mirror of
https://github.com/golang/go
synced 2024-11-19 09:54:49 -07:00
88672de7af
As necessary, math functions were structured to use stubs, so that they can be accelerated with assembly on any platform. Technique used was minimax polynomial approximation using tables of polynomial coefficients, with argument range reduction. Benchmark New Old Speedup BenchmarkAcos 12.2 47.5 3.89 BenchmarkAcosh 18.5 56.2 3.04 BenchmarkAsin 13.1 40.6 3.10 BenchmarkAsinh 19.4 62.8 3.24 BenchmarkAtan 10.1 23 2.28 BenchmarkAtanh 19.1 53.2 2.79 BenchmarkAtan2 16.5 33.9 2.05 BenchmarkCbrt 14.8 58 3.92 BenchmarkErf 10.8 20.1 1.86 BenchmarkErfc 11.2 23.5 2.10 BenchmarkExp 8.77 53.8 6.13 BenchmarkExpm1 10.1 38.3 3.79 BenchmarkLog 13.1 40.1 3.06 BenchmarkLog1p 12.7 38.3 3.02 BenchmarkPowInt 31.7 40.5 1.28 BenchmarkPowFrac 33.1 141 4.26 BenchmarkTan 11.5 30 2.61 Accuracy was tested against a high precision reference function to determine maximum error. Note: ulperr is error in "units in the last place" max ulperr Acos 1.15 Acosh 1.07 Asin 2.22 Asinh 1.72 Atan 1.41 Atanh 3.00 Atan2 1.45 Cbrt 1.18 Erf 1.29 Erfc 4.82 Exp 1.00 Expm1 2.26 Log 0.94 Log1p 2.39 Tan 3.14 Pow will have 99.99% correctly rounded results with reasonable inputs producing numeric (non Inf or NaN) results Change-Id: I850e8cf7b70426e8b54ec49d74acd4cddc8c6cb2 Reviewed-on: https://go-review.googlesource.com/38585 Reviewed-by: Michael Munday <munday@ca.ibm.com> Run-TryBot: Michael Munday <munday@ca.ibm.com> TryBot-Result: Gobot Gobot <gobot@golang.org>
340 lines
11 KiB
Go
340 lines
11 KiB
Go
// Copyright 2010 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package math
|
|
|
|
/*
|
|
Floating-point error function and complementary error function.
|
|
*/
|
|
|
|
// The original C code and the long comment below are
|
|
// from FreeBSD's /usr/src/lib/msun/src/s_erf.c and
|
|
// came with this notice. The go code is a simplified
|
|
// version of the original C.
|
|
//
|
|
// ====================================================
|
|
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
|
|
//
|
|
// Developed at SunPro, a Sun Microsystems, Inc. business.
|
|
// Permission to use, copy, modify, and distribute this
|
|
// software is freely granted, provided that this notice
|
|
// is preserved.
|
|
// ====================================================
|
|
//
|
|
//
|
|
// double erf(double x)
|
|
// double erfc(double x)
|
|
// x
|
|
// 2 |\
|
|
// erf(x) = --------- | exp(-t*t)dt
|
|
// sqrt(pi) \|
|
|
// 0
|
|
//
|
|
// erfc(x) = 1-erf(x)
|
|
// Note that
|
|
// erf(-x) = -erf(x)
|
|
// erfc(-x) = 2 - erfc(x)
|
|
//
|
|
// Method:
|
|
// 1. For |x| in [0, 0.84375]
|
|
// erf(x) = x + x*R(x**2)
|
|
// erfc(x) = 1 - erf(x) if x in [-.84375,0.25]
|
|
// = 0.5 + ((0.5-x)-x*R) if x in [0.25,0.84375]
|
|
// where R = P/Q where P is an odd poly of degree 8 and
|
|
// Q is an odd poly of degree 10.
|
|
// -57.90
|
|
// | R - (erf(x)-x)/x | <= 2
|
|
//
|
|
//
|
|
// Remark. The formula is derived by noting
|
|
// erf(x) = (2/sqrt(pi))*(x - x**3/3 + x**5/10 - x**7/42 + ....)
