1
0
mirror of https://github.com/golang/go synced 2024-10-04 06:21:23 -06:00
go/src/pkg/runtime/mgc0.c
Rick Hudson 0a7c7ac80e runtime: changes to g->atomicstatus (nee status) to support concurrent GC
Every change to g->atomicstatus is now done atomically so that we can
ensure that all gs pass through a gc safepoint on demand. This allows
the GC to move from one phase to the next safely. In some phases the
stack will be scanned. This CL only deals with the infrastructure that
allows g->atomicstatus to go from one state to another. Future CLs
will deal with scanning and monitoring what phase the GC is in.

The major change was to moving to using a Gscan bit to indicate that
the status is in a scan state. The only bug fix was in oldstack where
I wasn't moving to a Gcopystack state in order to block scanning until
the new stack was in place. The proc.go file is waiting for an atomic
load instruction.

LGTM=rsc
R=golang-codereviews, dvyukov, josharian, rsc
CC=golang-codereviews, khr
https://golang.org/cl/132960044
2014-08-27 11:15:47 -04:00

2120 lines
59 KiB
C
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Garbage collector (GC).
//
// GC is:
// - mark&sweep
// - mostly precise (with the exception of some C-allocated objects, assembly frames/arguments, etc)
// - parallel (up to MaxGcproc threads)
// - partially concurrent (mark is stop-the-world, while sweep is concurrent)
// - non-moving/non-compacting
// - full (non-partial)
//
// GC rate.
// Next GC is after we've allocated an extra amount of memory proportional to
// the amount already in use. The proportion is controlled by GOGC environment variable
// (100 by default). If GOGC=100 and we're using 4M, we'll GC again when we get to 8M
// (this mark is tracked in next_gc variable). This keeps the GC cost in linear
// proportion to the allocation cost. Adjusting GOGC just changes the linear constant
// (and also the amount of extra memory used).
//
// Concurrent sweep.
// The sweep phase proceeds concurrently with normal program execution.
// The heap is swept span-by-span both lazily (when a goroutine needs another span)
// and concurrently in a background goroutine (this helps programs that are not CPU bound).
// However, at the end of the stop-the-world GC phase we don't know the size of the live heap,
// and so next_gc calculation is tricky and happens as follows.
// At the end of the stop-the-world phase next_gc is conservatively set based on total
// heap size; all spans are marked as "needs sweeping".
// Whenever a span is swept, next_gc is decremented by GOGC*newly_freed_memory.
// The background sweeper goroutine simply sweeps spans one-by-one bringing next_gc
// closer to the target value. However, this is not enough to avoid over-allocating memory.
// Consider that a goroutine wants to allocate a new span for a large object and
// there are no free swept spans, but there are small-object unswept spans.
// If the goroutine naively allocates a new span, it can surpass the yet-unknown
// target next_gc value. In order to prevent such cases (1) when a goroutine needs
// to allocate a new small-object span, it sweeps small-object spans for the same
// object size until it frees at least one object; (2) when a goroutine needs to
// allocate large-object span from heap, it sweeps spans until it frees at least
// that many pages into heap. Together these two measures ensure that we don't surpass
// target next_gc value by a large margin. There is an exception: if a goroutine sweeps
// and frees two nonadjacent one-page spans to the heap, it will allocate a new two-page span,
// but there can still be other one-page unswept spans which could be combined into a two-page span.
// It's critical to ensure that no operations proceed on unswept spans (that would corrupt
// mark bits in GC bitmap). During GC all mcaches are flushed into the central cache,
// so they are empty. When a goroutine grabs a new span into mcache, it sweeps it.
// When a goroutine explicitly frees an object or sets a finalizer, it ensures that
// the span is swept (either by sweeping it, or by waiting for the concurrent sweep to finish).
// The finalizer goroutine is kicked off only when all spans are swept.
// When the next GC starts, it sweeps all not-yet-swept spans (if any).
#include "runtime.h"
#include "arch_GOARCH.h"
#include "malloc.h"
#include "stack.h"
#include "mgc0.h"
#include "chan.h"
#include "race.h"
#include "type.h"
#include "typekind.h"
#include "funcdata.h"
#include "../../cmd/ld/textflag.h"
enum {
Debug = 0,
ConcurrentSweep = 1,
PreciseScan = 1,
WorkbufSize = 4*1024,
FinBlockSize = 4*1024,
RootData = 0,
RootBss = 1,
RootFinalizers = 2,
RootSpans = 3,
RootFlushCaches = 4,
RootCount = 5,
};
#define ScanConservatively ((byte*)1)
// Initialized from $GOGC. GOGC=off means no gc.
extern int32 runtime·gcpercent;
static FuncVal* poolcleanup;
void
sync·runtime_registerPoolCleanup(FuncVal *f)
{
poolcleanup = f;
}
void
runtime·clearpools(void)
{
P *p, **pp;
MCache *c;
int32 i;
// clear sync.Pool's
if(poolcleanup != nil)
reflect·call(poolcleanup, nil, 0, 0);
for(pp=runtime·allp; p=*pp; pp++) {
// clear tinyalloc pool
c = p->mcache;
if(c != nil) {
c->tiny = nil;
c->tinysize = 0;
c->sudogcache = nil;
}
// clear defer pools
for(i=0; i<nelem(p->deferpool); i++)
p->deferpool[i] = nil;
}
}
// Holding worldsema grants an M the right to try to stop the world.
// The procedure is:
//
// runtime·semacquire(&runtime·worldsema);
// m->gcing = 1;
// runtime·stoptheworld();
//
// ... do stuff ...
//
// m->gcing = 0;
// runtime·semrelease(&runtime·worldsema);
// runtime·starttheworld();
//
uint32 runtime·worldsema = 1;
typedef struct Workbuf Workbuf;
struct Workbuf
{
LFNode node; // must be first
uintptr nobj;
byte* obj[(WorkbufSize-sizeof(LFNode)-sizeof(uintptr))/PtrSize];
};
typedef struct Finalizer Finalizer;
struct Finalizer
{
FuncVal *fn;
void *arg;
uintptr nret;
Type *fint;
PtrType *ot;
};
typedef struct FinBlock FinBlock;
struct FinBlock
{
FinBlock *alllink;
FinBlock *next;
int32 cnt;
int32 cap;
Finalizer fin[1];
};
extern byte data[];
extern byte edata[];
extern byte bss[];
extern byte ebss[];
extern byte gcdata[];
extern byte gcbss[];
static Lock finlock; // protects the following variables
static FinBlock *finq; // list of finalizers that are to be executed
static FinBlock *finc; // cache of free blocks
static FinBlock *allfin; // list of all blocks
bool runtime·fingwait;
bool runtime·fingwake;
BitVector runtime·gcdatamask;
BitVector runtime·gcbssmask;
static Lock gclock;
static void runfinq(void);
static void bgsweep(void);
static Workbuf* getempty(Workbuf*);
static Workbuf* getfull(Workbuf*);
static void putempty(Workbuf*);
static Workbuf* handoff(Workbuf*);
static void gchelperstart(void);
static void flushallmcaches(void);
static bool scanframe(Stkframe *frame, void *unused);
static void scanstack(G *gp);
static BitVector unrollglobgcprog(byte *prog, uintptr size);
static FuncVal runfinqv = {runfinq};
static FuncVal bgsweepv = {bgsweep};
static struct {
uint64 full; // lock-free list of full blocks
uint64 empty; // lock-free list of empty blocks
byte pad0[CacheLineSize]; // prevents false-sharing between full/empty and nproc/nwait
uint32 nproc;
int64 tstart;
volatile uint32 nwait;
volatile uint32 ndone;
Note alldone;
ParFor* markfor;
// Copy of mheap.allspans for marker or sweeper.
