1
0
mirror of https://github.com/golang/go synced 2024-11-19 13:04:45 -07:00
go/src/runtime/sys_nacl_386.s
Austin Clements 193088b246 runtime: separate error result for mmap
Currently mmap returns an unsafe.Pointer that encodes OS errors as
values less than 4096. In practice this is okay, but it borders on
being really unsafe: for example, the value has to be checked
immediately after return and if stack copying were ever to observe
such a value, it would panic. It's also not remotely idiomatic.

Fix this by making mmap return a separate pointer value and error,
like a normal Go function.

Updates #22218.

Change-Id: Iefd965095ffc82cc91118872753a5d39d785c3a6
Reviewed-on: https://go-review.googlesource.com/71270
Run-TryBot: Austin Clements <austin@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Ian Lance Taylor <iant@golang.org>
2017-10-18 19:22:08 +00:00

384 lines
8.5 KiB
ArmAsm

// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "go_asm.h"
#include "go_tls.h"
#include "textflag.h"
#include "syscall_nacl.h"
#define NACL_SYSCALL(code) \
MOVL $(0x10000 + ((code)<<5)), AX; CALL AX
TEXT runtime·exit(SB),NOSPLIT,$4
MOVL code+0(FP), AX
MOVL AX, 0(SP)
NACL_SYSCALL(SYS_exit)
JMP 0(PC)
// func exitThread(wait *uint32)
TEXT runtime·exitThread(SB),NOSPLIT,$4-4
MOVL wait+0(FP), AX
// SYS_thread_exit will clear *wait when the stack is free.
MOVL AX, 0(SP)
NACL_SYSCALL(SYS_thread_exit)
JMP 0(PC)
TEXT runtime·open(SB),NOSPLIT,$12
MOVL name+0(FP), AX
MOVL AX, 0(SP)
MOVL mode+4(FP), AX
MOVL AX, 4(SP)
MOVL perm+8(FP), AX
MOVL AX, 8(SP)
NACL_SYSCALL(SYS_open)
MOVL AX, ret+12(FP)
RET
TEXT runtime·closefd(SB),NOSPLIT,$4
MOVL fd+0(FP), AX
MOVL AX, 0(SP)
NACL_SYSCALL(SYS_close)
MOVL AX, ret+4(FP)
RET
TEXT runtime·read(SB),NOSPLIT,$12
MOVL fd+0(FP), AX
MOVL AX, 0(SP)
MOVL p+4(FP), AX
MOVL AX, 4(SP)
MOVL n+8(FP), AX
MOVL AX, 8(SP)
NACL_SYSCALL(SYS_read)
MOVL AX, ret+12(FP)
RET
TEXT syscall·naclWrite(SB), NOSPLIT, $16-16
MOVL arg1+0(FP), DI
MOVL arg2+4(FP), SI
MOVL arg3+8(FP), DX
MOVL DI, 0(SP)
MOVL SI, 4(SP)
MOVL DX, 8(SP)
CALL runtime·write(SB)
MOVL AX, ret+16(FP)
RET
TEXT runtime·write(SB),NOSPLIT,$12
MOVL fd+0(FP), AX
MOVL AX, 0(SP)
MOVL p+4(FP), AX
MOVL AX, 4(SP)
MOVL n+8(FP), AX
MOVL AX, 8(SP)
NACL_SYSCALL(SYS_write)
MOVL AX, ret+12(FP)
RET
TEXT runtime·nacl_exception_stack(SB),NOSPLIT,$8
MOVL p+0(FP), AX
MOVL AX, 0(SP)
MOVL size+4(FP), AX
MOVL AX, 4(SP)
NACL_SYSCALL(SYS_exception_stack)
MOVL AX, ret+8(FP)
RET
TEXT runtime·nacl_exception_handler(SB),NOSPLIT,$8
MOVL fn+0(FP), AX
MOVL AX, 0(SP)
MOVL arg+4(FP), AX
MOVL AX, 4(SP)
NACL_SYSCALL(SYS_exception_handler)
MOVL AX, ret+8(FP)
RET
TEXT runtime·nacl_sem_create(SB),NOSPLIT,$4
MOVL flag+0(FP), AX
MOVL AX, 0(SP)
NACL_SYSCALL(SYS_sem_create)
MOVL AX, ret+4(FP)
RET
TEXT runtime·nacl_sem_wait(SB),NOSPLIT,$4
MOVL sem+0(FP), AX
MOVL AX, 0(SP)
NACL_SYSCALL(SYS_sem_wait)
MOVL AX, ret+4(FP)
RET
TEXT runtime·nacl_sem_post(SB),NOSPLIT,$4
MOVL sem+0(FP), AX
MOVL AX, 0(SP)
NACL_SYSCALL(SYS_sem_post)
MOVL AX, ret+4(FP)
RET
TEXT runtime·nacl_mutex_create(SB),NOSPLIT,$4
