1
0
mirror of https://github.com/golang/go synced 2024-11-18 20:04:52 -07:00
go/refactor/rename/rename_test.go
Alan Donovan c6ec5ea66d cmd/gorename: support renaming of methods with consequences for other types, iff initiated at an abstract method.
Previously, gorename rejected all method renamings if it would
change the assignability relation.

Now, so long as the renaming was initiated at an abstract
method, the renaming proceeds, changing concrete methods (and
possibly other abstract methods) as needed.  The user
intention is clear.

The intention of a renaming initiated at a concrete method is
less clear, so we still reject it if it would change the
assignability relation.  The diagnostic advises the user to
rename the abstract method if that was the intention.

Additional safety checks are required: for each
satisfy.Constraint that couples a concrete type C and an
interface type I, we must treat it just like a set of implicit
selections C.f, one per abstract method f of I, and ensure the
selections' meanings are unchanged.

The satisfy package no longer canonicalizes types, since this
substitutes one interface for another (equivalent) one, which
is sound, but makes the type names random and the error
messages confusing.

Also, fixed a bug in 'satisfy' relating to map keys.

+ Lots more tests.

LGTM=sameer
R=sameer
CC=golang-codereviews
https://golang.org/cl/173430043
2014-12-04 09:37:50 -05:00

1103 lines
22 KiB
Go

// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package rename
import (
"bytes"
"fmt"
"go/ast"
"go/build"
"go/format"
"go/token"
"io"
"io/ioutil"
"os"
"path/filepath"
"regexp"
"strconv"
"strings"
"testing"
"time"
)
// TODO(adonovan): test reported source positions, somehow.
func TestConflicts(t *testing.T) {
defer func(savedDryRun bool, savedReportError func(token.Position, string)) {
DryRun = savedDryRun
reportError = savedReportError
}(DryRun, reportError)
DryRun = true
var ctxt *build.Context
for _, test := range []struct {
ctxt *build.Context // nil => use previous
offset, from, to string // values of the -offset/-from and -to flags
want string // regexp to match conflict errors, or "OK"
}{
// init() checks
{
ctxt: fakeContext(map[string][]string{
"fmt": {`package fmt; type Stringer interface { String() }`},
"main": {`
package main
import foo "fmt"
var v foo.Stringer
func f() { v.String(); f() }
`,
`package main; var w int`},
}),
from: "main.v", to: "init",
want: `you cannot have a var at package level named "init"`,
},
{
from: "main.f", to: "init",
want: `renaming this func "f" to "init" would make it a package initializer.*` +
`but references to it exist`,
},
{
from: "/go/src/main/0.go::foo", to: "init",
want: `"init" is not a valid imported package name`,
},
// Export checks
{
from: "fmt.Stringer", to: "stringer",
want: `renaming this type "Stringer" to "stringer" would make it unexported.*` +
`breaking references from packages such as "main"`,
},
{
from: "(fmt.Stringer).String", to: "string",
want: `renaming this method "String" to "string" would make it unexported.*` +
`breaking references from packages such as "main"`,
},
// Lexical scope checks
{
// file/package conflict, same file
from: "main.v", to: "foo",
want: `renaming this var "v" to "foo" would conflict.*` +
`with this imported package name`,
},
{
// file/package conflict, same file
from: "main::foo", to: "v",
want: `renaming this imported package name "foo" to "v" would conflict.*` +
`with this package member var`,
},
{
// file/package conflict, different files
from: "main.w", to: "foo",
want: `renaming this var "w" to "foo" would conflict.*` +
`with this imported package name`,
},
{
// file/package conflict, different files
from: "main::foo", to: "w",
want: `renaming this imported package name "foo" to "w" would conflict.*` +
`with this package member var`,
},
{
ctxt: main(`
package main
var x, z int
func f(y int) {
print(x)
print(y)
}
func g(w int) {
print(x)
x := 1
print(x)
}`),
from: "main.x", to: "y",
want: `renaming this var "x" to "y".*` +
`would cause this reference to become shadowed.*` +
`by this intervening var definition`,
},
{
from: "main.g::x", to: "w",
