code> method is able to call <code>Sprintf</code> because the
|
|
print routines are fully reentrant and can be used recursively.
|
|
We can even go one step further and pass a print routine's arguments directly to another such routine.
|
|
The signature of <code>Printf</code> uses the type <code>...interface{}</code>
|
|
for its final argument to specify that an arbitrary number of parameters (of arbitrary type)
|
|
can appear after the format.
|
|
</p>
|
|
<pre>
|
|
func Printf(format string, v ...interface{}) (n int, errno os.Error) {
|
|
</pre>
|
|
<p>
|
|
Within the function <code>Printf</code>, <code>v</code> acts like a variable of type
|
|
<code>[]interface{}</code> but if it is passed to another variadic function, it acts like
|
|
a regular list of arguments.
|
|
Here is the implementation of the
|
|
function <code>log.Println</code> we used above. It passes its arguments directly to
|
|
<code>fmt.Sprintln</code> for the actual formatting.
|
|
</p>
|
|
<pre>
|
|
// Println prints to the standard logger in the manner of fmt.Println.
|
|
func Println(v ...interface{}) {
|
|
std.Output(2, fmt.Sprintln(v...)) // Output takes parameters (int, string)
|
|
}
|
|
</pre>
|
|
<p>
|
|
We write <code>...</code> after <code>v</code> in the nested call to <code>Sprintln</code> to tell the
|
|
compiler to treat <code>v</code> as a list of arguments; otherwise it would just pass
|
|
<code>v</code> as a single slice argument.
|
|
<p>
|
|
There's even more to printing than we've covered here. See the <code>godoc</code> documentation
|
|
for package <code>fmt</code> for the details.
|
|
</p>
|
|
<p>
|
|
By the way, a <code>...</code> parameter can be of a specific type, for instance <code>...int</code>
|
|
for a min function that chooses the least of a list of integers:
|
|
</p>
|
|
<pre>
|
|
func Min(a ...int) int {
|
|
min := int(^uint(0) >> 1) // largest int
|
|
for _, i := range a {
|
|
if i < min {
|
|
min = i
|
|
}
|
|
}
|
|
return min
|
|
}
|
|
</pre>
|
|
|
|
<h3 id="append">Append</h3>
|
|
<p>
|
|
Now we have the missing piece we needed to explain the design of
|
|
the <code>append</code> built-in function. The signature of <code>append</code>
|
|
is different from our custom <code>Append</code> function above.
|
|
Schematically, it's like this:
|
|
<pre>
|
|
func append(slice []<i>T</i>, elements...T) []<i>T</i>
|
|
</pre>
|
|
where <i>T</i> is a placeholder for any given type. You can't
|
|
actually write a function in Go where the type <code>T</code>
|
|
is determined by the caller.
|
|
That's why <code>append</code> is built in: it needs support from the
|
|
compiler.
|
|
<p>
|
|
What <code>append</code> does is append the elements to the end of
|
|
the slice and return the result. The result needs to be returned
|
|
because, as with our hand-written <code>Append</code>, the underlying
|
|
array may change. This simple example
|
|
<pre>
|
|
x := []int{1,2,3}
|
|
x = append(x, 4, 5, 6)
|
|
fmt.Println(x)
|
|
</pre>
|
|
prints <code>[1 2 3 4 5 6]</code>. So <code>append</code> works a
|
|
little like <code>Printf</code>, collecting an arbitrary number of
|
|
arguments.
|
|
<p>
|
|
But what if we wanted to do what our <code>Append</code> does and
|
|
append a slice to a slice? Easy: use <code>...</code> at the call
|
|
site, just as we did in the call to <code>Output</code> above. This
|
|
snippet produces identical output to the one above.
|
|
<pre>
|
|
x := []int{1,2,3}
|
|
y := []int{4,5,6}
|
|
x = append(x, y...)
|
|
fmt.Println(x)
|
|
</pre>
|
|
Without that <code>...</code>, it wouldn't compile because the types
|
|
would be wrong; <code>y</code> is not of type <code>int</code>.
|
|
|
|
<h2 id="initialization">Initialization</h2>
|
|
|
|
<p>
|
|
Although it doesn't look superficially very different from
|
|
initialization in C or C++, initialization in Go is more powerful.
|
|
Complex structures can be built during initialization and the ordering
|
|
issues between initialized objects in different packages are handled
|
|
correctly.
|
|
</p>
|
|
|
|
<h3 id="constants">Constants</h3>
|
|
|
|
<p>
|
|
Constants in Go are just that—constant.
|
|
They are created at compile time, even when defined as
|
|
locals in functions,
|
|
and can only be numbers, strings or booleans.
|
|
Because of the compile-time restriction, the expressions
|
|
that define them must be constant expressions,
|
|
evaluatable by the compiler. For instance,
|
|
<code>1<<3</code> is a constant expression, while
|
|
<code>math.Sin(math.Pi/4)</code> is not because
|
|
the function call to <code>math.Sin</code> needs
|
|
to happen at run time.
|
|
</p>
|
|
|
|
<p>
|
|
In Go, enumerated constants are created using the <code>iota</code>
|
|
enumerator. Since <code>iota</code> can be part of an expression and
|
|
expressions can be implicitly repeated, it is easy to build intricate
|
|
sets of values.
|
|
</p>
|
|
<pre>
|
|
type ByteSize float64
|
|
const (
|
|
_ = iota // ignore first value by assigning to blank identifier
|
|
KB ByteSize = 1<<(10*iota)
|
|
MB
|
|
GB
|
|
TB
|
|
PB
|
|
EB
|
|
ZB
|
|
YB
|
|
)
|
|
</pre>
|
|
<p>
|
|
The ability to attach a method such as <code>String</code> to a
|
|
type makes it possible for such values to format themselves
|
|
automatically for printing, even as part of a general type.
|
|
</p>
|
|
<pre>
|
|
func (b ByteSize) String() string {
|
|
switch {
|
|
case b >= YB:
|
|
return fmt.Sprintf("%.2fYB", float64(b/YB))
|
|
case b >= ZB:
|
|
return fmt.Sprintf("%.2fZB", float64(b/ZB))
|
|
case b >= EB:
|
|
return fmt.Sprintf("%.2fEB", float64(b/EB))
|
|
case b >= PB:
|
|
return fmt.Sprintf("%.2fPB", float64(b/PB))
|
|
case b >= TB:
|
|
return fmt.Sprintf("%.2fTB", float64(b/TB))
|
|
case b >= GB:
|
|
return fmt.Sprintf("%.2fGB", float64(b/GB))
|
|
case b >= MB:
|
|
return fmt.Sprintf("%.2fMB", float64(b/MB))
|
|
case b >= KB:
|
|
return fmt.Sprintf("%.2fKB", float64(b/KB))
|
|
}
|
|
return fmt.Sprintf("%.2fB", float64(b))
|
|
}
|
|
</pre>
|
|
<p>
|
|
(The <code>float64</code> conversions prevent <code>Sprintf</code>
|
|
from recurring back through the <code>String</code> method for
|
|
<code>ByteSize</code>.)
|
|
The expression <code>YB</code> prints as <code>1.00YB</code>,
|
|
while <code>ByteSize(1e13)</code> prints as <code>9.09TB</code>.
|
|
</p>
|
|
|
|
<h3 id="variables">Variables</h3>
|
|
|
|
<p>
|
|
Variables can be initialized just like constants but the
|
|
initializer can be a general expression computed at run time.
|
|
</p>
|
|
<pre>
|
|
var (
|
|
HOME = os.Getenv("HOME")
|
|
USER = os.Getenv("USER")
|
|
GOROOT = os.Getenv("GOROOT")
|
|
)
|
|
</pre>
|
|
|
|
<h3 id="init">The init function</h3>
|
|
|
|
<p>
|
|
Finally, each source file can define its own niladic <code>init</code> function to
|
|
set up whatever state is required. (Actually each file can have multiple
|
|
<code>init</code> functions.) The only restriction is that, although
|
|
goroutines can be launched during initialization, they will not begin
|
|
execution until it completes; initialization always runs as a single thread
|
|
of execution.