MOVL flag+0(FP), AX
MOVL AX, 0(SP)
NACL_SYSCALL(SYS_mutex_create)
MOVL AX, ret+4(FP)
RET
TEXT runtime·nacl_mutex_lock(SB),NOSPLIT,$4
MOVL mutex+0(FP), AX
MOVL AX, 0(SP)
NACL_SYSCALL(SYS_mutex_lock)
MOVL AX, ret+4(FP)
RET
TEXT runtime·nacl_mutex_trylock(SB),NOSPLIT,$4
MOVL mutex+0(FP), AX
MOVL AX, 0(SP)
NACL_SYSCALL(SYS_mutex_trylock)
MOVL AX, ret+4(FP)
RET
TEXT runtime·nacl_mutex_unlock(SB),NOSPLIT,$4
MOVL mutex+0(FP), AX
MOVL AX, 0(SP)
NACL_SYSCALL(SYS_mutex_unlock)
MOVL AX, ret+4(FP)
RET
TEXT runtime·nacl_cond_create(SB),NOSPLIT,$4
MOVL flag+0(FP), AX
MOVL AX, 0(SP)
NACL_SYSCALL(SYS_cond_create)
MOVL AX, ret+4(FP)
RET
TEXT runtime·nacl_cond_wait(SB),NOSPLIT,$8
MOVL cond+0(FP), AX
MOVL AX, 0(SP)
MOVL n+4(FP), AX
MOVL AX, 4(SP)
NACL_SYSCALL(SYS_cond_wait)
MOVL AX, ret+8(FP)
RET
TEXT runtime·nacl_cond_signal(SB),NOSPLIT,$4
MOVL cond+0(FP), AX
MOVL AX, 0(SP)
NACL_SYSCALL(SYS_cond_signal)
MOVL AX, ret+4(FP)
RET
TEXT runtime·nacl_cond_broadcast(SB),NOSPLIT,$4
MOVL cond+0(FP), AX
MOVL AX, 0(SP)
NACL_SYSCALL(SYS_cond_broadcast)
MOVL AX, ret+4(FP)
RET
TEXT runtime·nacl_cond_timed_wait_abs(SB),NOSPLIT,$12
MOVL cond+0(FP), AX
MOVL AX, 0(SP)
MOVL lock+4(FP), AX
MOVL AX, 4(SP)
MOVL ts+8(FP), AX
MOVL AX, 8(SP)
NACL_SYSCALL(SYS_cond_timed_wait_abs)
MOVL AX, ret+12(FP)
RET
TEXT runtime·nacl_thread_create(SB),NOSPLIT,$16
MOVL fn+0(FP), AX
MOVL AX, 0(SP)
MOVL stk+4(FP), AX
MOVL AX, 4(SP)
MOVL tls+8(FP), AX
MOVL AX, 8(SP)
MOVL xx+12(FP), AX
MOVL AX, 12(SP)
NACL_SYSCALL(SYS_thread_create)
MOVL AX, ret+16(FP)
RET
TEXT runtime·mstart_nacl(SB),NOSPLIT,$0
JMP runtime·mstart(SB)
TEXT runtime·nacl_nanosleep(SB),NOSPLIT,$8
MOVL ts+0(FP), AX
MOVL AX, 0(SP)
MOVL extra+4(FP), AX
MOVL AX, 4(SP)
NACL_SYSCALL(SYS_nanosleep)
MOVL AX, ret+8(FP)
RET
TEXT runtime·osyield(SB),NOSPLIT,$0
NACL_SYSCALL(SYS_sched_yield)
RET
TEXT runtime·mmap(SB),NOSPLIT,$32
MOVL addr+0(FP), AX
MOVL AX, 0(SP)
MOVL n+4(FP), AX
MOVL AX, 4(SP)
MOVL prot+8(FP), AX
MOVL AX, 8(SP)
MOVL flags+12(FP), AX
MOVL AX, 12(SP)
MOVL fd+16(FP), AX
MOVL AX, 16(SP)
MOVL off+20(FP), AX
MOVL AX, 24(SP)
MOVL $0, 28(SP)
LEAL 24(SP), AX
MOVL AX, 20(SP)
NACL_SYSCALL(SYS_mmap)
CMPL AX, $-4095
JNA ok
NEGL AX
MOVL $0, p+24(FP)
MOVL AX, err+28(FP)
RET
ok:
MOVL AX, p+24(FP)
MOVL $0, err+28(FP)
RET
TEXT runtime·walltime(SB),NOSPLIT,$20
MOVL $0, 0(SP) // real time clock
LEAL 8(SP), AX
MOVL AX, 4(SP) // timespec
NACL_SYSCALL(SYS_clock_gettime)
MOVL 8(SP), AX // low 32 sec
MOVL 12(SP), CX // high 32 sec
MOVL 16(SP), BX // nsec
// sec is in AX, nsec in BX
MOVL AX, sec_lo+0(FP)
MOVL CX, sec_hi+4(FP)
MOVL BX, nsec+8(FP)
RET
TEXT syscall·now(SB),NOSPLIT,$0
JMP runtime·walltime(SB)
TEXT runtime·nacl_clock_gettime(SB),NOSPLIT,$8
MOVL arg1+0(FP), AX
MOVL AX, 0(SP)
MOVL arg2+4(FP), AX
MOVL AX, 4(SP)
NACL_SYSCALL(SYS_clock_gettime)
MOVL AX, ret+8(FP)
RET
TEXT runtime·nanotime(SB),NOSPLIT,$20
MOVL $0, 0(SP) // real time clock
LEAL 8(SP), AX
MOVL AX, 4(SP) // timespec
NACL_SYSCALL(SYS_clock_gettime)
MOVL 8(SP), AX // low 32 sec
MOVL 16(SP), BX // nsec