MSpan** spans;
uint32 nspan;
} work;
// scanblock scans a block of n bytes starting at pointer b for references
// to other objects, scanning any it finds recursively until there are no
// unscanned objects left. Instead of using an explicit recursion, it keeps
// a work list in the Workbuf* structures and loops in the main function
// body. Keeping an explicit work list is easier on the stack allocator and
// more efficient.
static void
scanblock(byte *b, uintptr n, byte *ptrmask)
{
byte *obj, *p, *arena_start, *arena_used, **wp, *scanbuf[8], *ptrbitp, *bitp, bits, xbits, shift, cached;
uintptr i, nobj, size, idx, x, off, scanbufpos;
intptr ncached;
Workbuf *wbuf;
Iface *iface;
Eface *eface;
Type *typ;
MSpan *s;
PageID k;
bool keepworking;
// Cache memory arena parameters in local vars.
arena_start = runtime·mheap.arena_start;
arena_used = runtime·mheap.arena_used;
wbuf = getempty(nil);
nobj = wbuf->nobj;
wp = &wbuf->obj[nobj];
keepworking = b == nil;
scanbufpos = 0;
for(i = 0; i < nelem(scanbuf); i++)
scanbuf[i] = nil;
ptrbitp = nil;
cached = 0;
ncached = 0;
// ptrmask can have 3 possible values:
// 1. nil - obtain pointer mask from GC bitmap.
// 2. ScanConservatively - don't use any mask, scan conservatively.
// 3. pointer to a compact mask (for stacks and data).
if(b != nil)
goto scanobj;
for(;;) {
if(nobj == 0) {
// Out of work in workbuf.
// First, see is there is any work in scanbuf.
for(i = 0; i < nelem(scanbuf); i++) {
b = scanbuf[scanbufpos];
scanbuf[scanbufpos++] = nil;
if(scanbufpos == nelem(scanbuf))
scanbufpos = 0;
if(b != nil) {
n = arena_used - b; // scan until bitBoundary or BitsDead
ptrmask = nil; // use GC bitmap for pointer info
goto scanobj;
}
}
if(!keepworking) {
putempty(wbuf);
return;
}
// Refill workbuf from global queue.
wbuf = getfull(wbuf);
if(wbuf == nil)
return;
nobj = wbuf->nobj;
wp = &wbuf->obj[nobj];
}
// If another proc wants a pointer, give it some.
if(work.nwait > 0 && nobj > 4 && work.full == 0) {
wbuf->nobj = nobj;
wbuf = handoff(wbuf);
nobj = wbuf->nobj;
wp = &wbuf->obj[nobj];
}
wp--;
nobj--;
b = *wp;
n = arena_used - b; // scan until next bitBoundary or BitsDead
ptrmask = nil; // use GC bitmap for pointer info
scanobj:
if(!PreciseScan) {
if(ptrmask == nil) {
// Heap obj, obtain real size.
if(!runtime·mlookup(b, &p, &n, nil))
continue; // not an allocated obj
if(b != p)
runtime·throw("bad heap object");
}
ptrmask = ScanConservatively;
}
// Find bits of the beginning of the object.
if(ptrmask == nil) {
off = (uintptr*)b - (uintptr*)arena_start;
ptrbitp = arena_start - off/wordsPerBitmapByte - 1;
shift = (off % wordsPerBitmapByte) * gcBits;
cached = *ptrbitp >> shift;
cached &= ~bitBoundary;
ncached = (8 - shift)/gcBits;
}
for(i = 0; i < n; i += PtrSize) {
obj = nil;
// Find bits for this word.
if(ptrmask == nil) {
// Check is we have reached end of span.
if((((uintptr)b+i)%PageSize) == 0 &&
runtime·mheap.spans[(b-arena_start)>>PageShift] != runtime·mheap.spans[(b+i-arena_start)>>PageShift])
break;
// Consult GC bitmap.
if(ncached <= 0) {
// Refill cache.
cached = *--ptrbitp;
ncached = 2;
}
bits = cached;
cached >>= gcBits;
ncached--;
if((bits&bitBoundary) != 0)
break; // reached beginning of the next object
bits = (bits>>2)&BitsMask;
if(bits == BitsDead)
break; // reached no-scan part of the object
} else if(ptrmask != ScanConservatively) // dense mask (stack or data)
bits = (ptrmask[(i/PtrSize)/4]>>(((i/PtrSize)%4)*BitsPerPointer))&BitsMask;
else
bits = BitsPointer;
if(bits == BitsScalar || bits == BitsDead)
continue;
if(bits == BitsPointer) {
obj = *(byte**)(b+i);
goto markobj;
}
// With those three out of the way, must be multi-word.
if(bits != BitsMultiWord)
runtime·throw("unexpected garbage collection bits");
// Find the next pair of bits.
if(ptrmask == nil) {
if(ncached <= 0) {
// Refill cache.
cached = *--ptrbitp;
ncached = 2;
}
bits = (cached>>2)&BitsMask;
} else
bits = (ptrmask[((i+PtrSize)/PtrSize)/4]>>((((i+PtrSize)/PtrSize)%4)*BitsPerPointer))&BitsMask;
switch(bits) {
default:
runtime·throw("unexpected garbage collection bits");
case BitsIface:
iface = (Iface*)(b+i);
if(iface->tab != nil) {
typ = iface->tab->type;
if(!(typ->kind&KindDirectIface) || !(typ->kind&KindNoPointers))
obj = iface->data;
}
break;
case BitsEface:
eface = (Eface*)(b+i);
typ = eface->type;
if(typ != nil) {
if(!(typ->kind&KindDirectIface) || !(typ->kind&KindNoPointers))
obj = eface->data;
}
break;
}
i += PtrSize;
cached >>= gcBits;
ncached--;
markobj:
// At this point we have extracted the next potential pointer.
// Check if it points into heap.
if(obj == nil || obj < arena_start || obj >= arena_used)
continue;
// Mark the object.
off = (uintptr*)obj - (uintptr*)arena_start;
bitp = arena_start - off/wordsPerBitmapByte - 1;
shift = (off % wordsPerBitmapByte) * gcBits;
xbits = *bitp;
bits = (xbits >> shift) & bitMask;
if((bits&bitBoundary) == 0) {
// Not a beginning of a block, consult span table to find the block beginning.
k = (uintptr)obj>>PageShift;
x = k;
x -= (uintptr)arena_start>>PageShift;
s = runtime·mheap.spans[x];
if(s == nil || k < s->start || obj >= s->limit || s->state != MSpanInUse)
continue;
p = (byte*)((uintptr)s->start<<PageShift);
if(s->sizeclass != 0) {
size = s->elemsize;
idx = ((byte*)obj - p)/size;
p = p+idx*size;
}
if(p == obj) {
runtime·printf("runtime: failed to find block beginning for %p s=%p s->limit=%p\n",
p, s->start*PageSize, s->limit);
runtime·throw("failed to find block beginning");
}
obj = p;
goto markobj;
}
// Now we have bits, bitp, and shift correct for
// obj pointing at the base of the object.
// Only care about not marked objects.
if((bits&bitMarked) != 0)
continue;
// If obj size is greater than 8, then each byte of GC bitmap
// contains info for at most one object. In such case we use
// non-atomic byte store to mark the object. This can lead
// to double enqueue of the object for scanning, but scanning
// is an idempotent operation, so it is OK. This cannot lead
// to bitmap corruption because the single marked bit is the
// only thing that can change in the byte.
// For 8-byte objects we use non-atomic store, if the other
// quadruple is already marked. Otherwise we resort to CAS
// loop for marking.
if((xbits&(bitMask|(bitMask<<gcBits))) != (bitBoundary|(bitBoundary<<gcBits)) ||
work.nproc == 1)
*bitp = xbits | (bitMarked<<shift);
else
runtime·atomicor8(bitp, bitMarked<<shift);
if(((xbits>>(shift+2))&BitsMask) == BitsDead)
continue; // noscan object
// Queue the obj for scanning.