want: `renaming this var "x" to "w".*` +
`conflicts with var in same block`,
},
{
from: "main.f::y", to: "x",
want: `renaming this var "y" to "x".*` +
`would shadow this reference.*` +
`to the var declared here`,
},
{
from: "main.g::w", to: "x",
want: `renaming this var "w" to "x".*` +
`conflicts with var in same block`,
},
{
from: "main.z", to: "y", want: "OK",
},
// Label checks
{
ctxt: main(`
package main
func f() {
foo:
goto foo
bar:
goto bar
func(x int) {
wiz:
goto wiz
}(0)
}
`),
from: "main.f::foo", to: "bar",
want: `renaming this label "foo" to "bar".*` +
`would conflict with this one`,
},
{
from: "main.f::foo", to: "wiz", want: "OK",
},
{
from: "main.f::wiz", to: "x", want: "OK",
},
{
from: "main.f::x", to: "wiz", want: "OK",
},
{
from: "main.f::wiz", to: "foo", want: "OK",
},
// Struct fields
{
ctxt: main(`
package main
type U struct { u int }
type V struct { v int }
func (V) x() {}
type W (struct {
U
V
w int
})
func f() {
var w W
print(w.u) // NB: there is no selection of w.v
var _ struct { yy, zz int }
}
`),
// field/field conflict in named struct declaration
from: "(main.W).U", to: "w",
want: `renaming this field "U" to "w".*` +
`would conflict with this field`,
},
{
// rename type used as embedded field
// => rename field
// => field/field conflict
// This is an entailed renaming;
// it would be nice if we checked source positions.
from: "main.U", to: "w",
want: `renaming this field "U" to "w".*` +
`would conflict with this field`,
},
{
// field/field conflict in unnamed struct declaration
from: "main.f::zz", to: "yy",
want: `renaming this field "zz" to "yy".*` +
`would conflict with this field`,
},
// Now we test both directions of (u,v) (u,w) (v,w) (u,x) (v,x).
// Too bad we don't test position info...
{
// field/field ambiguity at same promotion level ('from' selection)
from: "(main.U).u", to: "v",
want: `renaming this field "u" to "v".*` +
`would make this reference ambiguous.*` +
`with this field`,
},
{
// field/field ambiguity at same promotion level ('to' selection)
from: "(main.V).v", to: "u",
want: `renaming this field "v" to "u".*` +
`would make this reference ambiguous.*` +
`with this field`,
},
{
// field/method conflict at different promotion level ('from' selection)
from: "(main.U).u", to: "w",
want: `renaming this field "u" to "w".*` +
`would change the referent of this selection.*` +
`of this field`,
},
{
// field/field shadowing at different promotion levels ('to' selection)
from: "(main.W).w", to: "u",
want: `renaming this field "w" to "u".*` +
`would shadow this selection.*` +
`of the field declared here`,
},
{
from: "(main.V).v", to: "w",
want: "OK", // since no selections are made ambiguous
},
{
from: "(main.W).w", to: "v",
want: "OK", // since no selections are made ambiguous
},
{
// field/method ambiguity at same promotion level ('from' selection)
from: "(main.U).u", to: "x",
want: `renaming this field "u" to "x".*` +
`would make this reference ambiguous.*` +
`with this method`,
},
{
// field/field ambiguity at same promotion level ('to' selection)
from: "(main.V).x", to: "u",
want: `renaming this method "x" to "u".*` +
`would make this reference ambiguous.*` +
`with this field`,
},
{
// field/method conflict at named struct declaration
from: "(main.V).v", to: "x",
want: `renaming this field "v" to "x".*` +
`would conflict with this method`,
},
{
// field/method conflict at named struct declaration
from: "(main.V).x", to: "v",
want: `renaming this method "x" to "v".*` +
`would conflict with this field`,
},
// Methods
{
ctxt: main(`
package main
type C int
func (C) f()
func (C) g()
type D int
func (*D) f()
func (*D) g()
type I interface { f(); g() }
type J interface { I; h() }
var _ I = new(D)
var _ interface {f()} = C(0)
`),
from: "(main.I).f", to: "g",
want: `renaming this interface method "f" to "g".*` +
`would conflict with this method`,
},
{
from: `("main".I).f`, to: "h", // NB: exercises quoted import paths too
want: `renaming this interface method "f" to "h".*` +
`would conflict with this method.*` +
`in named interface type "J"`,
},
{
// type J interface { h; h() } is not a conflict, amusingly.