|
|
And finally means finally: <code>init</code> is called after all the
|
|
variable declarations in the package have evaluated their initializers,
|
|
and those are evaluated only after all the imported packages have been
|
|
initialized.
|
|
</p>
|
|
<p>
|
|
Besides initializations that cannot be expressed as declarations,
|
|
a common use of <code>init</code> functions is to verify or repair
|
|
correctness of the program state before real execution begins.
|
|
</p>
|
|
|
|
<pre>
|
|
func init() {
|
|
if USER == "" {
|
|
log.Fatal("$USER not set")
|
|
}
|
|
if HOME == "" {
|
|
HOME = "/usr/" + USER
|
|
}
|
|
if GOROOT == "" {
|
|
GOROOT = HOME + "/go"
|
|
}
|
|
// GOROOT may be overridden by --goroot flag on command line.
|
|
flag.StringVar(&GOROOT, "goroot", GOROOT, "Go root directory")
|
|
}
|
|
</pre>
|
|
|
|
<h2 id="methods">Methods</h2>
|
|
|
|
<h3 id="pointers_vs_values">Pointers vs. Values</h3>
|
|
<p>
|
|
Methods can be defined for any named type that is not a pointer or an interface;
|
|
the receiver does not have to be a struct.
|
|
<p>
|
|
In the discussion of slices above, we wrote an <code>Append</code>
|
|
function. We can define it as a method on slices instead. To do
|
|
this, we first declare a named type to which we can bind the method, and
|
|
then make the receiver for the method a value of that type.
|
|
</p>
|
|
<pre>
|
|
type ByteSlice []byte
|
|
|
|
func (slice ByteSlice) Append(data []byte) []byte {
|
|
// Body exactly the same as above
|
|
}
|
|
</pre>
|
|
<p>
|
|
This still requires the method to return the updated slice. We can
|
|
eliminate that clumsiness by redefining the method to take a
|
|
<i>pointer</i> to a <code>ByteSlice</code> as its receiver, so the
|
|
method can overwrite the caller's slice.
|
|
</p>
|
|
<pre>
|
|
func (p *ByteSlice) Append(data []byte) {
|
|
slice := *p
|
|
// Body as above, without the return.
|
|
*p = slice
|
|
}
|
|
</pre>
|
|
<p>
|
|
In fact, we can do even better. If we modify our function so it looks
|
|
like a standard <code>Write</code> method, like this,
|
|
</p>
|
|
<pre>
|
|
func (p *ByteSlice) Write(data []byte) (n int, err os.Error) {
|
|
slice := *p
|
|
// Again as above.
|
|
*p = slice
|
|
return len(data), nil
|
|
}
|
|
</pre>
|
|
<p>
|
|
then the type <code>*ByteSlice</code> satisfies the standard interface
|
|
<code>io.Writer</code>, which is handy. For instance, we can
|
|
print into one.
|
|
</p>
|
|
<pre>
|
|
var b ByteSlice
|
|
fmt.Fprintf(&b, "This hour has %d days\n", 7)
|
|
</pre>
|
|
<p>
|
|
We pass the address of a <code>ByteSlice</code>
|
|
because only <code>*ByteSlice</code> satisfies <code>io.Writer</code>.
|
|
The rule about pointers vs. values for receivers is that value methods
|
|
can be invoked on pointers and values, but pointer methods can only be
|
|
invoked on pointers. This is because pointer methods can modify the
|
|
receiver; invoking them on a copy of the value would cause those
|
|
modifications to be discarded.
|
|
</p>
|
|
<p>
|
|
By the way, the idea of using <code>Write</code> on a slice of bytes
|
|
is implemented by <code>bytes.Buffer</code>.
|
|
</p>
|
|
|
|
<h2 id="interfaces_and_types">Interfaces and other types</h2>
|
|
|
|
<h3 id="interfaces">Interfaces</h3>
|
|
<p>
|
|
Interfaces in Go provide a way to specify the behavior of an
|
|
object: if something can do <em>this</em>, then it can be used
|
|
<em>here</em>. We've seen a couple of simple examples already;
|
|
custom printers can be implemented by a <code>String</code> method
|
|
while <code>Fprintf</code> can generate output to anything
|
|
with a <code>Write</code> method.
|
|
Interfaces with only one or two methods are common in Go code, and are
|
|
usually given a name derived from the method, such as <code>io.Writer</code>
|
|
for something that implements <code>Write</code>.
|
|
</p>
|
|
<p>
|
|
A type can implement multiple interfaces.
|
|
For instance, a collection can be sorted
|
|
by the routines in package <code>sort</code> if it implements
|
|
<code>sort.Interface</code>, which contains <code>Len()</code>,
|
|
<code>Less(i, j int) bool</code>, and <code>Swap(i, j int)</code>,
|
|
and it could also have a custom formatter.
|
|
In this contrived example <code>Sequence</code> satisfies both.
|
|
</p>
|
|
<pre>
|
|
type Sequence []int
|
|
|
|
// Methods required by sort.Interface.
|
|
func (s Sequence) Len() int {
|
|
return len(s)
|
|
}
|
|
func (s Sequence) Less(i, j int) bool {
|
|
return s[i] < s[j]
|
|
}
|
|
func (s Sequence) Swap(i, j int) {
|
|
s[i], s[j] = s[j], s[i]
|
|
}
|
|
|
|
// Method for printing - sorts the elements before printing.
|
|
func (s Sequence) String() string {
|
|
sort.Sort(s)
|
|
str := "["
|
|
for i, elem := range s {
|
|
if i > 0 {
|
|
str += " "
|
|
}
|
|
str += fmt.Sprint(elem)
|
|
}
|
|
return str + "]"
|
|
}
|
|
</pre>
|
|
|
|
<h3 id="conversions">Conversions</h3>
|
|
|
|
<p>
|
|
The <code>String</code> method of <code>Sequence</code> is recreating the
|
|
work that <code>Sprint</code> already does for slices. We can share the
|
|
effort if we convert the <code>Sequence</code> to a plain
|
|
<code>[]int</code> before calling <code>Sprint</code>.
|
|
</p>
|
|
<pre>
|
|
func (s Sequence) String() string {
|
|
sort.Sort(s)
|
|
return fmt.Sprint([]int(s))
|
|
}
|
|
</pre>
|
|
<p>
|
|
The conversion causes <code>s</code> to be treated as an ordinary slice
|
|
and therefore receive the default formatting.
|
|
Without the conversion, <code>Sprint</code> would find the
|
|
<code>String</code> method of <code>Sequence</code> and recur indefinitely.
|
|
Because the two types (<code>Sequence</code> and <code>[]int</code>)
|
|
are the same if we ignore the type name, it's legal to convert between them.
|
|
The conversion doesn't create a new value, it just temporarily acts
|
|
as though the existing value has a new type.
|
|
(There are other legal conversions, such as from integer to floating point, that
|
|
do create a new value.)
|
|
</p>
|
|
<p>
|
|
It's an idiom in Go programs to convert the
|
|
type of an expression to access a different
|
|
set of methods. As an example, we could use the existing
|
|
type <code>sort.IntArray</code> to reduce the entire example
|
|
to this:
|
|
</p>
|
|
<pre>
|
|
type Sequence []int
|
|
|
|
// Method for printing - sorts the elements before printing
|
|
func (s Sequence) String() string {
|
|
sort.IntArray(s).Sort()
|
|
return fmt.Sprint([]int(s))
|
|
}
|
|
</pre>
|
|
<p>
|
|
Now, instead of having <code>Sequence</code> implement multiple
|
|
interfaces (sorting and printing), we're using the ability of a data item to be
|
|
converted to multiple types (<code>Sequence</code>, <code>sort.IntArray</code>
|
|
and <code>[]int</code>), each of which does some part of the job.
