mirror of
https://github.com/golang/go
synced 2024-11-19 13:54:56 -07:00
4d7cf3fedb
Every time I poke at #14921, the g.waitreason string pointer writes show up. They're not particularly important performance-wise, but it'd be nice to clear the noise away. And it does open up a few extra bytes in the g struct for some future use. This is a re-roll of CL 99078, which was rolled back because of failures on s390x. Those failures were apparently due to an old version of gdb. Change-Id: Icc2c12f449b2934063fd61e272e06237625ed589 Reviewed-on: https://go-review.googlesource.com/111256 Run-TryBot: Josh Bleecher Snyder <josharian@gmail.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Michael Munday <mike.munday@ibm.com>
744 lines
19 KiB
Go
744 lines
19 KiB
Go
// Copyright 2014 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package runtime
|
|
|
|
// This file contains the implementation of Go channels.
|
|
|
|
// Invariants:
|
|
// At least one of c.sendq and c.recvq is empty,
|
|
// except for the case of an unbuffered channel with a single goroutine
|
|
// blocked on it for both sending and receiving using a select statement,
|
|
// in which case the length of c.sendq and c.recvq is limited only by the
|
|
// size of the select statement.
|
|
//
|
|
// For buffered channels, also:
|
|
// c.qcount > 0 implies that c.recvq is empty.
|
|
// c.qcount < c.dataqsiz implies that c.sendq is empty.
|
|
|
|
import (
|
|
"runtime/internal/atomic"
|
|
"unsafe"
|
|
)
|
|
|
|
const (
|
|
maxAlign = 8
|
|
hchanSize = unsafe.Sizeof(hchan{}) + uintptr(-int(unsafe.Sizeof(hchan{}))&(maxAlign-1))
|
|
debugChan = false
|
|
)
|
|
|
|
type hchan struct {
|
|
qcount uint // total data in the queue
|
|
dataqsiz uint // size of the circular queue
|
|
buf unsafe.Pointer // points to an array of dataqsiz elements
|
|
elemsize uint16
|
|
closed uint32
|
|
elemtype *_type // element type
|
|
sendx uint // send index
|
|
recvx uint // receive index
|
|
recvq waitq // list of recv waiters
|
|
sendq waitq // list of send waiters
|
|
|
|
// lock protects all fields in hchan, as well as several
|
|
// fields in sudogs blocked on this channel.
|
|
//
|
|
// Do not change another G's status while holding this lock
|
|
// (in particular, do not ready a G), as this can deadlock
|
|
// with stack shrinking.
|
|
lock mutex
|
|
}
|
|
|
|
type waitq struct {
|
|
first *sudog
|
|
last *sudog
|
|
}
|
|
|
|
//go:linkname reflect_makechan reflect.makechan
|
|
func reflect_makechan(t *chantype, size int) *hchan {
|
|
return makechan(t, size)
|
|
}
|
|
|
|
func makechan64(t *chantype, size int64) *hchan {
|
|
if int64(int(size)) != size {
|
|
panic(plainError("makechan: size out of range"))
|
|
}
|
|
|
|
return makechan(t, int(size))
|
|
}
|
|
|
|
func makechan(t *chantype, size int) *hchan {
|
|
elem := t.elem
|
|
|
|
// compiler checks this but be safe.
|
|
if elem.size >= 1<<16 {
|
|
throw("makechan: invalid channel element type")
|
|
}
|
|
if hchanSize%maxAlign != 0 || elem.align > maxAlign {
|
|
throw("makechan: bad alignment")
|
|
}
|
|
|
|
if size < 0 || uintptr(size) > maxSliceCap(elem.size) || uintptr(size)*elem.size > maxAlloc-hchanSize {
|
|
panic(plainError("makechan: size out of range"))
|
|
}
|
|
|
|
// Hchan does not contain pointers interesting for GC when elements stored in buf do not contain pointers.
|
|
// buf points into the same allocation, elemtype is persistent.
|
|
// SudoG's are referenced from their owning thread so they can't be collected.
|
|
// TODO(dvyukov,rlh): Rethink when collector can move allocated objects.