PREFETCH(obj);
obj = (byte*)((uintptr)obj & ~(PtrSize-1));
p = scanbuf[scanbufpos];
scanbuf[scanbufpos++] = obj;
if(scanbufpos == nelem(scanbuf))
scanbufpos = 0;
if(p == nil)
continue;
// If workbuf is full, obtain an empty one.
if(nobj >= nelem(wbuf->obj)) {
wbuf->nobj = nobj;
wbuf = getempty(wbuf);
nobj = wbuf->nobj;
wp = &wbuf->obj[nobj];
}
*wp = p;
wp++;
nobj++;
}
if(Debug && ptrmask == nil) {
// For heap objects ensure that we did not overscan.
n = 0;
p = nil;
if(!runtime·mlookup(b, &p, &n, nil) || b != p || i > n) {
runtime·printf("runtime: scanned (%p,%p), heap object (%p,%p)\n", b, i, p, n);
runtime·throw("scanblock: scanned invalid object");
}
}
}
}
static void
markroot(ParFor *desc, uint32 i)
{
FinBlock *fb;
MSpan *s;
uint32 spanidx, sg;
G *gp;
void *p;
uint32 status;
USED(&desc);
// Note: if you add a case here, please also update heapdump.c:dumproots.
switch(i) {
case RootData:
scanblock(data, edata - data, (byte*)runtime·gcdatamask.data);
break;
case RootBss:
scanblock(bss, ebss - bss, (byte*)runtime·gcbssmask.data);
break;
case RootFinalizers:
for(fb=allfin; fb; fb=fb->alllink)
scanblock((byte*)fb->fin, fb->cnt*sizeof(fb->fin[0]), ScanConservatively);
break;
case RootSpans:
// mark MSpan.specials
sg = runtime·mheap.sweepgen;
for(spanidx=0; spanidx<work.nspan; spanidx++) {
Special *sp;
SpecialFinalizer *spf;
s = work.spans[spanidx];
if(s->state != MSpanInUse)
continue;
if(s->sweepgen != sg) {
runtime·printf("sweep %d %d\n", s->sweepgen, sg);
runtime·throw("gc: unswept span");
}
for(sp = s->specials; sp != nil; sp = sp->next) {
if(sp->kind != KindSpecialFinalizer)
continue;
// don't mark finalized object, but scan it so we
// retain everything it points to.
spf = (SpecialFinalizer*)sp;
// A finalizer can be set for an inner byte of an object, find object beginning.
p = (void*)((s->start << PageShift) + spf->special.offset/s->elemsize*s->elemsize);
scanblock(p, s->elemsize, nil);
scanblock((void*)&spf->fn, PtrSize, ScanConservatively);
}
}
break;
case RootFlushCaches:
flushallmcaches();
break;
default:
// the rest is scanning goroutine stacks
if(i - RootCount >= runtime·allglen)
runtime·throw("markroot: bad index");
gp = runtime·allg[i - RootCount];
// remember when we've first observed the G blocked
// needed only to output in traceback
status = runtime·readgstatus(gp);
if((status == Gwaiting || status == Gsyscall) && gp->waitsince == 0)
gp->waitsince = work.tstart;
// Shrink a stack if not much of it is being used.
runtime·shrinkstack(gp);
scanstack(gp);
break;
}
}
// Get an empty work buffer off the work.empty list,
// allocating new buffers as needed.
static Workbuf*
getempty(Workbuf *b)
{
MCache *c;
if(b != nil)
runtime·lfstackpush(&work.full, &b->node);
b = nil;
c = g->m->mcache;
if(c->gcworkbuf != nil) {
b = c->gcworkbuf;
c->gcworkbuf = nil;
}
if(b == nil)
b = (Workbuf*)runtime·lfstackpop(&work.empty);
if(b == nil)
b = runtime·persistentalloc(sizeof(*b), CacheLineSize, &mstats.gc_sys);
b->nobj = 0;
return b;
}
static void
putempty(Workbuf *b)
{
MCache *c;
c = g->m->mcache;
if(c->gcworkbuf == nil) {
c->gcworkbuf = b;
return;
}
runtime·lfstackpush(&work.empty, &b->node);
}
void
runtime·gcworkbuffree(void *b)
{
if(b != nil)
putempty(b);
}
// Get a full work buffer off the work.full list, or return nil.
static Workbuf*
getfull(Workbuf *b)
{
int32 i;
if(b != nil)
runtime·lfstackpush(&work.empty, &b->node);
b = (Workbuf*)runtime·lfstackpop(&work.full);
if(b != nil || work.nproc == 1)
return b;
runtime·xadd(&work.nwait, +1);
for(i=0;; i++) {
if(work.full != 0) {
runtime·xadd(&work.nwait, -1);
b = (Workbuf*)runtime·lfstackpop(&work.full);
if(b != nil)
return b;
runtime·xadd(&work.nwait, +1);
}
if(work.nwait == work.nproc)
return nil;
if(i < 10) {
g->m->gcstats.nprocyield++;
runtime·procyield(20);
} else if(i < 20) {
g->m->gcstats.nosyield++;
runtime·osyield();
} else {
g->m->gcstats.nsleep++;
runtime·usleep(100);
}
}
}
static Workbuf*
handoff(Workbuf *b)
{
int32 n;
Workbuf *b1;
// Make new buffer with half of b's pointers.
b1 = getempty(nil);
n = b->nobj/2;
b->nobj -= n;
b1->nobj = n;
runtime·memmove(b1->obj, b->obj+b->nobj, n*sizeof b1->obj[0]);
g->m->gcstats.nhandoff++;
g->m->gcstats.nhandoffcnt += n;
// Put b on full list - let first half of b get stolen.
runtime·lfstackpush(&work.full, &b->node);
return b1;
}
BitVector
runtime·stackmapdata(StackMap *stackmap, int32 n)
{
if(n < 0 || n >= stackmap->n)
runtime·throw("stackmapdata: index out of range");
return (BitVector){stackmap->nbit, stackmap->data + n*((stackmap->nbit+31)/32)};
}
// Scan a stack frame: local variables and function arguments/results.
static bool
scanframe(Stkframe *frame, void *unused)
{
Func *f;
StackMap *stackmap;
BitVector bv;
uintptr size;
uintptr targetpc;
int32 pcdata;
USED(unused);
f = frame->fn;
targetpc = frame->continpc;
if(targetpc == 0) {
// Frame is dead.
return true;
}
if(Debug > 1)
runtime·printf("scanframe %s\n", runtime·funcname(f));
if(targetpc != f->entry)
targetpc--;
pcdata = runtime·pcdatavalue(f, PCDATA_StackMapIndex, targetpc);
if(pcdata == -1) {
// We do not have a valid pcdata value but there might be a
// stackmap for this function. It is likely that we are looking
// at the function prologue, assume so and hope for the best.
pcdata = 0;
}
// Scan local variables if stack frame has been allocated.
// Use pointer information if known.
stackmap = runtime·funcdata(f, FUNCDATA_LocalsPointerMaps);
if(stackmap == nil) {
// No locals information, scan everything.
size = frame->varp - (byte*)frame->sp;
if(Debug > 2)
runtime·printf("frame %s unsized locals %p+%p\n", runtime·funcname(f), frame->varp-size, size);
scanblock(frame->varp - size, size, ScanConservatively);
} else if(stackmap->n < 0) {
// Locals size information, scan just the locals.
size = -stackmap->n;
if(Debug > 2)
runtime·printf("frame %s conservative locals %p+%p\n", runtime·funcname(f), frame->varp-size, size);
scanblock(frame->varp - size, size, ScanConservatively);
} else if(stackmap->n > 0) {
// Locals bitmap information, scan just the pointers in locals.
if(pcdata < 0 || pcdata >= stackmap->n) {
// don't know where we are
runtime·printf("pcdata is %d and %d stack map entries for %s (targetpc=%p)\n",
pcdata, stackmap->n, runtime·funcname(f), targetpc);
runtime·throw("scanframe: bad symbol table");
}
bv = runtime·stackmapdata(stackmap, pcdata);
size = (bv.n * PtrSize) / BitsPerPointer;
scanblock(frame->varp - size, bv.n/BitsPerPointer*PtrSize, (byte*)bv.data);
}
// Scan arguments.