|
|
That's more unusual in practice but can be effective.
|
|
</p>
|
|
|
|
<h3 id="generality">Generality</h3>
|
|
<p>
|
|
If a type exists only to implement an interface
|
|
and has no exported methods beyond that interface,
|
|
there is no need to export the type itself.
|
|
Exporting just the interface makes it clear that
|
|
it's the behavior that matters, not the implementation,
|
|
and that other implementations with different properties
|
|
can mirror the behavior of the original type.
|
|
It also avoids the need to repeat the documentation
|
|
on every instance of a common method.
|
|
</p>
|
|
<p>
|
|
In such cases, the constructor should return an interface value
|
|
rather than the implementing type.
|
|
As an example, in the hash libraries
|
|
both <code>crc32.NewIEEE</code> and <code>adler32.New</code>
|
|
return the interface type <code>hash.Hash32</code>.
|
|
Substituting the CRC-32 algorithm for Adler-32 in a Go program
|
|
requires only changing the constructor call;
|
|
the rest of the code is unaffected by the change of algorithm.
|
|
</p>
|
|
<p>
|
|
A similar approach allows the streaming cipher algorithms
|
|
in the <code>crypto/block</code> package to be
|
|
separated from the block ciphers they chain together.
|
|
By analogy with the <code>bufio</code> package,
|
|
they wrap a <code>Cipher</code> interface
|
|
and return <code>hash.Hash</code>,
|
|
<code>io.Reader</code>, or <code>io.Writer</code>
|
|
interface values, not specific implementations.
|
|
</p>
|
|
<p>
|
|
The interface to <code>crypto/block</code> includes:
|
|
</p>
|
|
<pre>
|
|
type Cipher interface {
|
|
BlockSize() int
|
|
Encrypt(src, dst []byte)
|
|
Decrypt(src, dst []byte)
|
|
}
|
|
|
|
// NewECBDecrypter returns a reader that reads data
|
|
// from r and decrypts it using c in electronic codebook (ECB) mode.
|
|
func NewECBDecrypter(c Cipher, r io.Reader) io.Reader
|
|
|
|
// NewCBCDecrypter returns a reader that reads data
|
|
// from r and decrypts it using c in cipher block chaining (CBC) mode
|
|
// with the initialization vector iv.
|
|
func NewCBCDecrypter(c Cipher, iv []byte, r io.Reader) io.Reader
|
|
</pre>
|
|
<p>
|
|
<code>NewECBDecrypter</code> and <code>NewCBCReader</code> apply not
|
|
just to one specific encryption algorithm and data source but to any
|
|
implementation of the <code>Cipher</code> interface and any
|
|
<code>io.Reader</code>. Because they return <code>io.Reader</code>
|
|
interface values, replacing ECB
|
|
encryption with CBC encryption is a localized change. The constructor
|
|
calls must be edited, but because the surrounding code must treat the result only
|
|
as an <code>io.Reader</code>, it won't notice the difference.
|
|
</p>
|
|
|
|
<h3 id="interface_methods">Interfaces and methods</h3>
|
|
<p>
|
|
Since almost anything can have methods attached, almost anything can
|
|
satisfy an interface. One illustrative example is in the <code>http</code>
|
|
package, which defines the <code>Handler</code> interface. Any object
|
|
that implements <code>Handler</code> can serve HTTP requests.
|
|
</p>
|
|
<pre>
|
|
type Handler interface {
|
|
ServeHTTP(ResponseWriter, *Request)
|
|
}
|
|
</pre>
|
|
<p>
|
|
<code>ResponseWriter</code> is itself an interface that provides access
|
|
to the methods needed to return the response to the client.
|
|
Those methods include the standard <code>Write</code> method, so an
|
|
<code>http.ResponseWriter</code> can be used wherever an <code>io.Writer</code>
|
|
can be used.
|
|
<code>Request</code> is a struct containing a parsed representation
|
|
of the request from the client.
|
|
<p>
|
|
For brevity, let's ignore POSTs and assume HTTP requests are always
|
|
GETs; that simplification does not affect the way the handlers are
|
|
set up. Here's a trivial but complete implementation of a handler to
|
|
count the number of times the
|
|
page is visited.
|
|
</p>
|
|
<pre>
|
|
// Simple counter server.
|
|
type Counter struct {
|
|
n int
|
|
}
|
|
|
|
func (ctr *Counter) ServeHTTP(w http.ResponseWriter, req *http.Request) {
|
|
ctr.n++
|
|
fmt.Fprintf(w, "counter = %d\n", ctr.n)
|
|
}
|
|
</pre>
|
|
<p>
|
|
(Keeping with our theme, note how <code>Fprintf</code> can print to an
|
|
<code>http.ResponseWriter</code>.)
|
|
For reference, here's how to attach such a server to a node on the URL tree.
|
|
<pre>
|
|
import "http"
|
|
...
|
|
ctr := new(Counter)
|
|
http.Handle("/counter", ctr)
|
|
</pre>
|
|
<p>
|
|
But why make <code>Counter</code> a struct? An integer is all that's needed.
|
|
(The receiver needs to be a pointer so the increment is visible to the caller.)
|
|
</p>
|
|
<pre>
|
|
// Simpler counter server.
|
|
type Counter int
|
|
|
|
func (ctr *Counter) ServeHTTP(w http.ResponseWriter, req *http.Request) {
|
|
*ctr++
|
|
fmt.Fprintf(w, "counter = %d\n", *ctr)
|
|
}
|
|
</pre>
|
|
<p>
|
|
What if your program has some internal state that needs to be notified that a page
|
|
has been visited? Tie a channel to the web page.
|
|
</p>
|
|
<pre>
|
|
// A channel that sends a notification on each visit.
|
|
// (Probably want the channel to be buffered.)
|
|
type Chan chan *http.Request
|
|
|
|
func (ch Chan) ServeHTTP(w http.ResponseWriter, req *http.Request) {
|
|
ch <- req
|
|
fmt.Fprint(w, "notification sent")
|
|
}
|
|
</pre>
|
|
<p>
|
|
Finally, let's say we wanted to present on <code>/args</code> the arguments
|
|
used when invoking the server binary.
|
|
It's easy to write a function to print the arguments.
|
|
</p>
|
|
<pre>
|
|
func ArgServer() {
|
|
for i, s := range os.Args {
|
|
fmt.Println(s)
|
|
}
|
|
}
|
|
</pre>
|
|
<p>
|
|
How do we turn that into an HTTP server? We could make <code>ArgServer</code>
|
|
a method of some type whose value we ignore, but there's a cleaner way.
|
|
Since we can define a method for any type except pointers and interfaces,
|
|
we can write a method for a function.
|
|
The <code>http</code> package contains this code:
|
|
</p>
|
|
<pre>
|
|
// The HandlerFunc type is an adapter to allow the use of
|
|
// ordinary functions as HTTP handlers. If f is a function
|
|
// with the appropriate signature, HandlerFunc(f) is a
|
|
// Handler object that calls f.
|
|
type HandlerFunc func(ResponseWriter, *Request)
|
|
|
|
// ServeHTTP calls f(c, req).
|
|
func (f HandlerFunc) ServeHTTP(w ResponseWriter, req *Request) {
|
|
f(w, req)
|
|
}
|
|
</pre>
|
|
<p>
|
|
<code>HandlerFunc</code> is a type with a method, <code>ServeHTTP</code>,
|
|
so values of that type can serve HTTP requests. Look at the implementation
|
|
of the method: the receiver is a function, <code>f</code>, and the method
|
|
calls <code>f</code>. That may seem odd but it's not that different from, say,
|
|
the receiver being a channel and the method sending on the channel.