|
|
var c *hchan
|
|
switch {
|
|
case size == 0 || elem.size == 0:
|
|
// Queue or element size is zero.
|
|
c = (*hchan)(mallocgc(hchanSize, nil, true))
|
|
// Race detector uses this location for synchronization.
|
|
c.buf = unsafe.Pointer(c)
|
|
case elem.kind&kindNoPointers != 0:
|
|
// Elements do not contain pointers.
|
|
// Allocate hchan and buf in one call.
|
|
c = (*hchan)(mallocgc(hchanSize+uintptr(size)*elem.size, nil, true))
|
|
c.buf = add(unsafe.Pointer(c), hchanSize)
|
|
default:
|
|
// Elements contain pointers.
|
|
c = new(hchan)
|
|
c.buf = mallocgc(uintptr(size)*elem.size, elem, true)
|
|
}
|
|
|
|
c.elemsize = uint16(elem.size)
|
|
c.elemtype = elem
|
|
c.dataqsiz = uint(size)
|
|
|
|
if debugChan {
|
|
print("makechan: chan=", c, "; elemsize=", elem.size, "; elemalg=", elem.alg, "; dataqsiz=", size, "\n")
|
|
}
|
|
return c
|
|
}
|
|
|
|
// chanbuf(c, i) is pointer to the i'th slot in the buffer.
|
|
func chanbuf(c *hchan, i uint) unsafe.Pointer {
|
|
return add(c.buf, uintptr(i)*uintptr(c.elemsize))
|
|
}
|
|
|
|
// entry point for c <- x from compiled code
|
|
//go:nosplit
|
|
func chansend1(c *hchan, elem unsafe.Pointer) {
|
|
chansend(c, elem, true, getcallerpc())
|
|
}
|
|
|
|
/*
|
|
* generic single channel send/recv
|
|
* If block is not nil,
|
|
* then the protocol will not
|
|
* sleep but return if it could
|
|
* not complete.
|
|
*
|
|
* sleep can wake up with g.param == nil
|
|
* when a channel involved in the sleep has
|
|
* been closed. it is easiest to loop and re-run
|
|
* the operation; we'll see that it's now closed.
|
|
*/
|
|
func chansend(c *hchan, ep unsafe.Pointer, block bool, callerpc uintptr) bool {
|
|
if c == nil {
|
|
if !block {
|
|
return false
|
|
}
|
|
gopark(nil, nil, waitReasonChanSendNilChan, traceEvGoStop, 2)
|
|
throw("unreachable")
|
|
}
|
|
|
|
if debugChan {
|
|
print("chansend: chan=", c, "\n")
|
|
}
|
|
|
|
if raceenabled {
|
|
racereadpc(unsafe.Pointer(c), callerpc, funcPC(chansend))
|
|
}
|
|
|
|
// Fast path: check for failed non-blocking operation without acquiring the lock.
|
|
//
|
|
// After observing that the channel is not closed, we observe that the channel is
|
|
// not ready for sending. Each of these observations is a single word-sized read
|
|
// (first c.closed and second c.recvq.first or c.qcount depending on kind of channel).
|
|
// Because a closed channel cannot transition from 'ready for sending' to
|
|
// 'not ready for sending', even if the channel is closed between the two observations,
|
|
// they imply a moment between the two when the channel was both not yet closed
|
|
// and not ready for sending. We behave as if we observed the channel at that moment,
|
|
// and report that the send cannot proceed.
|
|
//
|
|
// It is okay if the reads are reordered here: if we observe that the channel is not
|
|
// ready for sending and then observe that it is not closed, that implies that the
|
|
// channel wasn't closed during the first observation.
|
|
if !block && c.closed == 0 && ((c.dataqsiz == 0 && c.recvq.first == nil) ||
|
|
(c.dataqsiz > 0 && c.qcount == c.dataqsiz)) {
|
|
return false
|
|
}
|
|
|
|
var t0 int64
|
|
if blockprofilerate > 0 {
|
|
t0 = cputicks()
|
|
}
|
|
|
|
lock(&c.lock)
|
|
|
|
if c.closed != 0 {
|
|
unlock(&c.lock)
|
|
panic(plainError("send on closed channel"))
|
|
}
|
|
|
|
if sg := c.recvq.dequeue(); sg != nil {
|
|
// Found a waiting receiver. We pass the value we want to send
|
|
// directly to the receiver, bypassing the channel buffer (if any).