from: "main.I", to: "h",
want: `OK`,
},
{
from: "(main.J).h", to: "f",
want: `renaming this interface method "h" to "f".*` +
`would conflict with this method`,
},
{
from: "(main.C).f", to: "e",
want: `renaming this method "f" to "e".*` +
`would make main.C no longer assignable to interface{f..}.*` +
`(rename interface{f..}.f if you intend to change both types)`,
},
{
from: "(main.D).g", to: "e",
want: `renaming this method "g" to "e".*` +
`would make \*main.D no longer assignable to interface I.*` +
`(rename main.I.g if you intend to change both types)`,
},
{
from: "(main.I).f", to: "e",
want: `OK`,
},
// Indirect C/I method coupling via another concrete type D.
{
ctxt: main(`
package main
type I interface { f() }
type C int
func (C) f()
type D struct{C}
var _ I = D{}
`),
from: "(main.C).f", to: "F",
want: `renaming this method "f" to "F".*` +
`would make main.D no longer assignable to interface I.*` +
`(rename main.I.f if you intend to change both types)`,
},
// Renaming causes promoted method to become shadowed; C no longer satisfies I.
{
ctxt: main(`
package main
type I interface { f() }
type C struct { I }
func (C) g() int
var _ I = C{}
`),
from: "main.I.f", to: "g",
want: `renaming this method "f" to "g".*` +
`would change the g method of main.C invoked via interface main.I.*` +
`from \(main.I\).g.*` +
`to \(main.C\).g`,
},
// Renaming causes promoted method to become ambiguous; C no longer satisfies I.
{
ctxt: main(`
package main
type I interface{f()}
type C int
func (C) f()
type D int
func (D) g()
type E struct{C;D}
var _ I = E{}
`),
from: "main.I.f", to: "g",
want: `renaming this method "f" to "g".*` +
`would make the g method of main.E invoked via interface main.I ambiguous.*` +
`with \(main.D\).g`,
},
} {
var conflicts []string
reportError = func(posn token.Position, message string) {
conflicts = append(conflicts, message)
}
if test.ctxt != nil {
ctxt = test.ctxt
}
err := Main(ctxt, test.offset, test.from, test.to)
var prefix string
if test.offset == "" {
prefix = fmt.Sprintf("-from %q -to %q", test.from, test.to)
} else {
prefix = fmt.Sprintf("-offset %q -to %q", test.offset, test.to)
}
if err == ConflictError {
got := strings.Join(conflicts, "\n")
if false {
t.Logf("%s: %s", prefix, got)
}
pattern := "(?s:" + test.want + ")" // enable multi-line matching
if !regexp.MustCompile(pattern).MatchString(got) {
t.Errorf("%s: conflict does not match pattern:\n"+
"Conflict:\t%s\n"+
"Pattern: %s",
prefix, got, test.want)
}
} else if err != nil {
t.Errorf("%s: unexpected error: %s", prefix, err)
} else if test.want != "OK" {
t.Errorf("%s: unexpected success, want conflicts matching:\n%s",
prefix, test.want)
}
}
}
func TestRewrites(t *testing.T) {
defer func(savedRewriteFile func(*token.FileSet, *ast.File, string) error) {
rewriteFile = savedRewriteFile
}(rewriteFile)
var ctxt *build.Context
for _, test := range []struct {
ctxt *build.Context // nil => use previous
offset, from, to string // values of the -from/-offset and -to flags
want map[string]string // contents of updated files
}{
// Elimination of renaming import.
{
ctxt: fakeContext(map[string][]string{
"foo": {`package foo; type T int`},
"main": {`package main
import foo2 "foo"
var _ foo2.T
`},
}),
from: "main::foo2", to: "foo",
want: map[string]string{
"/go/src/main/0.go": `package main
import "foo"
var _ foo.T
`,
},
},
// Introduction of renaming import.