|
|
</p>
|
|
<p>
|
|
To make <code>ArgServer</code> into an HTTP server, we first modify it
|
|
to have the right signature.
|
|
</p>
|
|
<pre>
|
|
// Argument server.
|
|
func ArgServer(w http.ResponseWriter, req *http.Request) {
|
|
for i, s := range os.Args {
|
|
fmt.Fprintln(w, s)
|
|
}
|
|
}
|
|
</pre>
|
|
<p>
|
|
<code>ArgServer</code> now has same signature as <code>HandlerFunc</code>,
|
|
so it can be converted to that type to access its methods,
|
|
just as we converted <code>Sequence</code> to <code>IntArray</code>
|
|
to access <code>IntArray.Sort</code>.
|
|
The code to set it up is concise:
|
|
</p>
|
|
<pre>
|
|
http.Handle("/args", http.HandlerFunc(ArgServer))
|
|
</pre>
|
|
<p>
|
|
When someone visits the page <code>/args</code>,
|
|
the handler installed at that page has value <code>ArgServer</code>
|
|
and type <code>HandlerFunc</code>.
|
|
The HTTP server will invoke the method <code>ServeHTTP</code>
|
|
of that type, with <code>ArgServer</code> as the receiver, which will in turn call
|
|
<code>ArgServer</code> (via the invocation <code>f(c, req)</code>
|
|
inside <code>HandlerFunc.ServeHTTP</code>).
|
|
The arguments will then be displayed.
|
|
</p>
|
|
<p>
|
|
In this section we have made an HTTP server from a struct, an integer,
|
|
a channel, and a function, all because interfaces are just sets of
|
|
methods, which can be defined for (almost) any type.
|
|
</p>
|
|
|
|
<h2 id="embedding">Embedding</h2>
|
|
|
|
<p>
|
|
Go does not provide the typical, type-driven notion of subclassing,
|
|
but it does have the ability to “borrow” pieces of an
|
|
implementation by <em>embedding</em> types within a struct or
|
|
interface.
|
|
</p>
|
|
<p>
|
|
Interface embedding is very simple.
|
|
We've mentioned the <code>io.Reader</code> and <code>io.Writer</code> interfaces before;
|
|
here are their definitions.
|
|
</p>
|
|
<pre>
|
|
type Reader interface {
|
|
Read(p []byte) (n int, err os.Error)
|
|
}
|
|
|
|
type Writer interface {
|
|
Write(p []byte) (n int, err os.Error)
|
|
}
|
|
</pre>
|
|
<p>
|
|
The <code>io</code> package also exports several other interfaces
|
|
that specify objects that can implement several such methods.
|
|
For instance, there is <code>io.ReadWriter</code>, an interface
|
|
containing both <code>Read</code> and <code>Write</code>.
|
|
We could specify <code>io.ReadWriter</code> by listing the
|
|
two methods explicitly, but it's easier and more evocative
|
|
to embed the two interfaces to form the new one, like this:
|
|
</p>
|
|
<pre>
|
|
// ReadWriter is the interface that combines the Reader and Writer interfaces.
|
|
type ReadWriter interface {
|
|
Reader
|
|
Writer
|
|
}
|
|
</pre>
|
|
<p>
|
|
This says just what it looks like: A <code>ReadWriter</code> can do
|
|
what a <code>Reader</code> does <em>and</em> what a <code>Writer</code>
|
|
does; it is a union of the embedded interfaces (which must be disjoint
|
|
sets of methods).
|
|
Only interfaces can be embedded within interfaces.
|
|
<p>
|
|
The same basic idea applies to structs, but with more far-reaching
|
|
implications. The <code>bufio</code> package has two struct types,
|
|
<code>bufio.Reader</code> and <code>bufio.Writer</code>, each of
|
|
which of course implements the analogous interfaces from package
|
|
<code>io</code>.
|
|
And <code>bufio</code> also implements a buffered reader/writer,
|
|
which it does by combining a reader and a writer into one struct
|
|
using embedding: it lists the types within the struct
|
|
but does not give them field names.
|
|
</p>
|
|
<pre>
|
|
// ReadWriter stores pointers to a Reader and a Writer.
|
|
// It implements io.ReadWriter.
|
|
type ReadWriter struct {
|
|
*Reader // *bufio.Reader
|
|
*Writer // *bufio.Writer
|
|
}
|
|
</pre>
|
|
<p>
|
|
The embedded elements are pointers to structs and of course
|
|
must be initialized to point to valid structs before they
|
|
can be used.
|
|
The <code>ReadWriter</code> struct could be written as
|
|
</p>
|
|
<pre>
|
|
type ReadWriter struct {
|
|
reader *Reader
|
|
writer *Writer
|
|
}
|
|
</pre>
|
|
<p>
|
|
but then to promote the methods of the fields and to
|
|
satisfy the <code>io</code> interfaces, we would also need
|
|
to provide forwarding methods, like this:
|
|
</p>
|
|
<pre>
|
|
func (rw *ReadWriter) Read(p []byte) (n int, err os.Error) {
|
|
return rw.reader.Read(p)
|
|
}
|
|
</pre>
|
|
<p>
|
|
By embedding the structs directly, we avoid this bookkeeping.
|
|
The methods of embedded types come along for free, which means that <code>bufio.ReadWriter</code>
|
|
not only has the methods of <code>bufio.Reader</code> and <code>bufio.Writer</code>,
|
|
it also satisfies all three interfaces:
|
|
<code>io.Reader</code>,
|
|
<code>io.Writer</code>, and
|
|
<code>io.ReadWriter</code>.
|
|
</p>
|
|
<p>
|
|
There's an important way in which embedding differs from subclassing. When we embed a type,
|
|
the methods of that type become methods of the outer type,
|
|
but when they are invoked the receiver of the method is the inner type, not the outer one.
|
|
In our example, when the <code>Read</code> method of a <code>bufio.ReadWriter</code> is
|
|
invoked, it has exactly the same effect as the forwarding method written out above;
|
|
the receiver is the <code>reader</code> field of the <code>ReadWriter</code>, not the
|
|
<code>ReadWriter</code> itself.
|
|
</p>
|
|
<p>
|
|
Embedding can also be a simple convenience.
|
|
This example shows an embedded field alongside a regular, named field.
|
|
</p>
|
|
<pre>
|
|
type Job struct {
|
|
Command string
|
|
*log.Logger
|
|
}
|
|
</pre>
|
|
<p>
|
|
The <code>Job</code> type now has the <code>Log</code>, <code>Logf</code>
|
|
and other
|
|
methods of <code>*log.Logger</code>. We could have given the <code>Logger</code>
|
|
a field name, of course, but it's not necessary to do so. And now, once
|
|
initialized, we can
|
|
log to the <code>Job</code>:
|
|
</p>
|
|
<pre>
|
|
job.Log("starting now...")
|
|
</pre>
|
|
<p>
|
|
The <code>Logger</code> is a regular field of the struct and we can initialize
|
|
it in the usual way with a constructor,
|
|
</p>
|
|
<pre>
|
|
func NewJob(command string, logger *log.Logger) *Job {
|
|
return &Job{command, logger}
|
|
}
|
|
</pre>
|
|
<p>
|
|
or with a composite literal,
|
|
</p>
|
|
<pre>
|
|
job := &Job{command, log.New(os.Stderr, "Job: ", log.Ldate)}
|
|
</pre>
|
|
<p>
|
|
If we need to refer to an embedded field directly, the type name of the field,
|
|
ignoring the package qualifier, serves as a field name. If we needed to access the
|
|
<code>*log.Logger</code> of a <code>Job</code> variable <code>job</code>,
|
|
we would write <code>job.Logger</code>.