|
|
send(c, sg, ep, func() { unlock(&c.lock) }, 3)
|
|
return true
|
|
}
|
|
|
|
if c.qcount < c.dataqsiz {
|
|
// Space is available in the channel buffer. Enqueue the element to send.
|
|
qp := chanbuf(c, c.sendx)
|
|
if raceenabled {
|
|
raceacquire(qp)
|
|
racerelease(qp)
|
|
}
|
|
typedmemmove(c.elemtype, qp, ep)
|
|
c.sendx++
|
|
if c.sendx == c.dataqsiz {
|
|
c.sendx = 0
|
|
}
|
|
c.qcount++
|
|
unlock(&c.lock)
|
|
return true
|
|
}
|
|
|
|
if !block {
|
|
unlock(&c.lock)
|
|
return false
|
|
}
|
|
|
|
// Block on the channel. Some receiver will complete our operation for us.
|
|
gp := getg()
|
|
mysg := acquireSudog()
|
|
mysg.releasetime = 0
|
|
if t0 != 0 {
|
|
mysg.releasetime = -1
|
|
}
|
|
// No stack splits between assigning elem and enqueuing mysg
|
|
// on gp.waiting where copystack can find it.
|
|
mysg.elem = ep
|
|
mysg.waitlink = nil
|
|
mysg.g = gp
|
|
mysg.isSelect = false
|
|
mysg.c = c
|
|
gp.waiting = mysg
|
|
gp.param = nil
|
|
c.sendq.enqueue(mysg)
|
|
goparkunlock(&c.lock, waitReasonChanSend, traceEvGoBlockSend, 3)
|
|
|
|
// someone woke us up.
|
|
if mysg != gp.waiting {
|
|
throw("G waiting list is corrupted")
|
|
}
|
|
gp.waiting = nil
|
|
if gp.param == nil {
|
|
if c.closed == 0 {
|
|
throw("chansend: spurious wakeup")
|
|
}
|
|
panic(plainError("send on closed channel"))
|
|
}
|
|
gp.param = nil
|
|
if mysg.releasetime > 0 {
|
|
blockevent(mysg.releasetime-t0, 2)
|
|
}
|
|
mysg.c = nil
|
|
releaseSudog(mysg)
|
|
return true
|
|
}
|
|
|
|
// send processes a send operation on an empty channel c.
|
|
// The value ep sent by the sender is copied to the receiver sg.
|
|
// The receiver is then woken up to go on its merry way.
|
|
// Channel c must be empty and locked. send unlocks c with unlockf.
|
|
// sg must already be dequeued from c.
|
|
// ep must be non-nil and point to the heap or the caller's stack.
|
|
func send(c *hchan, sg *sudog, ep unsafe.Pointer, unlockf func(), skip int) {
|
|
if raceenabled {
|
|
if c.dataqsiz == 0 {
|
|
racesync(c, sg)
|
|
} else {
|
|
// Pretend we go through the buffer, even though
|
|
// we copy directly. Note that we need to increment
|
|
// the head/tail locations only when raceenabled.
|
|
qp := chanbuf(c, c.recvx)
|
|
raceacquire(qp)
|
|
racerelease(qp)
|
|
raceacquireg(sg.g, qp)
|
|
racereleaseg(sg.g, qp)
|
|
c.recvx++
|
|
if c.recvx == c.dataqsiz {
|
|
c.recvx = 0
|
|
}
|
|
c.sendx = c.recvx // c.sendx = (c.sendx+1) % c.dataqsiz
|
|
}
|
|
}
|
|
if sg.elem != nil {
|
|
sendDirect(c.elemtype, sg, ep)
|
|
sg.elem = nil
|
|
}
|
|
gp := sg.g
|
|
unlockf()
|
|
gp.param = unsafe.Pointer(sg)
|
|
if sg.releasetime != 0 {
|
|
sg.releasetime = cputicks()
|
|
}
|
|
goready(gp, skip+1)
|
|
}
|
|
|
|
// Sends and receives on unbuffered or empty-buffered channels are the
|
|
// only operations where one running goroutine writes to the stack of
|
|
// another running goroutine. The GC assumes that stack writes only
|
|
// happen when the goroutine is running and are only done by that
|
|
// goroutine. Using a write barrier is sufficient to make up for
|
|
// violating that assumption, but the write barrier has to work.