// Use pointer information if known.
stackmap = runtime·funcdata(f, FUNCDATA_ArgsPointerMaps);
if(stackmap != nil) {
bv = runtime·stackmapdata(stackmap, pcdata);
scanblock(frame->argp, bv.n/BitsPerPointer*PtrSize, (byte*)bv.data);
} else {
if(Debug > 2)
runtime·printf("frame %s conservative args %p+%p\n", runtime·funcname(f), frame->argp, (uintptr)frame->arglen);
scanblock(frame->argp, frame->arglen, ScanConservatively);
}
return true;
}
static void
scanstack(G *gp)
{
M *mp;
int32 n;
Stktop *stk;
uintptr sp, guard;
switch(runtime·readgstatus(gp)) {
default:
runtime·printf("runtime: gp=%p, goid=%D, gp->atomicstatus=%d\n", gp, gp->goid, runtime·readgstatus(gp));
runtime·throw("mark - bad status");
case Gdead:
return;
case Grunning:
runtime·printf("runtime: gp=%p, goid=%D, gp->atomicstatus=%d\n", gp, gp->goid, runtime·readgstatus(gp));
runtime·throw("mark - world not stopped");
case Grunnable:
case Gsyscall:
case Gwaiting:
break;
}
if(gp == g)
runtime·throw("can't scan our own stack");
if((mp = gp->m) != nil && mp->helpgc)
runtime·throw("can't scan gchelper stack");
if(gp->syscallstack != (uintptr)nil) {
// Scanning another goroutine that is about to enter or might
// have just exited a system call. It may be executing code such
// as schedlock and may have needed to start a new stack segment.
// Use the stack segment and stack pointer at the time of
// the system call instead, since that won't change underfoot.
sp = gp->syscallsp;
stk = (Stktop*)gp->syscallstack;
guard = gp->syscallguard;
} else {
// Scanning another goroutine's stack.
// The goroutine is usually asleep (the world is stopped).
sp = gp->sched.sp;
stk = (Stktop*)gp->stackbase;
guard = gp->stackguard;
}
if(ScanStackByFrames) {
USED(sp);
USED(stk);
USED(guard);
runtime·gentraceback(~(uintptr)0, ~(uintptr)0, 0, gp, 0, nil, 0x7fffffff, scanframe, nil, false);
} else {
n = 0;
while(stk) {
if(sp < guard-StackGuard || (uintptr)stk < sp) {
runtime·printf("scanstack inconsistent: g%D#%d sp=%p not in [%p,%p]\n", gp->goid, n, sp, guard-StackGuard, stk);
runtime·throw("scanstack");
}
if(Debug > 2)
runtime·printf("conservative stack %p+%p\n", (byte*)sp, (uintptr)stk-sp);
scanblock((byte*)sp, (uintptr)stk - sp, ScanConservatively);
sp = stk->gobuf.sp;
guard = stk->stackguard;
stk = (Stktop*)stk->stackbase;
n++;
}
}
}
void
runtime·queuefinalizer(byte *p, FuncVal *fn, uintptr nret, Type *fint, PtrType *ot)
{
FinBlock *block;
Finalizer *f;
runtime·lock(&finlock);
if(finq == nil || finq->cnt == finq->cap) {
if(finc == nil) {
finc = runtime·persistentalloc(FinBlockSize, 0, &mstats.gc_sys);
finc->cap = (FinBlockSize - sizeof(FinBlock)) / sizeof(Finalizer) + 1;
finc->alllink = allfin;
allfin = finc;
}
block = finc;
finc = block->next;
block->next = finq;
finq = block;
}
f = &finq->fin[finq->cnt];
finq->cnt++;
f->fn = fn;
f->nret = nret;
f->fint = fint;
f->ot = ot;
f->arg = p;
runtime·fingwake = true;
runtime·unlock(&finlock);
}
void
runtime·iterate_finq(void (*callback)(FuncVal*, byte*, uintptr, Type*, PtrType*))
{
FinBlock *fb;
Finalizer *f;
uintptr i;
for(fb = allfin; fb; fb = fb->alllink) {
for(i = 0; i < fb->cnt; i++) {
f = &fb->fin[i];
callback(f->fn, f->arg, f->nret, f->fint, f->ot);
}
}
}
void
runtime·MSpan_EnsureSwept(MSpan *s)
{
uint32 sg;
// Caller must disable preemption.
// Otherwise when this function returns the span can become unswept again
// (if GC is triggered on another goroutine).
if(g->m->locks == 0 && g->m->mallocing == 0 && g != g->m->g0)
runtime·throw("MSpan_EnsureSwept: m is not locked");
sg = runtime·mheap.sweepgen;
if(runtime·atomicload(&s->sweepgen) == sg)
return;
if(runtime·cas(&s->sweepgen, sg-2, sg-1)) {
runtime·MSpan_Sweep(s, false);
return;
}
// unfortunate condition, and we don't have efficient means to wait
while(runtime·atomicload(&s->sweepgen) != sg)
runtime·osyield();
}
// Sweep frees or collects finalizers for blocks not marked in the mark phase.
// It clears the mark bits in preparation for the next GC round.
// Returns true if the span was returned to heap.
// If preserve=true, don't return it to heap nor relink in MCentral lists;
// caller takes care of it.
bool
runtime·MSpan_Sweep(MSpan *s, bool preserve)
{
int32 cl, n, npages, nfree;
uintptr size, off, step;
uint32 sweepgen;
byte *p, *bitp, shift, xbits, bits;
MCache *c;
byte *arena_start;
MLink head, *end, *link;
Special *special, **specialp, *y;
bool res, sweepgenset;
// It's critical that we enter this function with preemption disabled,
// GC must not start while we are in the middle of this function.
if(g->m->locks == 0 && g->m->mallocing == 0 && g != g->m->g0)
runtime·throw("MSpan_Sweep: m is not locked");
sweepgen = runtime·mheap.sweepgen;
if(s->state != MSpanInUse || s->sweepgen != sweepgen-1) {
runtime·printf("MSpan_Sweep: state=%d sweepgen=%d mheap.sweepgen=%d\n",
s->state, s->sweepgen, sweepgen);
runtime·throw("MSpan_Sweep: bad span state");
}
arena_start = runtime·mheap.arena_start;
cl = s->sizeclass;
size = s->elemsize;
if(cl == 0) {
n = 1;
} else {
// Chunk full of small blocks.
npages = runtime·class_to_allocnpages[cl];
n = (npages << PageShift) / size;
}
res = false;
nfree = 0;
end = &head;
c = g->m->mcache;
sweepgenset = false;
// Mark any free objects in this span so we don't collect them.
for(link = s->freelist; link != nil; link = link->next) {
off = (uintptr*)link - (uintptr*)arena_start;
bitp = arena_start - off/wordsPerBitmapByte - 1;
shift = (off % wordsPerBitmapByte) * gcBits;
*bitp |= bitMarked<<shift;
}
// Unlink & free special records for any objects we're about to free.
specialp = &s->specials;
special = *specialp;
while(special != nil) {
// A finalizer can be set for an inner byte of an object, find object beginning.
p = (byte*)(s->start << PageShift) + special->offset/size*size;
off = (uintptr*)p - (uintptr*)arena_start;
bitp = arena_start - off/wordsPerBitmapByte - 1;
shift = (off % wordsPerBitmapByte) * gcBits;
bits = (*bitp>>shift) & bitMask;
if((bits&bitMarked) == 0) {
// Find the exact byte for which the special was setup
// (as opposed to object beginning).
p = (byte*)(s->start << PageShift) + special->offset;
// about to free object: splice out special record
y = special;
special = special->next;
*specialp = special;
if(!runtime·freespecial(y, p, size, false)) {
// stop freeing of object if it has a finalizer
*bitp |= bitMarked << shift;
}
} else {
// object is still live: keep special record
specialp = &special->next;
special = *specialp;
}
}
// Sweep through n objects of given size starting at p.