|
|
// and that
|
|
// 2/sqrt(pi) = 1.128379167095512573896158903121545171688
|
|
// is close to one. The interval is chosen because the fix
|
|
// point of erf(x) is near 0.6174 (i.e., erf(x)=x when x is
|
|
// near 0.6174), and by some experiment, 0.84375 is chosen to
|
|
// guarantee the error is less than one ulp for erf.
|
|
//
|
|
// 2. For |x| in [0.84375,1.25], let s = |x| - 1, and
|
|
// c = 0.84506291151 rounded to single (24 bits)
|
|
// erf(x) = sign(x) * (c + P1(s)/Q1(s))
|
|
// erfc(x) = (1-c) - P1(s)/Q1(s) if x > 0
|
|
// 1+(c+P1(s)/Q1(s)) if x < 0
|
|
// |P1/Q1 - (erf(|x|)-c)| <= 2**-59.06
|
|
// Remark: here we use the taylor series expansion at x=1.
|
|
// erf(1+s) = erf(1) + s*Poly(s)
|
|
// = 0.845.. + P1(s)/Q1(s)
|
|
// That is, we use rational approximation to approximate
|
|
// erf(1+s) - (c = (single)0.84506291151)
|
|
// Note that |P1/Q1|< 0.078 for x in [0.84375,1.25]
|
|
// where
|
|
// P1(s) = degree 6 poly in s
|
|
// Q1(s) = degree 6 poly in s
|
|
//
|
|
// 3. For x in [1.25,1/0.35(~2.857143)],
|
|
// erfc(x) = (1/x)*exp(-x*x-0.5625+R1/S1)
|
|
// erf(x) = 1 - erfc(x)
|
|
// where
|
|
// R1(z) = degree 7 poly in z, (z=1/x**2)
|
|
// S1(z) = degree 8 poly in z
|
|
//
|
|
// 4. For x in [1/0.35,28]
|
|
// erfc(x) = (1/x)*exp(-x*x-0.5625+R2/S2) if x > 0
|
|
// = 2.0 - (1/x)*exp(-x*x-0.5625+R2/S2) if -6<x<0
|
|
// = 2.0 - tiny (if x <= -6)
|
|
// erf(x) = sign(x)*(1.0 - erfc(x)) if x < 6, else
|
|
// erf(x) = sign(x)*(1.0 - tiny)
|
|
// where
|
|
// R2(z) = degree 6 poly in z, (z=1/x**2)
|
|
// S2(z) = degree 7 poly in z
|
|
//
|
|
// Note1:
|
|
// To compute exp(-x*x-0.5625+R/S), let s be a single
|
|
// precision number and s := x; then
|
|
// -x*x = -s*s + (s-x)*(s+x)
|
|
// exp(-x*x-0.5626+R/S) =
|
|
// exp(-s*s-0.5625)*exp((s-x)*(s+x)+R/S);
|
|
// Note2:
|
|
// Here 4 and 5 make use of the asymptotic series
|
|
// exp(-x*x)
|
|
// erfc(x) ~ ---------- * ( 1 + Poly(1/x**2) )
|
|
// x*sqrt(pi)
|
|
// We use rational approximation to approximate
|
|
// g(s)=f(1/x**2) = log(erfc(x)*x) - x*x + 0.5625
|
|
// Here is the error bound for R1/S1 and R2/S2
|
|
// |R1/S1 - f(x)| < 2**(-62.57)
|
|
// |R2/S2 - f(x)| < 2**(-61.52)
|
|
//
|
|
// 5. For inf > x >= 28
|
|
// erf(x) = sign(x) *(1 - tiny) (raise inexact)
|
|
// erfc(x) = tiny*tiny (raise underflow) if x > 0
|
|
// = 2 - tiny if x<0
|
|
//
|
|
// 7. Special case:
|
|
// erf(0) = 0, erf(inf) = 1, erf(-inf) = -1,
|
|
// erfc(0) = 1, erfc(inf) = 0, erfc(-inf) = 2,
|
|
// erfc/erf(NaN) is NaN
|
|
|
|
const (
|
|
erx = 8.45062911510467529297e-01 // 0x3FEB0AC160000000
|
|
// Coefficients for approximation to erf in [0, 0.84375]
|
|
efx = 1.28379167095512586316e-01 // 0x3FC06EBA8214DB69
|
|
efx8 = 1.02703333676410069053e+00 // 0x3FF06EBA8214DB69
