1
0
mirror of https://github.com/golang/go synced 2024-11-19 16:04:48 -07:00
go/src/runtime/runtime.c
Ken Thompson 2119294af9 methods on any type
-- but only *struct tested

R=r
OCL=15326
CL=15326
2008-09-14 16:57:55 -07:00

804 lines
12 KiB
C

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "runtime.h"
int32 debug = 0;
int32 panicking = 0;
void
sys·panicl(int32 lno)
{
uint8 *sp;
prints("\npanic on line ");
sys·printint(lno);
prints(" ");
sys·printpc(&lno);
prints("\n");
sp = (uint8*)&lno;
traceback(sys·getcallerpc(&lno), sp, g);
tracebackothers(g);
panicking = 1;
sys·breakpoint(); // so we can grab it in a debugger
sys·exit(2);
}
void
sys·throwindex(void)
{
throw("index out of range");
}
void
sys·throwreturn(void)
{
throw("no return at end of a typed function");
}
enum
{
NHUNK = 20<<20,
PROT_NONE = 0x00,
PROT_READ = 0x01,
PROT_WRITE = 0x02,
PROT_EXEC = 0x04,
MAP_FILE = 0x0000,
MAP_SHARED = 0x0001,
MAP_PRIVATE = 0x0002,
MAP_FIXED = 0x0010,
MAP_ANON = 0x1000,
};
void
throw(int8 *s)
{
prints("throw: ");
prints(s);
prints("\n");
*(int32*)0 = 0;
sys·exit(1);
}
void
mcpy(byte *t, byte *f, uint32 n)
{
while(n > 0) {
*t = *f;
t++;
f++;
n--;
}
}
uint32
rnd(uint32 n, uint32 m)
{
uint32 r;
r = n % m;
if(r)
n += m-r;
return n;
}
// Convenient wrapper around mmap.
static void*
brk(uint32 n)
{
byte *v;
v = sys·mmap(nil, n, PROT_READ|PROT_WRITE, MAP_ANON|MAP_PRIVATE, 0, 0);
m->mem.nmmap += n;
return v;
}
// Allocate n bytes of memory. Note that this gets used
// to allocate new stack segments, so at each call to a function
// you have to ask yourself "would it be okay to call mal recursively
// right here?" The answer is yes unless we're in the middle of
// editing the malloc state in m->mem.
void*
mal(uint32 n)
{
byte* v;
// round to keep everything 64-bit aligned
n = rnd(n, 8);
// be careful. calling any function might invoke
// mal to allocate more stack.
if(n > NHUNK) {
v = brk(n);
} else {
// allocate a new hunk if this one is too small
if(n > m->mem.nhunk) {
// here we're in the middle of editing m->mem
// (we're about to overwrite m->mem.hunk),
// so we can't call brk - it might call mal to grow the
// stack, and the recursive call would allocate a new
// hunk, and then once brk returned we'd immediately
// overwrite that hunk with our own.
// (the net result would be a memory leak, not a crash.)
// so we have to call sys·mmap directly - it is written
// in assembly and tagged not to grow the stack.