// This thread owns the span now, so it can manipulate
// the block bitmap without atomic operations.
p = (byte*)(s->start << PageShift);
// Find bits for the beginning of the span.
off = (uintptr*)p - (uintptr*)arena_start;
bitp = arena_start - off/wordsPerBitmapByte - 1;
shift = 0;
step = size/(PtrSize*wordsPerBitmapByte);
// Rewind to the previous quadruple as we move to the next
// in the beginning of the loop.
bitp += step;
if(step == 0) {
// 8-byte objects.
bitp++;
shift = gcBits;
}
for(; n > 0; n--, p += size) {
bitp -= step;
if(step == 0) {
if(shift != 0)
bitp--;
shift = gcBits - shift;
}
xbits = *bitp;
bits = (xbits>>shift) & bitMask;
// Allocated and marked object, reset bits to allocated.
if((bits&bitMarked) != 0) {
*bitp &= ~(bitMarked<<shift);
continue;
}
// At this point we know that we are looking at garbage object
// that needs to be collected.
if(runtime·debug.allocfreetrace)
runtime·tracefree(p, size);
// Reset to allocated+noscan.
*bitp = (xbits & ~((bitMarked|(BitsMask<<2))<<shift)) | ((uintptr)BitsDead<<(shift+2));
if(cl == 0) {
// Free large span.
if(preserve)
runtime·throw("can't preserve large span");
runtime·unmarkspan(p, s->npages<<PageShift);
s->needzero = 1;
// important to set sweepgen before returning it to heap
runtime·atomicstore(&s->sweepgen, sweepgen);
sweepgenset = true;
// NOTE(rsc,dvyukov): The original implementation of efence
// in CL 22060046 used SysFree instead of SysFault, so that
// the operating system would eventually give the memory
// back to us again, so that an efence program could run
// longer without running out of memory. Unfortunately,
// calling SysFree here without any kind of adjustment of the
// heap data structures means that when the memory does
// come back to us, we have the wrong metadata for it, either in
// the MSpan structures or in the garbage collection bitmap.
// Using SysFault here means that the program will run out of
// memory fairly quickly in efence mode, but at least it won't
// have mysterious crashes due to confused memory reuse.
// It should be possible to switch back to SysFree if we also
// implement and then call some kind of MHeap_DeleteSpan.
if(runtime·debug.efence) {
s->limit = nil; // prevent mlookup from finding this span
runtime·SysFault(p, size);
} else
runtime·MHeap_Free(&runtime·mheap, s, 1);
c->local_nlargefree++;
c->local_largefree += size;
runtime·xadd64(&mstats.next_gc, -(uint64)(size * (runtime·gcpercent + 100)/100));
res = true;
} else {
// Free small object.
if(size > 2*sizeof(uintptr))
((uintptr*)p)[1] = (uintptr)0xdeaddeaddeaddeadll; // mark as "needs to be zeroed"
else if(size > sizeof(uintptr))
((uintptr*)p)[1] = 0;
end->next = (MLink*)p;
end = (MLink*)p;
nfree++;
}
}
// We need to set s->sweepgen = h->sweepgen only when all blocks are swept,
// because of the potential for a concurrent free/SetFinalizer.
// But we need to set it before we make the span available for allocation
// (return it to heap or mcentral), because allocation code assumes that a
// span is already swept if available for allocation.
if(!sweepgenset && nfree == 0) {
// The span must be in our exclusive ownership until we update sweepgen,
// check for potential races.
if(s->state != MSpanInUse || s->sweepgen != sweepgen-1) {
runtime·printf("MSpan_Sweep: state=%d sweepgen=%d mheap.sweepgen=%d\n",
s->state, s->sweepgen, sweepgen);
runtime·throw("MSpan_Sweep: bad span state after sweep");
}
runtime·atomicstore(&s->sweepgen, sweepgen);
}
if(nfree > 0) {
c->local_nsmallfree[cl] += nfree;
c->local_cachealloc -= nfree * size;
runtime·xadd64(&mstats.next_gc, -(uint64)(nfree * size * (runtime·gcpercent + 100)/100));
res = runtime·MCentral_FreeSpan(&runtime·mheap.central[cl].mcentral, s, nfree, head.next, end, preserve);
// MCentral_FreeSpan updates sweepgen
}
return res;
}
// State of background sweep.
// Pretected by gclock.
static struct
{
G* g;
bool parked;
uint32 spanidx; // background sweeper position
uint32 nbgsweep;
uint32 npausesweep;
} sweep;
// background sweeping goroutine
static void
bgsweep(void)
{
g->issystem = true;
for(;;) {
while(runtime·sweepone() != -1) {
sweep.nbgsweep++;
runtime·gosched();
}
runtime·lock(&gclock);
if(!runtime·mheap.sweepdone) {
// It's possible if GC has happened between sweepone has
// returned -1 and gclock lock.
runtime·unlock(&gclock);
continue;
}
sweep.parked = true;
runtime·parkunlock(&gclock, runtime·gostringnocopy((byte*)"GC sweep wait"));
}
}
// sweeps one span
// returns number of pages returned to heap, or -1 if there is nothing to sweep
uintptr
runtime·sweepone(void)
{
MSpan *s;
uint32 idx, sg;
uintptr npages;
// increment locks to ensure that the goroutine is not preempted
// in the middle of sweep thus leaving the span in an inconsistent state for next GC
g->m->locks++;
sg = runtime·mheap.sweepgen;
for(;;) {
idx = runtime·xadd(&sweep.spanidx, 1) - 1;
if(idx >= work.nspan) {
runtime·mheap.sweepdone = true;
g->m->locks--;
return -1;
}
s = work.spans[idx];
if(s->state != MSpanInUse) {
s->sweepgen = sg;
continue;
}
if(s->sweepgen != sg-2 || !runtime·cas(&s->sweepgen, sg-2, sg-1))
continue;
npages = s->npages;
if(!runtime·MSpan_Sweep(s, false))
npages = 0;
g->m->locks--;
return npages;
}
}
void
runtime·gchelper(void)
{
uint32 nproc;
g->m->traceback = 2;
gchelperstart();
// parallel mark for over gc roots
runtime·parfordo(work.markfor);
// help other threads scan secondary blocks
scanblock(nil, 0, nil);
nproc = work.nproc; // work.nproc can change right after we increment work.ndone
if(runtime·xadd(&work.ndone, +1) == nproc-1)
runtime·notewakeup(&work.alldone);
g->m->traceback = 0;
}
static void
cachestats(void)
{
MCache *c;
P *p, **pp;
for(pp=runtime·allp; p=*pp; pp++) {
c = p->mcache;
if(c==nil)
continue;
runtime·purgecachedstats(c);
}
}
static void
flushallmcaches(void)
{
P *p, **pp;
MCache *c;
// Flush MCache's to MCentral.
for(pp=runtime·allp; p=*pp; pp++) {
c = p->mcache;
if(c==nil)
continue;
runtime·MCache_ReleaseAll(c);
runtime·stackcache_clear(c);
}
}
static void
flushallmcaches_m(G *gp)
{
flushallmcaches();
runtime·gogo(&gp->sched);
}
void
runtime·updatememstats(GCStats *stats)
{
M *mp;
MSpan *s;
int32 i;
uint64 smallfree;
uint64 *src, *dst;
if(stats)
runtime·memclr((byte*)stats, sizeof(*stats));
for(mp=runtime·allm; mp; mp=mp->alllink) {
if(stats) {
src = (uint64*)&mp->gcstats;
dst = (uint64*)stats;
for(i=0; i<sizeof(*stats)/sizeof(uint64); i++)
dst[i] += src[i];
runtime·memclr((byte*)&mp->gcstats, sizeof(mp->gcstats));
}
}
mstats.mcache_inuse = runtime·mheap.cachealloc.inuse;
mstats.mspan_inuse = runtime·mheap.spanalloc.inuse;
mstats.sys = mstats.heap_sys + mstats.stacks_sys + mstats.mspan_sys +
mstats.mcache_sys + mstats.buckhash_sys + mstats.gc_sys + mstats.other_sys;
// Calculate memory allocator stats.
// During program execution we only count number of frees and amount of freed memory.