|
|
pp0 = 1.28379167095512558561e-01 // 0x3FC06EBA8214DB68
|
|
pp1 = -3.25042107247001499370e-01 // 0xBFD4CD7D691CB913
|
|
pp2 = -2.84817495755985104766e-02 // 0xBF9D2A51DBD7194F
|
|
pp3 = -5.77027029648944159157e-03 // 0xBF77A291236668E4
|
|
pp4 = -2.37630166566501626084e-05 // 0xBEF8EAD6120016AC
|
|
qq1 = 3.97917223959155352819e-01 // 0x3FD97779CDDADC09
|
|
qq2 = 6.50222499887672944485e-02 // 0x3FB0A54C5536CEBA
|
|
qq3 = 5.08130628187576562776e-03 // 0x3F74D022C4D36B0F
|
|
qq4 = 1.32494738004321644526e-04 // 0x3F215DC9221C1A10
|
|
qq5 = -3.96022827877536812320e-06 // 0xBED09C4342A26120
|
|
// Coefficients for approximation to erf in [0.84375, 1.25]
|
|
pa0 = -2.36211856075265944077e-03 // 0xBF6359B8BEF77538
|
|
pa1 = 4.14856118683748331666e-01 // 0x3FDA8D00AD92B34D
|
|
pa2 = -3.72207876035701323847e-01 // 0xBFD7D240FBB8C3F1
|
|
pa3 = 3.18346619901161753674e-01 // 0x3FD45FCA805120E4
|
|
pa4 = -1.10894694282396677476e-01 // 0xBFBC63983D3E28EC
|
|
pa5 = 3.54783043256182359371e-02 // 0x3FA22A36599795EB
|
|
pa6 = -2.16637559486879084300e-03 // 0xBF61BF380A96073F
|
|
qa1 = 1.06420880400844228286e-01 // 0x3FBB3E6618EEE323
|
|
qa2 = 5.40397917702171048937e-01 // 0x3FE14AF092EB6F33
|
|
qa3 = 7.18286544141962662868e-02 // 0x3FB2635CD99FE9A7
|
|
qa4 = 1.26171219808761642112e-01 // 0x3FC02660E763351F
|
|
qa5 = 1.36370839120290507362e-02 // 0x3F8BEDC26B51DD1C
|
|
qa6 = 1.19844998467991074170e-02 // 0x3F888B545735151D
|
|
// Coefficients for approximation to erfc in [1.25, 1/0.35]
|
|
ra0 = -9.86494403484714822705e-03 // 0xBF843412600D6435
|
|
ra1 = -6.93858572707181764372e-01 // 0xBFE63416E4BA7360
|
|
ra2 = -1.05586262253232909814e+01 // 0xC0251E0441B0E726
|
|
ra3 = -6.23753324503260060396e+01 // 0xC04F300AE4CBA38D
|
|
ra4 = -1.62396669462573470355e+02 // 0xC0644CB184282266
|
|
ra5 = -1.84605092906711035994e+02 // 0xC067135CEBCCABB2
|
|
ra6 = -8.12874355063065934246e+01 // 0xC054526557E4D2F2
|
|
ra7 = -9.81432934416914548592e+00 // 0xC023A0EFC69AC25C
|
|
sa1 = 1.96512716674392571292e+01 // 0x4033A6B9BD707687
|
|
sa2 = 1.37657754143519042600e+02 // 0x4061350C526AE721
|
|
sa3 = 4.34565877475229228821e+02 // 0x407B290DD58A1A71
|
|
sa4 = 6.45387271733267880336e+02 // 0x40842B1921EC2868
|
|
sa5 = 4.29008140027567833386e+02 // 0x407AD02157700314
|
|
sa6 = 1.08635005541779435134e+02 // 0x405B28A3EE48AE2C
|
|
sa7 = 6.57024977031928170135e+00 // 0x401A47EF8E484A93
|
|
sa8 = -6.04244152148580987438e-02 // 0xBFAEEFF2EE749A62
|
|
// Coefficients for approximation to erfc in [1/.35, 28]
|
|
rb0 = -9.86494292470009928597e-03 // 0xBF84341239E86F4A
|
|
rb1 = -7.99283237680523006574e-01 // 0xBFE993BA70C285DE
|
|
rb2 = -1.77579549177547519889e+01 // 0xC031C209555F995A
|
|
rb3 = -1.60636384855821916062e+02 // 0xC064145D43C5ED98