|
|
// typedmemmove will call bulkBarrierPreWrite, but the target bytes
|
|
// are not in the heap, so that will not help. We arrange to call
|
|
// memmove and typeBitsBulkBarrier instead.
|
|
|
|
func sendDirect(t *_type, sg *sudog, src unsafe.Pointer) {
|
|
// src is on our stack, dst is a slot on another stack.
|
|
|
|
// Once we read sg.elem out of sg, it will no longer
|
|
// be updated if the destination's stack gets copied (shrunk).
|
|
// So make sure that no preemption points can happen between read & use.
|
|
dst := sg.elem
|
|
typeBitsBulkBarrier(t, uintptr(dst), uintptr(src), t.size)
|
|
// No need for cgo write barrier checks because dst is always
|
|
// Go memory.
|
|
memmove(dst, src, t.size)
|
|
}
|
|
|
|
func recvDirect(t *_type, sg *sudog, dst unsafe.Pointer) {
|
|
// dst is on our stack or the heap, src is on another stack.
|
|
// The channel is locked, so src will not move during this
|
|
// operation.
|
|
src := sg.elem
|
|
typeBitsBulkBarrier(t, uintptr(dst), uintptr(src), t.size)
|
|
memmove(dst, src, t.size)
|
|
}
|
|
|
|
func closechan(c *hchan) {
|
|
if c == nil {
|
|
panic(plainError("close of nil channel"))
|
|
}
|
|
|
|
lock(&c.lock)
|
|
if c.closed != 0 {
|
|
unlock(&c.lock)
|
|
panic(plainError("close of closed channel"))
|
|
}
|
|
|
|
if raceenabled {
|
|
callerpc := getcallerpc()
|
|
racewritepc(unsafe.Pointer(c), callerpc, funcPC(closechan))
|
|
racerelease(unsafe.Pointer(c))
|
|
}
|
|
|
|
c.closed = 1
|
|
|
|
var glist *g
|
|
|
|
// release all readers
|
|
for {
|
|
sg := c.recvq.dequeue()
|
|
if sg == nil {
|
|
break
|
|
}
|
|
if sg.elem != nil {
|
|
typedmemclr(c.elemtype, sg.elem)
|
|
sg.elem = nil
|
|
}
|
|
if sg.releasetime != 0 {
|
|
sg.releasetime = cputicks()
|
|
}
|
|
gp := sg.g
|
|
gp.param = nil
|
|
if raceenabled {
|
|
raceacquireg(gp, unsafe.Pointer(c))
|
|
}
|
|
gp.schedlink.set(glist)
|
|
glist = gp
|
|
}
|
|
|
|
// release all writers (they will panic)
|
|
for {
|
|
sg := c.sendq.dequeue()
|
|
if sg == nil {
|
|
break
|
|
}
|
|
sg.elem = nil
|
|
if sg.releasetime != 0 {
|
|
sg.releasetime = cputicks()
|
|
}
|
|
gp := sg.g
|
|
gp.param = nil
|
|
if raceenabled {
|
|
raceacquireg(gp, unsafe.Pointer(c))
|
|
}
|
|
gp.schedlink.set(glist)
|
|
glist = gp
|
|
}
|
|
unlock(&c.lock)
|
|
|
|
// Ready all Gs now that we've dropped the channel lock.
|
|
for glist != nil {
|
|
gp := glist
|
|
glist = glist.schedlink.ptr()
|
|
gp.schedlink = 0
|
|
goready(gp, 3)
|
|
}
|
|
}
|
|
|
|
// entry points for <- c from compiled code
|
|
//go:nosplit
|
|
func chanrecv1(c *hchan, elem unsafe.Pointer) {
|
|
chanrecv(c, elem, true)
|
|
}
|
|
|
|
//go:nosplit
|
|
func chanrecv2(c *hchan, elem unsafe.Pointer) (received bool) {
|
|
_, received = chanrecv(c, elem, true)
|
|
return
|
|
}
|
|
|
|
// chanrecv receives on channel c and writes the received data to ep.