|
|
This would be useful if we wanted to refine the methods of <code>Logger</code>.
|
|
</p>
|
|
<pre>
|
|
func (job *Job) Logf(format string, args ...interface{}) {
|
|
job.Logger.Logf("%q: %s", job.Command, fmt.Sprintf(format, args))
|
|
}
|
|
</pre>
|
|
<p>
|
|
Embedding types introduces the problem of name conflicts but the rules to resolve
|
|
them are simple.
|
|
First, a field or method <code>X</code> hides any other item <code>X</code> in a more deeply
|
|
nested part of the type.
|
|
If <code>log.Logger</code> contained a field or method called <code>Command</code>, the <code>Command</code> field
|
|
of <code>Job</code> would dominate it.
|
|
</p>
|
|
<p>
|
|
Second, if the same name appears at the same nesting level, it is usually an error;
|
|
it would be erroneous to embed <code>log.Logger</code> if the <code>Job</code> struct
|
|
contained another field or method called <code>Logger</code>.
|
|
However, if the duplicate name is never mentioned in the program outside the type definition, it is OK.
|
|
This qualification provides some protection against changes made to types embedded from outside; there
|
|
is no problem if a field is added that conflicts with another field in another subtype if neither field
|
|
is ever used.
|
|
</p>
|
|
|
|
|
|
<h2 id="concurrency">Concurrency</h2>
|
|
|
|
<h3 id="sharing">Share by communicating</h3>
|
|
|
|
<p>
|
|
Concurrent programming is a large topic and there is space only for some
|
|
Go-specific highlights here.
|
|
</p>
|
|
<p>
|
|
Concurrent programming in many environments is made difficult by the
|
|
subtleties required to implement correct access to shared variables. Go encourages
|
|
a different approach in which shared values are passed around on channels
|
|
and, in fact, never actively shared by separate threads of execution.
|
|
Only one goroutine has access to the value at any given time.
|
|
Data races cannot occur, by design.
|
|
To encourage this way of thinking we have reduced it to a slogan:
|
|
</p>
|
|
<blockquote>
|
|
Do not communicate by sharing memory;
|
|
instead, share memory by communicating.
|
|
</blockquote>
|
|
<p>
|
|
This approach can be taken too far. Reference counts may be best done
|
|
by putting a mutex around an integer variable, for instance. But as a
|
|
high-level approach, using channels to control access makes it easier
|
|
to write clear, correct programs.
|
|
</p>
|
|
<p>
|
|
One way to think about this model is to consider a typical single-threaded
|
|
program running on one CPU. It has no need for synchronization primitives.
|
|
Now run another such instance; it too needs no synchronization. Now let those
|
|
two communicate; if the communication is the synchronizer, there's still no need
|
|
for other synchronization. Unix pipelines, for example, fit this model
|
|
perfectly. Although Go's approach to concurrency originates in Hoare's
|
|
Communicating Sequential Processes (CSP),
|
|
it can also be seen as a type-safe generalization of Unix pipes.
|
|
</p>
|
|
|
|
<h3 id="goroutines">Goroutines</h3>
|
|
|
|
<p>
|
|
They're called <em>goroutines</em> because the existing
|
|
terms—threads, coroutines, processes, and so on—convey
|
|
inaccurate connotations. A goroutine has a simple model: it is a
|
|
function executing in parallel with other goroutines in the same
|
|
address space. It is lightweight, costing little more than the
|
|
allocation of stack space.
|
|
And the stacks start small, so they are cheap, and grow
|
|
by allocating (and freeing) heap storage as required.
|
|
</p>
|
|
<p>
|
|
Goroutines are multiplexed onto multiple OS threads so if one should
|
|
block, such as while waiting for I/O, others continue to run. Their
|
|
design hides many of the complexities of thread creation and
|
|
management.
|
|
</p>
|
|
<p>
|
|
Prefix a function or method call with the <code>go</code>
|
|
keyword to run the call in a new goroutine.
|
|
When the call completes, the goroutine
|
|
exits, silently. (The effect is similar to the Unix shell's
|
|
<code>&</code> notation for running a command in the
|
|
background.)
|
|
</p>
|
|
<pre>
|
|
go list.Sort() // run list.Sort in parallel; don't wait for it.
|
|
</pre>
|
|
<p>
|
|
A function literal can be handy in a goroutine invocation.
|
|
<pre>
|
|
func Announce(message string, delay int64) {
|
|
go func() {
|
|
time.Sleep(delay)
|
|
fmt.Println(message)
|
|
}() // Note the parentheses - must call the function.
|
|
}
|
|
</pre>
|
|
<p>
|
|
In Go, function literals are closures: the implementation makes
|
|
sure the variables referred to by the function survive as long as they are active.
|
|
<p>
|
|
These examples aren't too practical because the functions have no way of signaling
|
|
completion. For that, we need channels.
|
|
</p>
|
|
|
|
<h3 id="channels">Channels</h3>
|
|
|
|
<p>
|
|
Like maps, channels are a reference type and are allocated with <code>make</code>.
|
|
If an optional integer parameter is provided, it sets the buffer size for the channel.
|
|
The default is zero, for an unbuffered or synchronous channel.
|
|
</p>
|
|
<pre>
|
|
ci := make(chan int) // unbuffered channel of integers
|
|
cj := make(chan int, 0) // unbuffered channel of integers
|
|
cs := make(chan *os.File, 100) // buffered channel of pointers to Files
|
|
</pre>
|
|
<p>
|
|
Channels combine communication—the exchange of a value—with
|
|
synchronization—guaranteeing that two calculations (goroutines) are in
|
|
a known state.
|
|
</p>
|
|
<p>
|
|
There are lots of nice idioms using channels. Here's one to get us started.
|
|
In the previous section we launched a sort in the background. A channel
|
|
can allow the launching goroutine to wait for the sort to complete.
|
|
</p>
|
|
<pre>
|
|
c := make(chan int) // Allocate a channel.
|
|
// Start the sort in a goroutine; when it completes, signal on the channel.
|
|
go func() {
|
|
list.Sort()
|
|
c <- 1 // Send a signal; value does not matter.
|
|
}()
|
|
doSomethingForAWhile()
|
|
<-c // Wait for sort to finish; discard sent value.
|
|
</pre>
|
|
<p>
|
|
Receivers always block until there is data to receive.
|
|
If the channel is unbuffered, the sender blocks until the receiver has
|
|
received the value.
|
|
If the channel has a buffer, the sender blocks only until the
|
|
value has been copied to the buffer; if the buffer is full, this
|
|
means waiting until some receiver has retrieved a value.
|
|
</p>
|
|
<p>
|
|
A buffered channel can be used like a semaphore, for instance to
|
|
limit throughput. In this example, incoming requests are passed
|
|
to <code>handle</code>, which sends a value into the channel, processes
|
|
the request, and then receives a value from the channel.
|
|
The capacity of the channel buffer limits the number of
|
|
simultaneous calls to <code>process</code>.
|
|
</p>
|
|
<pre>
|
|
var sem = make(chan int, MaxOutstanding)
|
|
|
|
func handle(r *Request) {
|
|
sem <- 1 // Wait for active queue to drain.
|
|
process(r) // May take a long time.
|
|
<-sem // Done; enable next request to run.
|
|
}
|
|
|
|
func Serve(queue chan *Request) {
|
|
for {
|
|
req := <-queue
|
|
go handle(req) // Don't wait for handle to finish.
|
|
}
|
|
}
|
|
</pre>
|
|
<p>
|
|
Here's the same idea implemented by starting a fixed
|
|
number of <code>handle</code> goroutines all reading from the request
|
|
channel.
|
|
The number of goroutines limits the number of simultaneous
|
|
calls to <code>process</code>.