{
ctxt: fakeContext(map[string][]string{
"foo": {`package foo; type T int`},
"main": {`package main
import "foo"
var _ foo.T
`},
}),
offset: "/go/src/main/0.go:#36", to: "foo2", // the "foo" in foo.T
want: map[string]string{
"/go/src/main/0.go": `package main
import foo2 "foo"
var _ foo2.T
`,
},
},
// Renaming of package-level member.
{
from: "foo.T", to: "U",
want: map[string]string{
"/go/src/main/0.go": `package main
import "foo"
var _ foo.U
`,
"/go/src/foo/0.go": `package foo
type U int
`,
},
},
// Label renamings.
{
ctxt: main(`package main
func f() {
loop:
loop := 0
go func() {
loop:
goto loop
}()
loop++
goto loop
}
`),
offset: "/go/src/main/0.go:#25", to: "loop2", // def of outer label "loop"
want: map[string]string{
"/go/src/main/0.go": `package main
func f() {
loop2:
loop := 0
go func() {
loop:
goto loop
}()
loop++
goto loop2
}
`,
},
},
{
offset: "/go/src/main/0.go:#70", to: "loop2", // ref to inner label "loop"
want: map[string]string{
"/go/src/main/0.go": `package main
func f() {
loop:
loop := 0
go func() {
loop2:
goto loop2
}()
loop++
goto loop
}
`,
},
},
// Renaming of type used as embedded field.
{
ctxt: main(`package main
type T int
type U struct { T }
var _ = U{}.T
`),
from: "main.T", to: "T2",
want: map[string]string{
"/go/src/main/0.go": `package main
type T2 int
type U struct{ T2 }
var _ = U{}.T2
`,
},
},
// Renaming of embedded field.
{
ctxt: main(`package main
type T int
type U struct { T }
var _ = U{}.T
`),
offset: "/go/src/main/0.go:#58", to: "T2", // T in "U{}.T"
want: map[string]string{
"/go/src/main/0.go": `package main
type T2 int
type U struct{ T2 }
var _ = U{}.T2
`,
},
},
// Renaming of pointer embedded field.
{
ctxt: main(`package main
type T int
type U struct { *T }
var _ = U{}.T
`),
offset: "/go/src/main/0.go:#59", to: "T2", // T in "U{}.T"
want: map[string]string{
"/go/src/main/0.go": `package main
type T2 int
type U struct{ *T2 }
var _ = U{}.T2
`,
},
},
// Lexical scope tests.
{
ctxt: main(`package main
var y int
func f() {
print(y)
y := ""
print(y)
}
`),
from: "main.y", to: "x",
want: map[string]string{
"/go/src/main/0.go": `package main
var x int
func f() {
print(x)
y := ""
print(y)
}
`,
},
},
{
from: "main.f::y", to: "x",
want: map[string]string{
"/go/src/main/0.go": `package main
var y int
func f() {
print(y)
x := ""
print(x)
}
`,
},
},
// Renaming of typeswitch vars (a corner case).
{
ctxt: main(`package main
func f(z interface{}) {
switch y := z.(type) {
case int:
print(y)
default:
print(y)
}
}
`),
offset: "/go/src/main/0.go:#46", to: "x", // def of y
want: map[string]string{
"/go/src/main/0.go": `package main
func f(z interface{}) {
switch x := z.(type) {
case int:
print(x)
default:
print(x)
}
}
`},
},
{
offset: "/go/src/main/0.go:#81", to: "x", // ref of y in case int
want: map[string]string{
"/go/src/main/0.go": `package main
func f(z interface{}) {
switch x := z.(type) {
case int:
print(x)
default:
print(x)
}
}
`},
},
{
offset: "/go/src/main/0.go:#102", to: "x", // ref of y in default case
want: map[string]string{
"/go/src/main/0.go": `package main
func f(z interface{}) {
switch x := z.(type) {
case int:
print(x)
default:
print(x)
}
}
`},
},
// Renaming of embedded field that is a qualified reference.
// (Regression test for bug 8924.)
{
ctxt: fakeContext(map[string][]string{
"foo": {`package foo; type T int`},
"main": {`package main
import "foo"
type _ struct{ *foo.T }
`},
}),
offset: "/go/src/main/0.go:#48", to: "U", // the "T" in *foo.T
want: map[string]string{
"/go/src/foo/0.go": `package foo
type U int
`,
"/go/src/main/0.go": `package main
import "foo"
type _ struct{ *foo.U }
`,
},
},
// Interface method renaming.