|
|
// ep may be nil, in which case received data is ignored.
|
|
// If block == false and no elements are available, returns (false, false).
|
|
// Otherwise, if c is closed, zeros *ep and returns (true, false).
|
|
// Otherwise, fills in *ep with an element and returns (true, true).
|
|
// A non-nil ep must point to the heap or the caller's stack.
|
|
func chanrecv(c *hchan, ep unsafe.Pointer, block bool) (selected, received bool) {
|
|
// raceenabled: don't need to check ep, as it is always on the stack
|
|
// or is new memory allocated by reflect.
|
|
|
|
if debugChan {
|
|
print("chanrecv: chan=", c, "\n")
|
|
}
|
|
|
|
if c == nil {
|
|
if !block {
|
|
return
|
|
}
|
|
gopark(nil, nil, waitReasonChanReceiveNilChan, traceEvGoStop, 2)
|
|
throw("unreachable")
|
|
}
|
|
|
|
// Fast path: check for failed non-blocking operation without acquiring the lock.
|
|
//
|
|
// After observing that the channel is not ready for receiving, we observe that the
|
|
// channel is not closed. Each of these observations is a single word-sized read
|
|
// (first c.sendq.first or c.qcount, and second c.closed).
|
|
// Because a channel cannot be reopened, the later observation of the channel
|
|
// being not closed implies that it was also not closed at the moment of the
|
|
// first observation. We behave as if we observed the channel at that moment
|
|
// and report that the receive cannot proceed.
|
|
//
|
|
// The order of operations is important here: reversing the operations can lead to
|
|
// incorrect behavior when racing with a close.
|
|
if !block && (c.dataqsiz == 0 && c.sendq.first == nil ||
|
|
c.dataqsiz > 0 && atomic.Loaduint(&c.qcount) == 0) &&
|
|
atomic.Load(&c.closed) == 0 {
|
|
return
|
|
}
|
|
|
|
var t0 int64
|
|
if blockprofilerate > 0 {
|
|
t0 = cputicks()
|
|
}
|
|
|
|
lock(&c.lock)
|
|
|
|
if c.closed != 0 && c.qcount == 0 {
|
|
if raceenabled {
|
|
raceacquire(unsafe.Pointer(c))
|
|
}
|
|
unlock(&c.lock)
|
|
if ep != nil {
|
|
typedmemclr(c.elemtype, ep)
|
|
}
|
|
return true, false
|
|
}
|
|
|
|
if sg := c.sendq.dequeue(); sg != nil {
|
|
// Found a waiting sender. If buffer is size 0, receive value
|
|
// directly from sender. Otherwise, receive from head of queue
|
|
// and add sender's value to the tail of the queue (both map to
|
|
// the same buffer slot because the queue is full).
|
|
recv(c, sg, ep, func() { unlock(&c.lock) }, 3)
|
|
return true, true
|
|
}
|
|
|
|
if c.qcount > 0 {
|
|
// Receive directly from queue
|
|
qp := chanbuf(c, c.recvx)
|
|
if raceenabled {
|
|
raceacquire(qp)
|
|
racerelease(qp)
|
|
}
|
|
if ep != nil {
|
|
typedmemmove(c.elemtype, ep, qp)
|
|
}
|
|
typedmemclr(c.elemtype, qp)
|
|
c.recvx++
|
|
if c.recvx == c.dataqsiz {
|
|
c.recvx = 0
|
|
}
|
|
c.qcount--
|
|
unlock(&c.lock)
|
|
return true, true
|
|
}
|
|
|
|
if !block {
|
|
unlock(&c.lock)
|
|
return false, false
|
|
}
|
|
|
|
// no sender available: block on this channel.
|
|
gp := getg()
|
|
mysg := acquireSudog()
|
|
mysg.releasetime = 0
|
|
if t0 != 0 {
|
|
mysg.releasetime = -1
|
|
}
|
|
// No stack splits between assigning elem and enqueuing mysg
|
|
// on gp.waiting where copystack can find it.