|
|
This <code>Serve</code> function also accepts a channel on which
|
|
it will be told to exit; after launching the goroutines it blocks
|
|
receiving from that channel.
|
|
</p>
|
|
<pre>
|
|
func handle(queue chan *Request) {
|
|
for r := range queue {
|
|
process(r)
|
|
}
|
|
}
|
|
|
|
func Serve(clientRequests chan *clientRequests, quit chan bool) {
|
|
// Start handlers
|
|
for i := 0; i < MaxOutstanding; i++ {
|
|
go handle(clientRequests)
|
|
}
|
|
<-quit // Wait to be told to exit.
|
|
}
|
|
</pre>
|
|
|
|
<h3 id="chan_of_chan">Channels of channels</h3>
|
|
<p>
|
|
One of the most important properties of Go is that
|
|
a channel is a first-class value that can be allocated and passed
|
|
around like any other. A common use of this property is
|
|
to implement safe, parallel demultiplexing.
|
|
<p>
|
|
In the example in the previous section, <code>handle</code> was
|
|
an idealized handler for a request but we didn't define the
|
|
type it was handling. If that type includes a channel on which
|
|
to reply, each client can provide its own path for the answer.
|
|
Here's a schematic definition of type <code>Request</code>.
|
|
</p>
|
|
<pre>
|
|
type Request struct {
|
|
args []int
|
|
f func([]int) int
|
|
resultChan chan int
|
|
}
|
|
</pre>
|
|
<p>
|
|
The client provides a function and its arguments, as well as
|
|
a channel inside the request object on which to receive the answer.
|
|
</p>
|
|
<pre>
|
|
func sum(a []int) (s int) {
|
|
for _, v := range a {
|
|
s += v
|
|
}
|
|
return
|
|
}
|
|
|
|
request := &Request{[]int{3, 4, 5}, sum, make(chan int)}
|
|
// Send request
|
|
clientRequests <- request
|
|
// Wait for response.
|
|
fmt.Printf("answer: %d\n", <-request.resultChan)
|
|
</pre>
|
|
<p>
|
|
On the server side, the handler function is the only thing that changes.
|
|
</p>
|
|
<pre>
|
|
func handle(queue chan *Request) {
|
|
for req := range queue {
|
|
req.resultChan <- req.f(req.args)
|
|
}
|
|
}
|
|
</pre>
|
|
<p>
|
|
There's clearly a lot more to do to make it realistic, but this
|
|
code is a framework for a rate-limited, parallel, non-blocking RPC
|
|
system, and there's not a mutex in sight.
|
|
</p>
|
|
|
|
<h3 id="parallel">Parallelization</h3>
|
|
<p>
|
|
Another application of these ideas is to parallelize a calculation
|
|
across multiple CPU cores. If the calculation can be broken into
|
|
separate pieces, it can be parallelized, with a channel to signal
|
|
when each piece completes.
|
|
</p>
|
|
<p>
|
|
Let's say we have an expensive operation to perform on a vector of items,
|
|
and that the value of the operation on each item is independent,
|
|
as in this idealized example.
|
|
</p>
|
|
<pre>
|
|
type Vector []float64
|
|
|
|
// Apply the operation to v[i], v[i+1] ... up to v[n-1].
|
|
func (v Vector) DoSome(i, n int, u Vector, c chan int) {
|
|
for ; i < n; i++ {
|
|
v[i] += u.Op(v[i])
|
|
}
|
|
c <- 1 // signal that this piece is done
|
|
}
|
|
</pre>
|
|
<p>
|
|
We launch the pieces independently in a loop, one per CPU.
|
|
They can complete in any order but it doesn't matter; we just
|
|
count the completion signals by draining the channel after
|
|
launching all the goroutines.
|
|
</p>
|
|
<pre>
|
|
const NCPU = 4 // number of CPU cores
|
|
|
|
func (v Vector) DoAll(u Vector) {
|
|
c := make(chan int, NCPU) // Buffering optional but sensible.
|
|
for i := 0; i < NCPU; i++ {
|
|
go v.DoSome(i*len(v)/NCPU, (i+1)*len(v)/NCPU, u, c)
|
|
}
|
|
// Drain the channel.
|
|
for i := 0; i < NCPU; i++ {
|
|
<-c // wait for one task to complete
|
|
}
|
|
// All done.
|
|
}
|
|
|
|
</pre>
|
|
|
|
<p>
|
|
The current implementation of <code>gc</code> (<code>6g</code>, etc.)
|
|
will not parallelize this code by default.
|
|
It dedicates only a single core to user-level processing. An
|
|
arbitrary number of goroutines can be blocked in system calls, but
|
|
by default only one can be executing user-level code at any time.
|
|
It should be smarter and one day it will be smarter, but until it
|
|
is if you want CPU parallelism you must tell the run-time
|
|
how many goroutines you want executing code simultaneously. There
|
|
are two related ways to do this. Either run your job with environment
|
|
variable <code>GOMAXPROCS</code> set to the number of cores to use
|
|
(default 1); or import the <code>runtime</code> package and call
|
|
<code>runtime.GOMAXPROCS(NCPU)</code>.
|
|
Again, this requirement is expected to be retired as the scheduling and run-time improve.
|
|
</p>
|
|
|
|
<h3 id="leaky_buffer">A leaky buffer</h3>
|
|
|
|
<p>
|
|
The tools of concurrent programming can even make non-concurrent
|
|
ideas easier to express. Here's an example abstracted from an RPC
|
|
package. The client goroutine loops receiving data from some source,
|
|
perhaps a network. To avoid allocating and freeing buffers, it keeps
|
|
a free list, and uses a buffered channel to represent it. If the
|
|
channel is empty, a new buffer gets allocated.
|
|
Once the message buffer is ready, it's sent to the server on
|
|
<code>serverChan</code>.
|
|
</p>
|
|
<pre>
|
|
var freeList = make(chan *Buffer, 100)
|
|
var serverChan = make(chan *Buffer)
|
|
|
|
func client() {
|
|
for {
|
|
var b *Buffer
|
|
// Grab a buffer if available; allocate if not.
|
|
select {
|
|
case b = <-freeList:
|
|
// Got one; nothing more to do.
|
|
default:
|
|
// None free, so allocate a new one.
|
|
b = new(Buffer)
|
|
}
|
|
load(b) // Read next message from the net.
|
|
serverChan <- b // Send to server.
|
|
}
|
|
}
|
|
</pre>
|
|
<p>
|
|
The server loop receives each message from the client, processes it,
|
|
and returns the buffer to the free list.
|
|
</p>
|
|
<pre>
|
|
func server() {
|
|
for {
|
|
b := <-serverChan // Wait for work.
|
|
process(b)
|
|
// Reuse buffer if there's room.
|
|
select {
|
|
case freeList <- b:
|
|
// Buffer on free list; nothing more to do.
|
|
default:
|
|
// Free list full, just carry on.
|
|
}
|
|
}
|
|
}
|
|
</pre>
|
|
<p>
|
|
The client attempts to retrieve a buffer from <code>freeList</code>;
|
|
if none is available, it allocates a fresh one.
|
|
The server's send to <code>freeList</code> puts <code>b</code> back
|
|
on the free list unless the list is full, in which case the
|
|
buffer is dropped on the floor to be reclaimed by
|
|
the garbage collector.
|
|
(The <code>default</code> clauses in the <code>select</code>
|
|
statements execute when no other case is ready,
|
|
meaning that the <code>selects</code> never block.)
|
|
This implementation builds a leaky bucket free list
|
|
in just a few lines, relying on the buffered channel and
|
|
the garbage collector for bookkeeping.