// sec is in AX, nsec in BX
// convert to DX:AX nsec
MOVL $1000000000, CX
MULL CX
ADDL BX, AX
ADCL $0, DX
MOVL AX, ret_lo+0(FP)
MOVL DX, ret_hi+4(FP)
RET
TEXT runtime·setldt(SB),NOSPLIT,$8
MOVL addr+4(FP), BX // aka base
ADDL $0x8, BX
MOVL BX, 0(SP)
NACL_SYSCALL(SYS_tls_init)
RET
TEXT runtime·sigtramp(SB),NOSPLIT,$0
get_tls(CX)
// check that g exists
MOVL g(CX), DI
CMPL DI, $0
JNE 6(PC)
MOVL $11, BX
MOVL $0, 0(SP)
MOVL $runtime·badsignal(SB), AX
CALL AX
JMP ret
// save g
MOVL DI, 20(SP)
// g = m->gsignal
MOVL g_m(DI), BX
MOVL m_gsignal(BX), BX
MOVL BX, g(CX)
// copy arguments for sighandler
MOVL $11, 0(SP) // signal
MOVL $0, 4(SP) // siginfo
LEAL ctxt+4(FP), AX
MOVL AX, 8(SP) // context
MOVL DI, 12(SP) // g
CALL runtime·sighandler(SB)
// restore g
get_tls(CX)
MOVL 20(SP), BX
MOVL BX, g(CX)
ret:
// Enable exceptions again.
NACL_SYSCALL(SYS_exception_clear_flag)
// NaCl has abdicated its traditional operating system responsibility
// and declined to implement 'sigreturn'. Instead the only way to return
// to the execution of our program is to restore the registers ourselves.
// Unfortunately, that is impossible to do with strict fidelity, because
// there is no way to do the final update of PC that ends the sequence
// without either (1) jumping to a register, in which case the register ends
// holding the PC value instead of its intended value or (2) storing the PC
// on the stack and using RET, which imposes the requirement that SP is
// valid and that is okay to smash the word below it. The second would
// normally be the lesser of the two evils, except that on NaCl, the linker
// must rewrite RET into "POP reg; AND $~31, reg; JMP reg", so either way
// we are going to lose a register as a result of the incoming signal.
// Similarly, there is no way to restore EFLAGS; the usual way is to use
// POPFL, but NaCl rejects that instruction. We could inspect the bits and
// execute a sequence of instructions designed to recreate those flag
// settings, but that's a lot of work.
//
// Thankfully, Go's signal handlers never try to return directly to the
// executing code, so all the registers and EFLAGS are dead and can be
// smashed. The only registers that matter are the ones that are setting
// up for the simulated call that the signal handler has created.
// Today those registers are just PC and SP, but in case additional registers
// are relevant in the future (for example DX is the Go func context register)
// we restore as many registers as possible.
//
// We smash BP, because that's what the linker smashes during RET.
//
LEAL ctxt+4(FP), BP
ADDL $64, BP
MOVL 0(BP), AX
MOVL 4(BP), CX
MOVL 8(BP), DX
MOVL 12(BP), BX
MOVL 16(BP), SP
// 20(BP) is saved BP, never to be seen again
MOVL 24(BP), SI
MOVL 28(BP), DI
// 36(BP) is saved EFLAGS, never to be seen again
MOVL 32(BP), BP // saved PC
JMP BP
// func getRandomData([]byte)
TEXT runtime·getRandomData(SB),NOSPLIT,$8-12
MOVL arg_base+0(FP), AX
MOVL AX, 0(SP)
MOVL arg_len+4(FP), AX
MOVL AX, 4(SP)
NACL_SYSCALL(SYS_get_random_bytes)
RET