{
ctxt: fakeContext(map[string][]string{
"main": {`
package main
type I interface { f() }
type J interface { f(); g() }
type A int
func (A) f()
type B int
func (B) f()
func (B) g()
type C int
func (C) f()
func (C) g()
var _, _ I = A(0), B(0)
var _, _ J = B(0), C(0)
`,
},
}),
offset: "/go/src/main/0.go:#33", to: "F", // abstract method I.f
want: map[string]string{
"/go/src/main/0.go": `package main
type I interface {
F()
}
type J interface {
F()
g()
}
type A int
func (A) F()
type B int
func (B) F()
func (B) g()
type C int
func (C) F()
func (C) g()
var _, _ I = A(0), B(0)
var _, _ J = B(0), C(0)
`,
},
},
{
offset: "/go/src/main/0.go:#58", to: "F", // abstract method J.f
want: map[string]string{
"/go/src/main/0.go": `package main
type I interface {
F()
}
type J interface {
F()
g()
}
type A int
func (A) F()
type B int
func (B) F()
func (B) g()
type C int
func (C) F()
func (C) g()
var _, _ I = A(0), B(0)
var _, _ J = B(0), C(0)
`,
},
},
{
offset: "/go/src/main/0.go:#63", to: "G", // abstract method J.g
want: map[string]string{
"/go/src/main/0.go": `package main
type I interface {
f()
}
type J interface {
f()
G()
}
type A int
func (A) f()
type B int
func (B) f()
func (B) G()
type C int
func (C) f()
func (C) G()
var _, _ I = A(0), B(0)
var _, _ J = B(0), C(0)
`,
},
},
// Indirect coupling of I.f to C.f from D->I assignment and anonymous field of D.
{
ctxt: fakeContext(map[string][]string{
"main": {`
package main
type I interface { f() }
type C int
func (C) f()
type D struct{C}
var _ I = D{}
`,
},
}),
offset: "/go/src/main/0.go:#33", to: "F", // abstract method I.f
want: map[string]string{
"/go/src/main/0.go": `package main
type I interface {
F()
}
type C int
func (C) F()
type D struct{ C }
var _ I = D{}
`,
},
},
// Interface embedded in struct. No conflict if C need not satisfy I.
{
ctxt: fakeContext(map[string][]string{
"main": {`
package main
type I interface {f()}
type C struct{I}
func (C) g() int
var _ int = C{}.g()
`,
},
}),
offset: "/go/src/main/0.go:#32", to: "g", // abstract method I.f
want: map[string]string{
"/go/src/main/0.go": `package main
type I interface {
g()
}
type C struct{ I }
func (C) g() int
var _ int = C{}.g()
`,
},
},
// A type assertion causes method coupling iff signatures match.
{
ctxt: fakeContext(map[string][]string{
"main": {`package main
type I interface{f()}
type J interface{f()}
var _ = I(nil).(J)
`,
},
}),
offset: "/go/src/main/0.go:#30", to: "g", // abstract method I.f
want: map[string]string{
"/go/src/main/0.go": `package main
type I interface {
g()
}
type J interface {
g()
}
var _ = I(nil).(J)
`,
},
},
// Impossible type assertion: no method coupling.
{
ctxt: fakeContext(map[string][]string{
"main": {`package main
type I interface{f()}
type J interface{f()int}
var _ = I(nil).(J)
`,
},
}),
offset: "/go/src/main/0.go:#30", to: "g", // abstract method I.f
want: map[string]string{
"/go/src/main/0.go": `package main
type I interface {
g()
}
type J interface {
f() int
}
var _ = I(nil).(J)
`,
},
},
// Impossible type assertion: no method coupling C.f<->J.f.