m->mem.hunk =
sys·mmap(nil, NHUNK, PROT_READ|PROT_WRITE,
MAP_ANON|MAP_PRIVATE, 0, 0);
m->mem.nhunk = NHUNK;
m->mem.nmmap += NHUNK;
}
v = m->mem.hunk;
m->mem.hunk += n;
m->mem.nhunk -= n;
}
m->mem.nmal += n;
return v;
}
void
sys·mal(uint32 n, uint8 *ret)
{
ret = mal(n);
FLUSH(&ret);
}
static Map* hash[1009];
static Map*
hashmap(Sigi *si, Sigs *ss)
{
int32 ns, ni;
uint32 ihash, h;
byte *sname, *iname;
Map *m;
h = ((uint32)(uint64)si + (uint32)(uint64)ss) % nelem(hash);
for(m=hash[h]; m!=nil; m=m->link) {
if(m->si == si && m->ss == ss) {
if(m->bad) {
throw("bad hashmap");
m = nil;
}
// prints("old hashmap\n");
return m;
}
}
ni = si[0].offset; // first word has size
m = mal(sizeof(*m) + ni*sizeof(m->fun[0]));
m->si = si;
m->ss = ss;
ni = 1; // skip first word
ns = 0;
loop1:
// pick up next name from
// interface signature
iname = si[ni].name;
if(iname == nil) {
m->link = hash[h];
hash[h] = m;
// prints("new hashmap\n");
return m;
}
ihash = si[ni].hash;
loop2:
// pick up and comapre next name
// from structure signature
sname = ss[ns].name;
if(sname == nil) {
prints((int8*)iname);
prints(": ");
throw("hashmap: failed to find method");
m->bad = 1;
m->link = hash[h];
hash[h] = m;
return nil;
}
if(ihash != ss[ns].hash ||
strcmp(sname, iname) != 0) {
ns++;
goto loop2;
}
m->fun[si[ni].offset] = ss[ns].fun;
ni++;
goto loop1;
}
void
sys·ifaces2i(Sigi *si, Sigs *ss, Map *m, void *s)
{
if(debug) {
prints("s2i sigi=");
sys·printpointer(si);
prints(" sigs=");
sys·printpointer(ss);
prints(" s=");
sys·printpointer(s);
}
if(s == nil) {
throw("ifaces2i: nil pointer");
m = nil;
FLUSH(&m);
return;
}
m = hashmap(si, ss);
if(debug) {
prints(" returning m=");
sys·printpointer(m);
prints(" s=");
sys·printpointer(s);
prints("\n");
dump((byte*)m, 64);
}
FLUSH(&m);
}
void
sys·ifacei2i(Sigi *si, Map *m, void *s)
{
if(debug) {
prints("i2i sigi=");
sys·printpointer(si);
prints(" m=");
sys·printpointer(m);
prints(" s=");
sys·printpointer(s);
}
if(m == nil) {
throw("ifacei2i: nil map");
s = nil;
FLUSH(&s);
return;
}
if(m->si == nil) {
throw("ifacei2i: nil pointer");
return;
}
if(m->si != si) {
m = hashmap(si, m->ss);
FLUSH(&m);
}
if(debug) {
prints(" returning m=");
sys·printpointer(m);
prints(" s=");
sys·printpointer(s);
prints("\n");
dump((byte*)m, 64);
}
}
void
sys·ifacei2s(Sigs *ss, Map *m, void *s)
{
if(debug) {
prints("i2s m=");
sys·printpointer(m);
prints(" s=");
sys·printpointer(s);
prints("\n");
}
if(m == nil) {
throw("ifacei2s: nil map");
s = nil;
FLUSH(&s);
return;
}
if(m->ss != ss) {
dump((byte*)m, 64);
throw("ifacei2s: wrong pointer");
s = nil;
FLUSH(&s);
return;
}
}
enum
{
NANEXP = 2047<<20,
NANMASK = 2047<<20,
NANSIGN = 1<<31,
};
static uint64 uvnan = 0x7FF0000000000001ULL;
static uint64 uvinf = 0x7FF0000000000000ULL;
static uint64 uvneginf = 0xFFF0000000000000ULL;
static int32
isInf(float64 d, int32 sign)
{
uint64 x;
x = *(uint64*)&d;
if(sign == 0) {
if(x == uvinf || x == uvneginf)
return 1;
return 0;
}
if(sign > 0) {
if(x == uvinf)
return 1;
return 0;
}
if(x == uvneginf)
return 1;
return 0;
}
static float64
NaN(void)
{
return *(float64*)&uvnan;
}
static int32
isNaN(float64 d)
{
uint64 x;
x = *(uint64*)&d;
return (uint32)(x>>32)==0x7FF00000 && !isInf(d, 0);
}
static float64
Inf(int32 sign)
{
if(sign >= 0)
return *(float64*)&uvinf;
else
return *(float64*)&uvneginf;
}
enum
{
MASK = 0x7ffL,
SHIFT = 64-11-1,
BIAS = 1022L,
};
static float64
frexp(float64 d, int32 *ep)
{
uint64 x;
if(d == 0) {
*ep = 0;
return 0;
}
x = *(uint64*)&d;
*ep = (int32)((x >> SHIFT) & MASK) - BIAS;
x &= ~((uint64)MASK << SHIFT);
x |= (uint64)BIAS << SHIFT;
return *(float64*)&x;
}
static float64
ldexp(float64 d, int32 e)
{
uint64 x;
if(d == 0)
return 0;
x = *(uint64*)&d;
e += (int32)(x >> SHIFT) & MASK;
if(e <= 0)
return 0; /* underflow */
if(e >= MASK){ /* overflow */
if(d < 0)
return Inf(-1);
return Inf(1);
}
x &= ~((uint64)MASK << SHIFT);
x |= (uint64)e << SHIFT;
return *(float64*)&x;
}
static float64
modf(float64 d, float64 *ip)
{
float64 dd;
uint64 x;
int32 e;
if(d < 1) {
if(d < 0) {
d = modf(-d, ip);
*ip = -*ip;
return -d;
}
*ip = 0;
return d;
}
x = *(uint64*)&d;
e = (int32)((x >> SHIFT) & MASK) - BIAS;
/*
* Keep the top 11+e bits; clear the rest.