|
|
</p>
|
|
|
|
<h2 id="errors">Errors</h2>
|
|
|
|
<p>
|
|
Library routines must often return some sort of error indication to
|
|
the caller. As mentioned earlier, Go's multivalue return makes it
|
|
easy to return a detailed error description alongside the normal
|
|
return value. By convention, errors have type <code>os.Error</code>,
|
|
a simple interface.
|
|
</p>
|
|
<pre>
|
|
type Error interface {
|
|
String() string
|
|
}
|
|
</pre>
|
|
<p>
|
|
A library writer is free to implement this interface with a
|
|
richer model under the covers, making it possible not only
|
|
to see the error but also to provide some context.
|
|
For example, <code>os.Open</code> returns an <code>os.PathError</code>.
|
|
</p>
|
|
<pre>
|
|
// PathError records an error and the operation and
|
|
// file path that caused it.
|
|
type PathError struct {
|
|
Op string // "open", "unlink", etc.
|
|
Path string // The associated file.
|
|
Error Error // Returned by the system call.
|
|
}
|
|
|
|
func (e *PathError) String() string {
|
|
return e.Op + " " + e.Path + ": " + e.Error.String()
|
|
}
|
|
</pre>
|
|
<p>
|
|
<code>PathError</code>'s <code>String</code> generates
|
|
a string like this:
|
|
</p>
|
|
<pre>
|
|
open /etc/passwx: no such file or directory
|
|
</pre>
|
|
<p>
|
|
Such an error, which includes the problematic file name, the
|
|
operation, and the operating system error it triggered, is useful even
|
|
if printed far from the call that caused it;
|
|
it is much more informative than the plain
|
|
"no such file or directory".
|
|
</p>
|
|
|
|
<p>
|
|
When feasible, error strings should identify their origin, such as by having
|
|
a prefix naming the package that generated the error. For example, in package
|
|
image, the string representation for a decoding error due to an unknown format
|
|
is "image: unknown format".
|
|
</p>
|
|
|
|
<p>
|
|
Callers that care about the precise error details can
|
|
use a type switch or a type assertion to look for specific
|
|
errors and extract details. For <code>PathErrors</code>
|
|
this might include examining the internal <code>Error</code>
|
|
field for recoverable failures.
|
|
</p>
|
|
|
|
<pre>
|
|
for try := 0; try < 2; try++ {
|
|
file, err = os.Open(filename)
|
|
if err == nil {
|
|
return
|
|
}
|
|
if e, ok := err.(*os.PathError); ok && e.Error == os.ENOSPC {
|
|
deleteTempFiles() // Recover some space.
|
|
continue
|
|
}
|
|
return
|
|
}
|
|
</pre>
|
|
|
|
<h3 id="panic">Panic</h3>
|
|
|
|
<p>
|
|
The usual way to report an error to a caller is to return an
|
|
<code>os.Error</code> as an extra return value. The canonical
|
|
<code>Read</code> method is a well-known instance; it returns a byte
|
|
count and an <code>os.Error</code>. But what if the error is
|
|
unrecoverable? Sometimes the program simply cannot continue.
|
|
</p>
|
|
|
|
<p>
|
|
For this purpose, there is a built-in function <code>panic</code>
|
|
that in effect creates a run-time error that will stop the program
|
|
(but see the next section). The function takes a single argument
|
|
of arbitrary type—often a string—to be printed as the
|
|
program dies. It's also a way to indicate that something impossible has
|
|
happened, such as exiting an infinite loop. In fact, the compiler
|
|
recognizes a <code>panic</code> at the end of a function and
|
|
suppresses the usual check for a <code>return</code> statement.
|
|
</p>
|
|
|
|
|
|
<pre>
|
|
// A toy implementation of cube root using Newton's method.
|
|
func CubeRoot(x float64) float64 {
|
|
z := x/3 // Arbitrary intitial value
|
|
for i := 0; i < 1e6; i++ {
|
|
prevz := z
|
|
z -= (z*z*z-x) / (3*z*z)
|
|
if veryClose(z, prevz) {
|
|
return z
|
|
}
|
|
}
|
|
// A million iterations has not converged; something is wrong.
|
|
panic(fmt.Sprintf("CubeRoot(%g) did not converge", x))
|
|
}
|
|
</pre>
|
|
|
|
<p>
|
|
This is only an example but real library functions should
|
|
avoid <code>panic</code>. If the problem can be masked or worked
|
|
around, it's always better to let things continue to run rather
|
|
than taking down the whole program. One possible counterexample
|
|
is during initialization: if the library truly cannot set itself up,
|
|
it might be reasonable to panic, so to speak.
|
|
</p>
|
|
|
|
<pre>
|
|
var user = os.Getenv("USER")
|
|
|
|
func init() {
|
|
if user == "" {
|
|
panic("no value for $USER")
|
|
}
|
|
}
|
|
</pre>
|
|
|
|
<h3 id="recover">Recover</h3>
|
|
|
|
<p>
|
|
When <code>panic</code> is called, including implicitly for run-time
|
|
errors such as indexing an array out of bounds or failing a type
|
|
assertion, it immediately stops execution of the current function
|
|
and begins unwinding the stack of the goroutine, running any deferred
|
|
functions along the way. If that unwinding reaches the top of the
|
|
goroutine's stack, the program dies. However, it is possible to
|
|
use the built-in function <code>recover</code> to regain control
|
|
of the goroutine and resume normal execution.
|
|
</p>
|
|
|
|
<p>
|
|
A call to <code>recover</code> stops the unwinding and returns the
|
|
argument passed to <code>panic</code>. Because the only code that
|
|
runs while unwinding is inside deferred functions, <code>recover</code>
|
|
is only useful inside deferred functions.
|
|
</p>
|
|
|
|
<p>
|
|
One application of <code>recover</code> is to shut down a failing goroutine
|
|
inside a server without killing the other executing goroutines.
|
|
</p>
|
|
|
|
<pre>
|
|
func server(workChan <-chan *Work) {
|
|
for work := range workChan {
|
|
go safelyDo(work)
|
|
}
|
|
}
|
|
|
|
func safelyDo(work *Work) {
|
|
defer func() {
|
|
if err := recover(); err != nil {
|
|
log.Println("work failed:", err)
|
|
}
|
|
}()
|
|
do(work)
|
|
}
|
|
</pre>
|
|
|
|
<p>
|
|
In this example, if <code>do(work)</code> panics, the result will be
|
|
logged and the goroutine will exit cleanly without disturbing the
|
|
others. There's no need to do anything else in the deferred closure;
|
|
calling <code>recover</code> handles the condition completely.
|
|
</p>
|
|
|
|
<p>
|
|
Because <code>recover</code> always returns <code>nil</code> unless called directly
|
|
from a deferred function, deferred code can call library routines that themselves
|
|
use <code>panic</code> and <code>recover</code> without failing. As an example,
|
|
the deferred function in <code>safelyDo</code> might call a logging function before
|
|
calling <code>recover</code>, and that logging code would run unaffected
|
|
by the panicking state.
|
|
</p>
|
|
|
|
<p>
|
|
With our recovery pattern in place, the <code>do</code>
|
|
function (and anything it calls) can get out of any bad situation
|
|
cleanly by calling <code>panic</code>. We can use that idea to
|
|
simplify error handling in complex software. Let's look at an
|
|
idealized excerpt from the <code>regexp</code> package, which reports
|
|
parsing errors by calling <code>panic</code> with a local
|
|
<code>Error</code> type. Here's the definition of <code>Error</code>,
|
|
an <code>error</code> method, and the <code>Compile</code> function.
|
|
</p>
|
|
|
|
<pre>
|
|
// Error is the type of a parse error; it satisfies os.Error.
|
|
type Error string
|
|
func (e Error) String() string {
|
|
return string(e)
|
|
}
|
|
|
|
// error is a method of *Regexp that reports parsing errors by
|
|
// panicking with an Error.