// Current number of alive object in the heap and amount of alive heap memory
// are calculated by scanning all spans.
// Total number of mallocs is calculated as number of frees plus number of alive objects.
// Similarly, total amount of allocated memory is calculated as amount of freed memory
// plus amount of alive heap memory.
mstats.alloc = 0;
mstats.total_alloc = 0;
mstats.nmalloc = 0;
mstats.nfree = 0;
for(i = 0; i < nelem(mstats.by_size); i++) {
mstats.by_size[i].nmalloc = 0;
mstats.by_size[i].nfree = 0;
}
// Flush MCache's to MCentral.
if(g == g->m->g0)
flushallmcaches();
else
runtime·mcall(flushallmcaches_m);
// Aggregate local stats.
cachestats();
// Scan all spans and count number of alive objects.
runtime·lock(&runtime·mheap.lock);
for(i = 0; i < runtime·mheap.nspan; i++) {
s = runtime·mheap.allspans[i];
if(s->state != MSpanInUse)
continue;
if(s->sizeclass == 0) {
mstats.nmalloc++;
mstats.alloc += s->elemsize;
} else {
mstats.nmalloc += s->ref;
mstats.by_size[s->sizeclass].nmalloc += s->ref;
mstats.alloc += s->ref*s->elemsize;
}
}
runtime·unlock(&runtime·mheap.lock);
// Aggregate by size class.
smallfree = 0;
mstats.nfree = runtime·mheap.nlargefree;
for(i = 0; i < nelem(mstats.by_size); i++) {
mstats.nfree += runtime·mheap.nsmallfree[i];
mstats.by_size[i].nfree = runtime·mheap.nsmallfree[i];
mstats.by_size[i].nmalloc += runtime·mheap.nsmallfree[i];
smallfree += runtime·mheap.nsmallfree[i] * runtime·class_to_size[i];
}
mstats.nmalloc += mstats.nfree;
// Calculate derived stats.
mstats.total_alloc = mstats.alloc + runtime·mheap.largefree + smallfree;
mstats.heap_alloc = mstats.alloc;
mstats.heap_objects = mstats.nmalloc - mstats.nfree;
}
// Structure of arguments passed to function gc().
// This allows the arguments to be passed via runtime·mcall.
struct gc_args
{
int64 start_time; // start time of GC in ns (just before stoptheworld)
bool eagersweep;
};
static void gc(struct gc_args *args);
static void mgc(G *gp);
int32
runtime·readgogc(void)
{
byte *p;
p = runtime·getenv("GOGC");
if(p == nil || p[0] == '\0')
return 100;
if(runtime·strcmp(p, (byte*)"off") == 0)
return -1;
return runtime·atoi(p);
}
void
runtime·gcinit(void)
{
if(sizeof(Workbuf) != WorkbufSize)
runtime·throw("runtime: size of Workbuf is suboptimal");
work.markfor = runtime·parforalloc(MaxGcproc);
runtime·gcpercent = runtime·readgogc();
runtime·gcdatamask = unrollglobgcprog(gcdata, edata - data);
runtime·gcbssmask = unrollglobgcprog(gcbss, ebss - bss);
}
// force = 1 - do GC regardless of current heap usage
// force = 2 - go GC and eager sweep
void
runtime·gc(int32 force)
{
struct gc_args a;
int32 i;
// The gc is turned off (via enablegc) until
// the bootstrap has completed.
// Also, malloc gets called in the guts
// of a number of libraries that might be
// holding locks. To avoid priority inversion
// problems, don't bother trying to run gc
// while holding a lock. The next mallocgc
// without a lock will do the gc instead.
if(!mstats.enablegc || g == g->m->g0 || g->m->locks > 0 || runtime·panicking)
return;
if(runtime·gcpercent < 0)
return;
runtime·semacquire(&runtime·worldsema, false);
if(force==0 && mstats.heap_alloc < mstats.next_gc) {
// typically threads which lost the race to grab
// worldsema exit here when gc is done.
runtime·semrelease(&runtime·worldsema);
return;
}
// Ok, we're doing it! Stop everybody else
a.start_time = runtime·nanotime();
a.eagersweep = force >= 2;
g->m->gcing = 1;
runtime·stoptheworld();
runtime·clearpools();
// Run gc on the g0 stack. We do this so that the g stack
// we're currently running on will no longer change. Cuts
// the root set down a bit (g0 stacks are not scanned, and
// we don't need to scan gc's internal state). Also an
// enabler for copyable stacks.
for(i = 0; i < (runtime·debug.gctrace > 1 ? 2 : 1); i++) {
if(i > 0)
a.start_time = runtime·nanotime();
// switch to g0, call gc(&a), then switch back
g->param = &a;
runtime·casgstatus(g, Grunning, Gwaiting);
g->waitreason = runtime·gostringnocopy((byte*)"garbage collection");
runtime·mcall(mgc);
}
// all done
g->m->gcing = 0;
g->m->locks++;
runtime·semrelease(&runtime·worldsema);
runtime·starttheworld();
g->m->locks--;
// now that gc is done, kick off finalizer thread if needed
if(!ConcurrentSweep) {
// give the queued finalizers, if any, a chance to run
runtime·gosched();
}
}
static void
mgc(G *gp)
{
gc(gp->param);
gp->param = nil;
runtime·casgstatus(gp, Gwaiting, Grunning);
runtime·gogo(&gp->sched);
}
void
runtime·gc_m(void)
{
struct gc_args a;
G *gp;
gp = g->m->curg;
runtime·casgstatus(gp, Grunning, Gwaiting);
gp->waitreason = runtime·gostringnocopy((byte*)"garbage collection");
a.start_time = (uint64)(g->m->scalararg[0]) | ((uint64)(g->m->scalararg[1]) << 32);
a.eagersweep = g->m->scalararg[2];
gc(&a);
runtime·casgstatus(gp, Gwaiting, Grunning);
}
static void
gc(struct gc_args *args)
{
int64 t0, t1, t2, t3, t4;
uint64 heap0, heap1, obj;
GCStats stats;
if(runtime·debug.allocfreetrace)
runtime·tracegc();
g->m->traceback = 2;
t0 = args->start_time;
work.tstart = args->start_time;
t1 = 0;
if(runtime·debug.gctrace)
t1 = runtime·nanotime();
// Sweep what is not sweeped by bgsweep.
while(runtime·sweepone() != -1)
sweep.npausesweep++;
// Cache runtime.mheap.allspans in work.spans to avoid conflicts with
// resizing/freeing allspans.
// New spans can be created while GC progresses, but they are not garbage for
// this round:
// - new stack spans can be created even while the world is stopped.
// - new malloc spans can be created during the concurrent sweep
// Even if this is stop-the-world, a concurrent exitsyscall can allocate a stack from heap.
runtime·lock(&runtime·mheap.lock);
// Free the old cached sweep array if necessary.
if(work.spans != nil && work.spans != runtime·mheap.allspans)
runtime·SysFree(work.spans, work.nspan*sizeof(work.spans[0]), &mstats.other_sys);
// Cache the current array for marking.