*/
if(e <= 64-11)
x &= ~(((uint64)1 << (64LL-11LL-e))-1);
dd = *(float64*)&x;
*ip = dd;
return d - dd;
}
// func frexp(float64) (float64, int32); // break fp into exp,frac
void
sys·frexp(float64 din, float64 dou, int32 iou)
{
dou = frexp(din, &iou);
FLUSH(&dou);
}
//func ldexp(int32, float64) float64; // make fp from exp,frac
void
sys·ldexp(float64 din, int32 ein, float64 dou)
{
dou = ldexp(din, ein);
FLUSH(&dou);
}
//func modf(float64) (float64, float64); // break fp into double+double
void
sys·modf(float64 din, float64 integer, float64 fraction)
{
fraction = modf(din, &integer);
FLUSH(&fraction);
}
//func isinf(float64, int32 sign) bool; // test for infinity
void
sys·isInf(float64 din, int32 signin, bool out)
{
out = isInf(din, signin);
FLUSH(&out);
}
//func isnan(float64) bool; // test for NaN
void
sys·isNaN(float64 din, bool out)
{
out = isNaN(din);
FLUSH(&out);
}
//func inf(int32 sign) float64; // signed infinity
void
sys·Inf(int32 signin, float64 out)
{
out = Inf(signin);
FLUSH(&out);
}
//func nan() float64; // NaN
void
sys·NaN(float64 out)
{
out = NaN();
FLUSH(&out);
}
static int32 argc;
static uint8** argv;
static int32 envc;
static uint8** envv;
void
args(int32 c, uint8 **v)
{
argc = c;
argv = v;
envv = v + argc + 1; // skip 0 at end of argv
for (envc = 0; envv[envc] != 0; envc++)
;
}
int32
getenvc(void)
{
return envc;
}
byte*
getenv(int8 *s)
{
int32 i, j, len;
byte *v, *bs;
bs = (byte*)s;
len = findnull(s);
for(i=0; i<envc; i++){
v = envv[i];
for(j=0; j<len; j++)
if(bs[j] != v[j])
goto nomatch;
if(v[len] != '=')
goto nomatch;
return v+len+1;
nomatch:;
}
return nil;
}
int32
atoi(byte *p)
{
int32 n;
n = 0;
while('0' <= *p && *p <= '9')
n = n*10 + *p++ - '0';
return n;
}
//func argc() int32; // return number of arguments
void
sys·argc(int32 v)
{
v = argc;
FLUSH(&v);
}
//func envc() int32; // return number of environment variables
void
sys·envc(int32 v)
{
v = envc;
FLUSH(&v);
}
//func argv(i) string; // return argument i
void
sys·argv(int32 i, string s)
{
uint8* str;
int32 l;
if(i < 0 || i >= argc) {
s = emptystring;
goto out;
}
str = argv[i];
l = findnull((int8*)str);
s = mal(sizeof(s->len)+l);
s->len = l;
mcpy(s->str, str, l);
out:
FLUSH(&s);
}
//func envv(i) string; // return environment variable i
void
sys·envv(int32 i, string s)
{
uint8* str;
int32 l;
if(i < 0 || i >= envc) {
s = emptystring;
goto out;
}
str = envv[i];
l = findnull((int8*)str);
s = mal(sizeof(s->len)+l);
s->len = l;
mcpy(s->str, str, l);
out:
FLUSH(&s);
}
void
check(void)
{
int8 a;