|
|
rb4 = -6.37566443368389627722e+02 // 0xC083EC881375F228
|
|
rb5 = -1.02509513161107724954e+03 // 0xC09004616A2E5992
|
|
rb6 = -4.83519191608651397019e+02 // 0xC07E384E9BDC383F
|
|
sb1 = 3.03380607434824582924e+01 // 0x403E568B261D5190
|
|
sb2 = 3.25792512996573918826e+02 // 0x40745CAE221B9F0A
|
|
sb3 = 1.53672958608443695994e+03 // 0x409802EB189D5118
|
|
sb4 = 3.19985821950859553908e+03 // 0x40A8FFB7688C246A
|
|
sb5 = 2.55305040643316442583e+03 // 0x40A3F219CEDF3BE6
|
|
sb6 = 4.74528541206955367215e+02 // 0x407DA874E79FE763
|
|
sb7 = -2.24409524465858183362e+01 // 0xC03670E242712D62
|
|
)
|
|
|
|
// Erf returns the error function of x.
|
|
//
|
|
// Special cases are:
|
|
// Erf(+Inf) = 1
|
|
// Erf(-Inf) = -1
|
|
// Erf(NaN) = NaN
|
|
func Erf(x float64) float64
|
|
|
|
func erf(x float64) float64 {
|
|
const (
|
|
VeryTiny = 2.848094538889218e-306 // 0x0080000000000000
|
|
Small = 1.0 / (1 << 28) // 2**-28
|
|
)
|
|
// special cases
|
|
switch {
|
|
case IsNaN(x):
|
|
return NaN()
|
|
case IsInf(x, 1):
|
|
return 1
|
|
case IsInf(x, -1):
|
|
return -1
|
|
}
|
|
sign := false
|
|
if x < 0 {
|
|
x = -x
|
|
sign = true
|
|
}
|
|
if x < 0.84375 { // |x| < 0.84375
|
|
var temp float64
|
|
if x < Small { // |x| < 2**-28
|
|
if x < VeryTiny {
|
|
temp = 0.125 * (8.0*x + efx8*x) // avoid underflow
|
|
} else {
|
|
temp = x + efx*x
|
|
}
|
|
} else {
|
|
z := x * x
|
|
r := pp0 + z*(pp1+z*(pp2+z*(pp3+z*pp4)))
|
|
s := 1 + z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))))
|
|
y := r / s
|
|
temp = x + x*y
|
|
}
|
|
if sign {
|
|
return -temp
|
|
}
|
|
return temp
|
|
}
|
|
if x < 1.25 { // 0.84375 <= |x| < 1.25
|
|
s := x - 1
|
|
P := pa0 + s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))))
|
|
Q := 1 + s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))))
|
|
if sign {
|
|
return -erx - P/Q
|
|
}
|
|
return erx + P/Q
|
|
}
|
|
if x >= 6 { // inf > |x| >= 6
|
|
if sign {
|
|
return -1
|
|
}
|
|
return 1
|
|
}
|
|
s := 1 / (x * x)
|
|
var R, S float64
|
|
if x < 1/0.35 { // |x| < 1 / 0.35 ~ 2.857143
|
|
R = ra0 + s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(ra5+s*(ra6+s*ra7))))))
|
|
S = 1 + s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(sa5+s*(sa6+s*(sa7+s*sa8)))))))
|
|
} else { // |x| >= 1 / 0.35 ~ 2.857143
|
|
R = rb0 + s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+s*rb6)))))
|
|
S = 1 + s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(sb5+s*(sb6+s*sb7))))))
|
|
}
|
|
z := Float64frombits(Float64bits(x) & 0xffffffff00000000) // pseudo-single (20-bit) precision x
|
|
r := Exp(-z*z-0.5625) * Exp((z-x)*(z+x)+R/S)
|
|
if sign {
|
|
return r/x - 1
|
|
}
|
|
return 1 - r/x
|
|
}
|
|
|
|
// Erfc returns the complementary error function of x.