|
|
mysg.elem = ep
|
|
mysg.waitlink = nil
|
|
gp.waiting = mysg
|
|
mysg.g = gp
|
|
mysg.isSelect = false
|
|
mysg.c = c
|
|
gp.param = nil
|
|
c.recvq.enqueue(mysg)
|
|
goparkunlock(&c.lock, waitReasonChanReceive, traceEvGoBlockRecv, 3)
|
|
|
|
// someone woke us up
|
|
if mysg != gp.waiting {
|
|
throw("G waiting list is corrupted")
|
|
}
|
|
gp.waiting = nil
|
|
if mysg.releasetime > 0 {
|
|
blockevent(mysg.releasetime-t0, 2)
|
|
}
|
|
closed := gp.param == nil
|
|
gp.param = nil
|
|
mysg.c = nil
|
|
releaseSudog(mysg)
|
|
return true, !closed
|
|
}
|
|
|
|
// recv processes a receive operation on a full channel c.
|
|
// There are 2 parts:
|
|
// 1) The value sent by the sender sg is put into the channel
|
|
// and the sender is woken up to go on its merry way.
|
|
// 2) The value received by the receiver (the current G) is
|
|
// written to ep.
|
|
// For synchronous channels, both values are the same.
|
|
// For asynchronous channels, the receiver gets its data from
|
|
// the channel buffer and the sender's data is put in the
|
|
// channel buffer.
|
|
// Channel c must be full and locked. recv unlocks c with unlockf.
|
|
// sg must already be dequeued from c.
|
|
// A non-nil ep must point to the heap or the caller's stack.
|
|
func recv(c *hchan, sg *sudog, ep unsafe.Pointer, unlockf func(), skip int) {
|
|
if c.dataqsiz == 0 {
|
|
if raceenabled {
|
|
racesync(c, sg)
|
|
}
|
|
if ep != nil {
|
|
// copy data from sender
|
|
recvDirect(c.elemtype, sg, ep)
|
|
}
|
|
} else {
|
|
// Queue is full. Take the item at the
|
|
// head of the queue. Make the sender enqueue
|
|
// its item at the tail of the queue. Since the
|
|
// queue is full, those are both the same slot.
|
|
qp := chanbuf(c, c.recvx)
|
|
if raceenabled {
|
|
raceacquire(qp)
|
|
racerelease(qp)
|
|
raceacquireg(sg.g, qp)
|
|
racereleaseg(sg.g, qp)
|
|
}
|
|
// copy data from queue to receiver
|
|
if ep != nil {
|
|
typedmemmove(c.elemtype, ep, qp)
|
|
}
|
|
// copy data from sender to queue
|
|
typedmemmove(c.elemtype, qp, sg.elem)
|
|
c.recvx++
|
|
if c.recvx == c.dataqsiz {
|
|
c.recvx = 0
|
|
}
|
|
c.sendx = c.recvx // c.sendx = (c.sendx+1) % c.dataqsiz
|
|
}
|
|
sg.elem = nil
|
|
gp := sg.g
|
|
unlockf()
|
|
gp.param = unsafe.Pointer(sg)
|
|
if sg.releasetime != 0 {
|
|
sg.releasetime = cputicks()
|
|
}
|
|
goready(gp, skip+1)
|
|
}
|
|
|
|
// compiler implements
|
|
//
|
|
// select {
|
|
// case c <- v:
|
|
// ... foo
|
|
// default:
|
|
// ... bar
|
|
// }
|
|
//
|
|
// as
|
|
//
|
|
// if selectnbsend(c, v) {
|
|
// ... foo
|
|
// } else {
|
|
// ... bar
|
|
// }
|
|
//
|
|
func selectnbsend(c *hchan, elem unsafe.Pointer) (selected bool) {
|
|
return chansend(c, elem, false, getcallerpc())
|
|
}
|
|
|
|
// compiler implements
|
|
//
|
|
// select {
|
|
// case v = <-c:
|
|
// ... foo
|
|
// default:
|
|
// ... bar
|
|
// }
|
|
//
|
|
// as
|
|
//
|
|
// if selectnbrecv(&v, c) {
|
|
// ... foo
|
|
// } else {
|
|
// ... bar
|
|
// }
|
|
//
|
|
func selectnbrecv(elem unsafe.Pointer, c *hchan) (selected bool) {
|
|
selected, _ = chanrecv(c, elem, false)
|
|
return
|
|
}
|
|
|
|
// compiler implements
|
|
//
|
|
// select {
|
|
// case v, ok = <-c:
|
|
// ... foo
|
|
// default:
|
|
// ... bar
|
|
// }
|
|
//
|
|
// as
|
|
//
|
|
// if c != nil && selectnbrecv2(&v, &ok, c) {
|
|
// ... foo
|
|
// } else {
|
|
// ... bar
|
|
// }
|
|
//
|
|
func selectnbrecv2(elem unsafe.Pointer, received *bool, c *hchan) (selected bool) {
|
|
// TODO(khr): just return 2 values from this function, now that it is in Go.