uint8 b;
int16 c;
uint16 d;
int32 e;
uint32 f;
int64 g;
uint64 h;
float32 i;
float64 j;
void* k;
uint16* l;
if(sizeof(a) != 1) throw("bad a");
if(sizeof(b) != 1) throw("bad b");
if(sizeof(c) != 2) throw("bad c");
if(sizeof(d) != 2) throw("bad d");
if(sizeof(e) != 4) throw("bad e");
if(sizeof(f) != 4) throw("bad f");
if(sizeof(g) != 8) throw("bad g");
if(sizeof(h) != 8) throw("bad h");
if(sizeof(i) != 4) throw("bad i");
if(sizeof(j) != 8) throw("bad j");
if(sizeof(k) != 8) throw("bad k");
if(sizeof(l) != 8) throw("bad l");
// prints(1"check ok\n");
uint32 z;
z = 1;
if(!cas(&z, 1, 2))
throw("cas1");
if(z != 2)
throw("cas2");
z = 4;
if(cas(&z, 5, 6))
throw("cas3");
if(z != 4)
throw("cas4");
initsig();
}
/*
* map and chan helpers for
* dealing with unknown types
*/
static uint64
memhash(uint32 s, void *a)
{
USED(s, a);
prints("memhash\n");
return 0x12345;
}
static uint32
memequal(uint32 s, void *a, void *b)
{
byte *ba, *bb;
uint32 i;
ba = a;
bb = b;
for(i=0; i<s; i++)
if(ba[i] != bb[i])
return 0;
return 1;
}
static void
memprint(uint32 s, void *a)
{
uint64 v;
v = 0xbadb00b;
switch(s) {
case 1:
v = *(uint8*)a;
break;
case 2:
v = *(uint16*)a;
break;
case 4:
v = *(uint32*)a;
break;
case 8:
v = *(uint64*)a;
break;
}
sys·printint(v);
}
static void
memcopy(uint32 s, void *a, void *b)
{
byte *ba, *bb;
uint32 i;
ba = a;
bb = b;
if(bb == nil) {
for(i=0; i<s; i++)
ba[i] = 0;
return;
}
for(i=0; i<s; i++)
ba[i] = bb[i];
}
static uint64
stringhash(uint32 s, string *a)
{
USED(s, a);
prints("stringhash\n");
return 0x12345;
}
static uint32
stringequal(uint32 s, string *a, string *b)
{
USED(s);
return cmpstring(*a, *b) == 0;
}
static void
stringprint(uint32 s, string *a)
{
USED(s);
sys·printstring(*a);
}
static void
stringcopy(uint32 s, string *a, string *b)
{
USED(s);
if(b == nil) {
*a = nil;
return;
}
*a = *b;
}
static uint64
pointerhash(uint32 s, void **a)
{
USED(s, a);
prints("pointerhash\n");
return 0x12345;
}
static uint32
pointerequal(uint32 s, void **a, void **b)
{
USED(s, a, b);
prints("pointerequal\n");
return 0;
}
static void
pointerprint(uint32 s, void **a)
{
USED(s, a);
prints("pointerprint\n");
}
static void
pointercopy(uint32 s, void **a, void **b)
{
USED(s);
if(b == nil) {
*a = nil;
return;
}
*a = *b;
}
Alg
algarray[3] =
{
{ memhash, memequal, memprint, memcopy }, // 0
{ stringhash, stringequal, stringprint, stringcopy }, // 1
// { pointerhash, pointerequal, pointerprint, pointercopy }, // 2
{ memhash, memequal, memprint, memcopy }, // 2 - treat pointers as ints
};