runtime·mheap.gcspans = runtime·mheap.allspans;
work.spans = runtime·mheap.allspans;
work.nspan = runtime·mheap.nspan;
runtime·unlock(&runtime·mheap.lock);
work.nwait = 0;
work.ndone = 0;
work.nproc = runtime·gcprocs();
runtime·parforsetup(work.markfor, work.nproc, RootCount + runtime·allglen, nil, false, markroot);
if(work.nproc > 1) {
runtime·noteclear(&work.alldone);
runtime·helpgc(work.nproc);
}
t2 = 0;
if(runtime·debug.gctrace)
t2 = runtime·nanotime();
gchelperstart();
runtime·parfordo(work.markfor);
scanblock(nil, 0, nil);
t3 = 0;
if(runtime·debug.gctrace)
t3 = runtime·nanotime();
if(work.nproc > 1)
runtime·notesleep(&work.alldone);
cachestats();
// next_gc calculation is tricky with concurrent sweep since we don't know size of live heap
// estimate what was live heap size after previous GC (for tracing only)
heap0 = mstats.next_gc*100/(runtime·gcpercent+100);
// conservatively set next_gc to high value assuming that everything is live
// concurrent/lazy sweep will reduce this number while discovering new garbage
mstats.next_gc = mstats.heap_alloc+mstats.heap_alloc*runtime·gcpercent/100;
t4 = runtime·nanotime();
mstats.last_gc = runtime·unixnanotime(); // must be Unix time to make sense to user
mstats.pause_ns[mstats.numgc%nelem(mstats.pause_ns)] = t4 - t0;
mstats.pause_total_ns += t4 - t0;
mstats.numgc++;
if(mstats.debuggc)
runtime·printf("pause %D\n", t4-t0);
if(runtime·debug.gctrace) {
heap1 = mstats.heap_alloc;
runtime·updatememstats(&stats);
if(heap1 != mstats.heap_alloc) {
runtime·printf("runtime: mstats skew: heap=%D/%D\n", heap1, mstats.heap_alloc);
runtime·throw("mstats skew");
}
obj = mstats.nmalloc - mstats.nfree;
stats.nprocyield += work.markfor->nprocyield;
stats.nosyield += work.markfor->nosyield;
stats.nsleep += work.markfor->nsleep;
runtime·printf("gc%d(%d): %D+%D+%D+%D us, %D -> %D MB, %D (%D-%D) objects,"
" %d/%d/%d sweeps,"
" %D(%D) handoff, %D(%D) steal, %D/%D/%D yields\n",
mstats.numgc, work.nproc, (t1-t0)/1000, (t2-t1)/1000, (t3-t2)/1000, (t4-t3)/1000,
heap0>>20, heap1>>20, obj,
mstats.nmalloc, mstats.nfree,
work.nspan, sweep.nbgsweep, sweep.npausesweep,
stats.nhandoff, stats.nhandoffcnt,
work.markfor->nsteal, work.markfor->nstealcnt,
stats.nprocyield, stats.nosyield, stats.nsleep);
sweep.nbgsweep = sweep.npausesweep = 0;
}
// See the comment in the beginning of this function as to why we need the following.
// Even if this is still stop-the-world, a concurrent exitsyscall can allocate a stack from heap.
runtime·lock(&runtime·mheap.lock);
// Free the old cached mark array if necessary.
if(work.spans != nil && work.spans != runtime·mheap.allspans)
runtime·SysFree(work.spans, work.nspan*sizeof(work.spans[0]), &mstats.other_sys);
// Cache the current array for sweeping.
runtime·mheap.gcspans = runtime·mheap.allspans;
runtime·mheap.sweepgen += 2;
runtime·mheap.sweepdone = false;
work.spans = runtime·mheap.allspans;
work.nspan = runtime·mheap.nspan;
sweep.spanidx = 0;
runtime·unlock(&runtime·mheap.lock);
// Temporary disable concurrent sweep, because we see failures on builders.
if(ConcurrentSweep && !args->eagersweep) {
runtime·lock(&gclock);
if(sweep.g == nil)
sweep.g = runtime·newproc1(&bgsweepv, nil, 0, 0, runtime·gc);
else if(sweep.parked) {
sweep.parked = false;
runtime·ready(sweep.g);
}
runtime·unlock(&gclock);
} else {
// Sweep all spans eagerly.
while(runtime·sweepone() != -1)
sweep.npausesweep++;
}
runtime·MProf_GC();
g->m->traceback = 0;
}
extern uintptr runtime·sizeof_C_MStats;
void
runtime·ReadMemStats(MStats *stats)
{
// Have to acquire worldsema to stop the world,
// because stoptheworld can only be used by
// one goroutine at a time, and there might be
// a pending garbage collection already calling it.
runtime·semacquire(&runtime·worldsema, false);
g->m->gcing = 1;
runtime·stoptheworld();
runtime·updatememstats(nil);
// Size of the trailing by_size array differs between Go and C,
// NumSizeClasses was changed, but we can not change Go struct because of backward compatibility.
runtime·memmove(stats, &mstats, runtime·sizeof_C_MStats);
// Stack numbers are part of the heap numbers, separate those out for user consumption
stats->stacks_sys = stats->stacks_inuse;
stats->heap_inuse -= stats->stacks_inuse;
stats->heap_sys -= stats->stacks_inuse;
g->m->gcing = 0;
g->m->locks++;
runtime·semrelease(&runtime·worldsema);
runtime·starttheworld();
g->m->locks--;
}
void
runtimedebug·readGCStats(Slice *pauses)
{
uint64 *p;
uint32 i, n;
// Calling code in runtime/debug should make the slice large enough.
if(pauses->cap < nelem(mstats.pause_ns)+3)
runtime·throw("runtime: short slice passed to readGCStats");
// Pass back: pauses, last gc (absolute time), number of gc, total pause ns.
p = (uint64*)pauses->array;
runtime·lock(&runtime·mheap.lock);
n = mstats.numgc;
if(n > nelem(mstats.pause_ns))
n = nelem(mstats.pause_ns);
// The pause buffer is circular. The most recent pause is at
// pause_ns[(numgc-1)%nelem(pause_ns)], and then backward
// from there to go back farther in time. We deliver the times
// most recent first (in p[0]).
for(i=0; i<n; i++)
p[i] = mstats.pause_ns[(mstats.numgc-1-i)%nelem(mstats.pause_ns)];
p[n] = mstats.last_gc;
p[n+1] = mstats.numgc;
p[n+2] = mstats.pause_total_ns;
runtime·unlock(&runtime·mheap.lock);
pauses->len = n+3;
}
void
runtime·setgcpercent_m(void) {
int32 in;
int32 out;
in = (int32)(intptr)g->m->scalararg[0];
runtime·lock(&runtime·mheap.lock);
out = runtime·gcpercent;
if(in < 0)
in = -1;
runtime·gcpercent = in;
runtime·unlock(&runtime·mheap.lock);
g->m->scalararg[0] = (uintptr)(intptr)out;
}
static void
gchelperstart(void)
{
if(g->m->helpgc < 0 || g->m->helpgc >= MaxGcproc)
runtime·throw("gchelperstart: bad m->helpgc");
if(g != g->m->g0)
runtime·throw("gchelper not running on g0 stack");
}
static void
runfinq(void)
{
Finalizer *f;
FinBlock *fb, *next;
byte *frame;
uint32 framesz, framecap, i;
Eface *ef, ef1;
// This function blocks for long periods of time, and because it is written in C
// we have no liveness information. Zero everything so that uninitialized pointers
// do not cause memory leaks.
f = nil;
fb = nil;
next = nil;
frame = nil;
framecap = 0;
framesz = 0;
i = 0;
ef = nil;
ef1.type = nil;
ef1.data = nil;
// force flush to memory
USED(&f);
USED(&fb);
USED(&next);
USED(&framesz);
USED(&i);
USED(&ef);
USED(&ef1);
for(;;) {
runtime·lock(&finlock);
fb = finq;
finq = nil;
if(fb == nil) {
runtime·fingwait = true;
g->issystem = true;
runtime·parkunlock(&finlock, runtime·gostringnocopy((byte*)"finalizer wait"));
g->issystem = false;
continue;
}
runtime·unlock(&finlock);
if(raceenabled)
runtime·racefingo();
for(; fb; fb=next) {
next = fb->next;
for(i=0; i<fb->cnt; i++) {
f = &fb->fin[i];
framesz = sizeof(Eface) + f->nret;
if(framecap < framesz) {
// The frame does not contain pointers interesting for GC,
// all not yet finalized objects are stored in finq.