|
|
selected, *received = chanrecv(c, elem, false)
|
|
return
|
|
}
|
|
|
|
//go:linkname reflect_chansend reflect.chansend
|
|
func reflect_chansend(c *hchan, elem unsafe.Pointer, nb bool) (selected bool) {
|
|
return chansend(c, elem, !nb, getcallerpc())
|
|
}
|
|
|
|
//go:linkname reflect_chanrecv reflect.chanrecv
|
|
func reflect_chanrecv(c *hchan, nb bool, elem unsafe.Pointer) (selected bool, received bool) {
|
|
return chanrecv(c, elem, !nb)
|
|
}
|
|
|
|
//go:linkname reflect_chanlen reflect.chanlen
|
|
func reflect_chanlen(c *hchan) int {
|
|
if c == nil {
|
|
return 0
|
|
}
|
|
return int(c.qcount)
|
|
}
|
|
|
|
//go:linkname reflect_chancap reflect.chancap
|
|
func reflect_chancap(c *hchan) int {
|
|
if c == nil {
|
|
return 0
|
|
}
|
|
return int(c.dataqsiz)
|
|
}
|
|
|
|
//go:linkname reflect_chanclose reflect.chanclose
|
|
func reflect_chanclose(c *hchan) {
|
|
closechan(c)
|
|
}
|
|
|
|
func (q *waitq) enqueue(sgp *sudog) {
|
|
sgp.next = nil
|
|
x := q.last
|
|
if x == nil {
|
|
sgp.prev = nil
|
|
q.first = sgp
|
|
q.last = sgp
|
|
return
|
|
}
|
|
sgp.prev = x
|
|
x.next = sgp
|
|
q.last = sgp
|
|
}
|
|
|
|
func (q *waitq) dequeue() *sudog {
|
|
for {
|
|
sgp := q.first
|
|
if sgp == nil {
|
|
return nil
|
|
}
|
|
y := sgp.next
|
|
if y == nil {
|
|
q.first = nil
|
|
q.last = nil
|
|
} else {
|
|
y.prev = nil
|
|
q.first = y
|
|
sgp.next = nil // mark as removed (see dequeueSudog)
|
|
}
|
|
|
|
// if a goroutine was put on this queue because of a
|
|
// select, there is a small window between the goroutine
|
|
// being woken up by a different case and it grabbing the
|
|
// channel locks. Once it has the lock
|
|
// it removes itself from the queue, so we won't see it after that.
|
|
// We use a flag in the G struct to tell us when someone
|
|
// else has won the race to signal this goroutine but the goroutine
|
|
// hasn't removed itself from the queue yet.
|
|
if sgp.isSelect {
|
|
if !atomic.Cas(&sgp.g.selectDone, 0, 1) {
|
|
continue
|
|
}
|
|
}
|
|
|
|
return sgp
|
|
}
|
|
}
|
|
|
|
func racesync(c *hchan, sg *sudog) {
|
|
racerelease(chanbuf(c, 0))
|
|
raceacquireg(sg.g, chanbuf(c, 0))
|
|
racereleaseg(sg.g, chanbuf(c, 0))
|
|
raceacquire(chanbuf(c, 0))
|
|
}
|