{
ctxt: fakeContext(map[string][]string{
"main": {`package main
type I interface{f()}
type C int
func (C) f()
type J interface{f()int}
var _ = I(C(0)).(J)
`,
},
}),
offset: "/go/src/main/0.go:#30", to: "g", // abstract method I.f
want: map[string]string{
"/go/src/main/0.go": `package main
type I interface {
g()
}
type C int
func (C) g()
type J interface {
f() int
}
var _ = I(C(0)).(J)
`,
},
},
} {
if test.ctxt != nil {
ctxt = test.ctxt
}
got := make(map[string]string)
rewriteFile = func(fset *token.FileSet, f *ast.File, orig string) error {
var out bytes.Buffer
if err := format.Node(&out, fset, f); err != nil {
return err
}
got[filepath.ToSlash(orig)] = out.String()
return nil
}
err := Main(ctxt, test.offset, test.from, test.to)
var prefix string
if test.offset == "" {
prefix = fmt.Sprintf("-from %q -to %q", test.from, test.to)
} else {
prefix = fmt.Sprintf("-offset %q -to %q", test.offset, test.to)
}
if err != nil {
t.Errorf("%s: unexpected error: %s", prefix, err)
continue
}
for file, wantContent := range test.want {
gotContent, ok := got[file]
delete(got, file)
if !ok {
t.Errorf("%s: file %s not rewritten", prefix, file)
continue
}
if gotContent != wantContent {
t.Errorf("%s: rewritten file %s does not match expectation; got <<<%s>>>\n"+
"want <<<%s>>>", prefix, file, gotContent, wantContent)
}
}
// got should now be empty
for file := range got {
t.Errorf("%s: unexpected rewrite of file %s", prefix, file)
}
}
}
// ---------------------------------------------------------------------
// Plundered/adapted from go/loader/loader_test.go
// TODO(adonovan): make this into a nice testing utility within go/buildutil.
// pkgs maps the import path of a fake package to a list of its file contents;
// file names are synthesized, e.g. %d.go.
func fakeContext(pkgs map[string][]string) *build.Context {
ctxt := build.Default // copy
ctxt.GOROOT = "/go"
ctxt.GOPATH = ""
ctxt.IsDir = func(path string) bool {
path = filepath.ToSlash(path)
if path == "/go/src" {
return true // needed by (*build.Context).SrcDirs
}
if p := strings.TrimPrefix(path, "/go/src/"); p == path {
return false
} else {
path = p
}
_, ok := pkgs[path]
return ok
}
ctxt.ReadDir = func(dir string) ([]os.FileInfo, error) {
dir = filepath.ToSlash(dir)
dir = dir[len("/go/src/"):]
var fis []os.FileInfo
if dir == "" {
// Assumes keys of pkgs are single-segment.
for p := range pkgs {
fis = append(fis, fakeDirInfo(p))
}
} else {
for i := range pkgs[dir] {
fis = append(fis, fakeFileInfo(i))
}
}
return fis, nil
}
ctxt.OpenFile = func(path string) (io.ReadCloser, error) {
path = filepath.ToSlash(path)
path = path[len("/go/src/"):]
dir, base := filepath.Split(path)
dir = filepath.Clean(dir)
index, _ := strconv.Atoi(strings.TrimSuffix(base, ".go"))
return ioutil.NopCloser(bytes.NewBufferString(pkgs[dir][index])), nil
}
ctxt.IsAbsPath = func(path string) bool {
path = filepath.ToSlash(path)
// Don't rely on the default (filepath.Path) since on
// Windows, it reports our virtual paths as non-absolute.
return strings.HasPrefix(path, "/")
}
return &ctxt
}
// helper for single-file main packages with no imports.
func main(content string) *build.Context {
return fakeContext(map[string][]string{"main": {content}})
}
type fakeFileInfo int
func (fi fakeFileInfo) Name() string { return fmt.Sprintf("%d.go", fi) }
func (fakeFileInfo) Sys() interface{} { return nil }
func (fakeFileInfo) ModTime() time.Time { return time.Time{} }
func (fakeFileInfo) IsDir() bool { return false }
func (fakeFileInfo) Size() int64 { return 0 }
func (fakeFileInfo) Mode() os.FileMode { return 0644 }
type fakeDirInfo string
func (fd fakeDirInfo) Name() string { return string(fd) }
func (fakeDirInfo) Sys() interface{} { return nil }
func (fakeDirInfo) ModTime() time.Time { return time.Time{} }
func (fakeDirInfo) IsDir() bool { return true }
func (fakeDirInfo) Size() int64 { return 0 }
func (fakeDirInfo) Mode() os.FileMode { return 0755 }