|
|
//
|
|
// Special cases are:
|
|
// Erfc(+Inf) = 0
|
|
// Erfc(-Inf) = 2
|
|
// Erfc(NaN) = NaN
|
|
func Erfc(x float64) float64
|
|
|
|
func erfc(x float64) float64 {
|
|
const Tiny = 1.0 / (1 << 56) // 2**-56
|
|
// special cases
|
|
switch {
|
|
case IsNaN(x):
|
|
return NaN()
|
|
case IsInf(x, 1):
|
|
return 0
|
|
case IsInf(x, -1):
|
|
return 2
|
|
}
|
|
sign := false
|
|
if x < 0 {
|
|
x = -x
|
|
sign = true
|
|
}
|
|
if x < 0.84375 { // |x| < 0.84375
|
|
var temp float64
|
|
if x < Tiny { // |x| < 2**-56
|
|
temp = x
|
|
} else {
|
|
z := x * x
|
|
r := pp0 + z*(pp1+z*(pp2+z*(pp3+z*pp4)))
|
|
s := 1 + z*(qq1+z*(qq2+z*(qq3+z*(qq4+z*qq5))))
|
|
y := r / s
|
|
if x < 0.25 { // |x| < 1/4
|
|
temp = x + x*y
|
|
} else {
|
|
temp = 0.5 + (x*y + (x - 0.5))
|
|
}
|
|
}
|
|
if sign {
|
|
return 1 + temp
|
|
}
|
|
return 1 - temp
|
|
}
|
|
if x < 1.25 { // 0.84375 <= |x| < 1.25
|
|
s := x - 1
|
|
P := pa0 + s*(pa1+s*(pa2+s*(pa3+s*(pa4+s*(pa5+s*pa6)))))
|
|
Q := 1 + s*(qa1+s*(qa2+s*(qa3+s*(qa4+s*(qa5+s*qa6)))))
|
|
if sign {
|
|
return 1 + erx + P/Q
|
|
}
|
|
return 1 - erx - P/Q
|
|
|
|
}
|
|
if x < 28 { // |x| < 28
|
|
s := 1 / (x * x)
|
|
var R, S float64
|
|
if x < 1/0.35 { // |x| < 1 / 0.35 ~ 2.857143
|
|
R = ra0 + s*(ra1+s*(ra2+s*(ra3+s*(ra4+s*(ra5+s*(ra6+s*ra7))))))
|
|
S = 1 + s*(sa1+s*(sa2+s*(sa3+s*(sa4+s*(sa5+s*(sa6+s*(sa7+s*sa8)))))))
|
|
} else { // |x| >= 1 / 0.35 ~ 2.857143
|
|
if sign && x > 6 {
|
|
return 2 // x < -6
|
|
}
|
|
R = rb0 + s*(rb1+s*(rb2+s*(rb3+s*(rb4+s*(rb5+s*rb6)))))
|
|
S = 1 + s*(sb1+s*(sb2+s*(sb3+s*(sb4+s*(sb5+s*(sb6+s*sb7))))))
|
|
}
|
|
z := Float64frombits(Float64bits(x) & 0xffffffff00000000) // pseudo-single (20-bit) precision x
|
|
r := Exp(-z*z-0.5625) * Exp((z-x)*(z+x)+R/S)
|
|
if sign {
|
|
return 2 - r/x
|
|
}
|
|
return r / x
|
|
}
|
|
if sign {
|
|
return 2
|
|
}
|
|
return 0
|
|
}
|