|
|
func (regexp *Regexp) error(err string) {
|
|
panic(Error(err))
|
|
}
|
|
|
|
// Compile returns a parsed representation of the regular expression.
|
|
func Compile(str string) (regexp *Regexp, err os.Error) {
|
|
regexp = new(Regexp)
|
|
// doParse will panic if there is a parse error.
|
|
defer func() {
|
|
if e := recover(); e != nil {
|
|
regexp = nil // Clear return value.
|
|
err = e.(Error) // Will re-panic if not a parse error.
|
|
}
|
|
}()
|
|
return regexp.doParse(str), nil
|
|
}
|
|
</pre>
|
|
|
|
<p>
|
|
If <code>doParse</code> panics, the recovery block will set the
|
|
return value to <code>nil</code>—deferred functions can modify
|
|
named return values. It then will then check, in the assignment
|
|
to <code>err</code>, that the problem was a parse error by asserting
|
|
that it has type <code>Error</code>.
|
|
If it does not, the type assertion will fail, causing a run-time error
|
|
that continues the stack unwinding as though nothing had interrupted
|
|
it. This check means that if something unexpected happens, such
|
|
as an array index out of bounds, the code will fail even though we
|
|
are using <code>panic</code> and <code>recover</code> to handle
|
|
user-triggered errors.
|
|
</p>
|
|
|
|
<p>
|
|
With error handling in place, the <code>error</code> method
|
|
makes it easy to report parse errors without worrying about unwinding
|
|
the parse stack by hand.
|
|
</p>
|
|
|
|
<p>
|
|
Useful though this pattern is, it should be used only within a package.
|
|
<code>Parse</code> turns its internal <code>panic</code> calls into
|
|
<code>os.Error</code> values; it does not expose <code>panics</code>
|
|
to its client. That is a good rule to follow.
|
|
</p>
|
|
|
|
<p>
|
|
By the way, this re-panic idiom changes the panic value if an actual
|
|
error occurs. However, both the original and new failures will be
|
|
presented in the crash report, so the root cause of the problem will
|
|
still be visible. Thus this simple re-panic approach is usually
|
|
sufficient—it's a crash after all—but if you want to
|
|
display only the original value, you can write a little more code to
|
|
filter unexpected problems and re-panic with the original error.
|
|
That's left as an exercise for the reader.
|
|
</p>
|
|
|
|
|
|
<h2 id="web_server">A web server</h2>
|
|
|
|
<p>
|
|
Let's finish with a complete Go program, a web server.
|
|
This one is actually a kind of web re-server.
|
|
Google provides a service at
|
|
<a href="http://chart.apis.google.com">http://chart.apis.google.com</a>
|
|
that does automatic formatting of data into charts and graphs.
|
|
It's hard to use interactively, though,
|
|
because you need to put the data into the URL as a query.
|
|
The program here provides a nicer interface to one form of data: given a short piece of text,
|
|
it calls on the chart server to produce a QR code, a matrix of boxes that encode the
|
|
text.
|
|
That image can be grabbed with your cell phone's camera and interpreted as,
|
|
for instance, a URL, saving you typing the URL into the phone's tiny keyboard.
|
|
</p>
|
|
<p>
|
|
Here's the complete program.
|
|
An explanation follows.
|
|
</p>
|
|
|
|
<pre>
|
|
package main
|
|
|
|
import (
|
|
"flag"
|
|
"http"
|
|
"io"
|
|
"log"
|
|
"template"
|
|
)
|
|
|
|
var addr = flag.String("addr", ":1718", "http service address") // Q=17, R=18
|
|
var fmap = template.FormatterMap{
|
|
"html": template.HTMLFormatter,
|
|
"url+html": UrlHtmlFormatter,
|
|
}
|
|
var templ = template.MustParse(templateStr, fmap)
|
|
|
|
func main() {
|
|
flag.Parse()
|
|
http.Handle("/", http.HandlerFunc(QR))
|
|
err := http.ListenAndServe(*addr, nil)
|
|
if err != nil {
|
|
log.Fatal("ListenAndServe:", err)
|
|
}
|
|
}
|
|
|
|
func QR(w http.ResponseWriter, req *http.Request) {
|
|
templ.Execute(w, req.FormValue("s"))
|
|
}
|
|
|
|
func UrlHtmlFormatter(w io.Writer, fmt string, v ...interface{}) {
|
|
template.HTMLEscape(w, []byte(http.URLEscape(v[0].(string))))
|
|
}
|
|
|
|
|
|
const templateStr = `
|
|
<html>
|
|
<head>
|
|
<title>QR Link Generator</title>
|
|
</head>
|
|
<body>
|
|
{.section @}
|
|
<img src="http://chart.apis.google.com/chart?chs=300x300&cht=qr&choe=UTF-8&chl={@|url+html}"
|
|
/>
|
|
<br>
|
|
{@|html}
|
|
<br>
|
|
<br>
|
|
{.end}
|
|
<form action="/" name=f method="GET"><input maxLength=1024 size=70
|
|
name=s value="" title="Text to QR Encode"><input type=submit
|
|
value="Show QR" name=qr>
|
|
</form>
|
|
</body>
|
|
</html>
|
|
`
|
|
</pre>
|
|
|
|
<p>
|
|
The pieces up to <code>main</code> should be easy to follow.
|
|
The one flag sets a default HTTP port for our server. The template
|
|
variable <code>templ</code> is where the fun happens. It builds an HTML template
|
|
that will be executed by the server to display the page; more about
|
|
that in a moment.
|
|
</p>
|
|
<p>
|
|
The <code>main</code> function parses the flags and, using the mechanism
|
|
we talked about above, binds the function <code>QR</code> to the root path
|
|
for the server. Then <code>http.ListenAndServe</code> is called to start the
|
|
server; it blocks while the server runs.
|
|
</p>
|
|
<p>
|
|
<code>QR</code> just receives the request, which contains form data, and
|
|
executes the template on the data in the form value named <code>s</code>.
|
|
</p>
|
|
<p>
|
|
The template package, inspired by <a
|
|
href="http://code.google.com/p/json-template">json-template</a>, is
|
|
powerful;
|
|
this program just touches on its capabilities.
|
|
In essence, it rewrites a piece of text on the fly by substituting elements derived
|
|
from data items passed to <code>templ.Execute</code>, in this case the
|
|
form value.
|
|
Within the template text (<code>templateStr</code>),
|
|
brace-delimited pieces denote template actions.
|
|
The piece from the <code>{.section @}</code>
|
|
to <code>{.end}</code> executes with the value of the data item <code>@</code>,
|
|
which is a shorthand for “the current item”, which is the form value.
|
|
(When the string is empty, this piece of the template is suppressed.)
|
|
</p>
|
|
<p>
|
|
The snippet <code>{@|url+html}</code> says to run the data through the formatter
|
|
installed in the formatter map (<code>fmap</code>)
|
|
under the name <code>"url+html"</code>.
|
|
That is the function <code>UrlHtmlFormatter</code>, which sanitizes the string
|
|
for safe display on the web page.
|
|
</p>
|
|
<p>
|
|
The rest of the template string is just the HTML to show when the page loads.
|
|
If this is too quick an explanation, see the <a href="/pkg/template/">documentation</a>
|
|
for the template package for a more thorough discussion.
|
|
</p>
|
|
<p>
|
|
And there you have it: a useful webserver in a few lines of code plus some
|
|
data-driven HTML text.
|
|
Go is powerful enough to make a lot happen in a few lines.
|
|
</p>
|
|
|
|
<!--
|
|
TODO
|
|
<pre>
|
|
verifying implementation
|
|
type Color uint32
|
|
|
|
// Check that Color implements image.Color and image.Image
|
|
var _ image.Color = Black
|
|
var _ image.Image = Black
|
|
</pre>
|
|
-->
|
|
|