// If we do not mark it as FlagNoScan,
// the last finalized object is not collected.
frame = runtime·mallocgc(framesz, 0, FlagNoScan);
framecap = framesz;
}
if(f->fint == nil)
runtime·throw("missing type in runfinq");
if((f->fint->kind&KindMask) == KindPtr) {
// direct use of pointer
*(void**)frame = f->arg;
} else if(((InterfaceType*)f->fint)->mhdr.len == 0) {
// convert to empty interface
ef = (Eface*)frame;
ef->type = &f->ot->typ;
ef->data = f->arg;
} else {
// convert to interface with methods, via empty interface.
ef1.type = &f->ot->typ;
ef1.data = f->arg;
if(!runtime·ifaceE2I2((InterfaceType*)f->fint, ef1, (Iface*)frame))
runtime·throw("invalid type conversion in runfinq");
}
reflect·call(f->fn, frame, framesz, framesz);
f->fn = nil;
f->arg = nil;
f->ot = nil;
}
fb->cnt = 0;
runtime·lock(&finlock);
fb->next = finc;
finc = fb;
runtime·unlock(&finlock);
}
// Zero everything that's dead, to avoid memory leaks.
// See comment at top of function.
f = nil;
fb = nil;
next = nil;
i = 0;
ef = nil;
ef1.type = nil;
ef1.data = nil;
runtime·gc(1); // trigger another gc to clean up the finalized objects, if possible
}
}
void
runtime·createfing(void)
{
if(runtime·fing != nil)
return;
// Here we use gclock instead of finlock,
// because newproc1 can allocate, which can cause on-demand span sweep,
// which can queue finalizers, which would deadlock.
runtime·lock(&gclock);
if(runtime·fing == nil)
runtime·fing = runtime·newproc1(&runfinqv, nil, 0, 0, runtime·gc);
runtime·unlock(&gclock);
}
void
runtime·createfingM(G *gp)
{
runtime·createfing();
runtime·gogo(&gp->sched);
}
G*
runtime·wakefing(void)
{
G *res;
res = nil;
runtime·lock(&finlock);
if(runtime·fingwait && runtime·fingwake) {
runtime·fingwait = false;
runtime·fingwake = false;
res = runtime·fing;
}
runtime·unlock(&finlock);
return res;
}
// Recursively unrolls GC program in prog.
// mask is where to store the result.
// ppos is a pointer to position in mask, in bits.
// sparse says to generate 4-bits per word mask for heap (2-bits for data/bss otherwise).
static byte*
unrollgcprog1(byte *mask, byte *prog, uintptr *ppos, bool inplace, bool sparse)
{
uintptr pos, siz, i, off;
byte *arena_start, *prog1, v, *bitp, shift;
arena_start = runtime·mheap.arena_start;
pos = *ppos;
for(;;) {
switch(prog[0]) {
case insData:
prog++;
siz = prog[0];
prog++;
for(i = 0; i < siz; i++) {
v = prog[i/PointersPerByte];
v >>= (i%PointersPerByte)*BitsPerPointer;
v &= BitsMask;
if(inplace) {
// Store directly into GC bitmap.
off = (uintptr*)(mask+pos) - (uintptr*)arena_start;
bitp = arena_start - off/wordsPerBitmapByte - 1;
shift = (off % wordsPerBitmapByte) * gcBits;
if(shift==0)
*bitp = 0;
*bitp |= v<<(shift+2);
pos += PtrSize;
} else if(sparse) {
// 4-bits per word
v <<= (pos%8)+2;
mask[pos/8] |= v;
pos += gcBits;
} else {
// 2-bits per word
v <<= pos%8;
mask[pos/8] |= v;
pos += BitsPerPointer;
}
}
prog += ROUND(siz*BitsPerPointer, 8)/8;
break;
case insArray:
prog++;
siz = 0;
for(i = 0; i < PtrSize; i++)
siz = (siz<<8) + prog[PtrSize-i-1];
prog += PtrSize;
prog1 = nil;
for(i = 0; i < siz; i++)
prog1 = unrollgcprog1(mask, prog, &pos, inplace, sparse);
if(prog1[0] != insArrayEnd)
runtime·throw("unrollgcprog: array does not end with insArrayEnd");
prog = prog1+1;
break;
case insArrayEnd:
case insEnd:
*ppos = pos;
return prog;
default:
runtime·throw("unrollgcprog: unknown instruction");
}
}
}
// Unrolls GC program prog for data/bss, returns dense GC mask.
static BitVector
unrollglobgcprog(byte *prog, uintptr size)
{
byte *mask;
uintptr pos, masksize;
masksize = ROUND(ROUND(size, PtrSize)/PtrSize*BitsPerPointer, 8)/8;
mask = runtime·persistentalloc(masksize+1, 0, &mstats.gc_sys);
mask[masksize] = 0xa1;
pos = 0;
prog = unrollgcprog1(mask, prog, &pos, false, false);
if(pos != size/PtrSize*BitsPerPointer) {
runtime·printf("unrollglobgcprog: bad program size, got %D, expect %D\n",
(uint64)pos, (uint64)size/PtrSize*BitsPerPointer);
runtime·throw("unrollglobgcprog: bad program size");
}
if(prog[0] != insEnd)
runtime·throw("unrollglobgcprog: program does not end with insEnd");
if(mask[masksize] != 0xa1)
runtime·throw("unrollglobgcprog: overflow");
return (BitVector){masksize*8, (uint32*)mask};
}
void
runtime·unrollgcproginplace_m(void)
{
uintptr size, size0, pos, off;
byte *arena_start, *prog, *bitp, shift;
Type *typ;
void *v;
v = g->m->ptrarg[0];
typ = g->m->ptrarg[1];
size = g->m->scalararg[0];
size0 = g->m->scalararg[1];
g->m->ptrarg[0] = nil;
g->m->ptrarg[1] = nil;
pos = 0;
prog = (byte*)typ->gc[1];
while(pos != size0)
unrollgcprog1(v, prog, &pos, true, true);
// Mark first word as bitAllocated.
arena_start = runtime·mheap.arena_start;
off = (uintptr*)v - (uintptr*)arena_start;
bitp = arena_start - off/wordsPerBitmapByte - 1;
shift = (off % wordsPerBitmapByte) * gcBits;
*bitp |= bitBoundary<<shift;
// Mark word after last as BitsDead.
if(size0 < size) {
off = (uintptr*)((byte*)v + size0) - (uintptr*)arena_start;
bitp = arena_start - off/wordsPerBitmapByte - 1;
shift = (off % wordsPerBitmapByte) * gcBits;
*bitp &= ~(bitPtrMask<<shift) | ((uintptr)BitsDead<<(shift+2));
}
}
// Unrolls GC program in typ->gc[1] into typ->gc[0]
void
runtime·unrollgcprog_m(void)
{
static Lock lock;
Type *typ;
byte *mask, *prog;
uintptr pos;
uint32 x;
typ = g->m->ptrarg[0];
g->m->ptrarg[0] = nil;
runtime·lock(&lock);
mask = (byte*)typ->gc[0];
if(mask[0] == 0) {
pos = 8; // skip the unroll flag
prog = (byte*)typ->gc[1];
prog = unrollgcprog1(mask, prog, &pos, false, true);
if(prog[0] != insEnd)
runtime·throw("unrollgcprog: program does not end with insEnd");
if(((typ->size/PtrSize)%2) != 0) {
// repeat the program twice
prog = (byte*)typ->gc[1];
unrollgcprog1(mask, prog, &pos, false, true);
}
// atomic way to say mask[0] = 1
x = ((uint32*)mask)[0];
runtime·atomicstore((uint32*)mask, x|1);
}
runtime·unlock(&lock);
}
// mark the span of memory at v as having n blocks of the given size.
// if leftover is true, there is left over space at the end of the span.
void
runtime·markspan(void *v, uintptr size, uintptr n, bool leftover)
{
uintptr i, off, step;
byte *b;
if((byte*)v+size*n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start)
runtime·throw("markspan: bad pointer");
// Find bits of the beginning of the span.
off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start; // word offset
b = runtime·mheap.arena_start - off/wordsPerBitmapByte - 1;
if((off%wordsPerBitmapByte) != 0)
runtime·throw("markspan: unaligned length");
// Okay to use non-atomic ops here, because we control
// the entire span, and each bitmap byte has bits for only
// one span, so no other goroutines are changing these bitmap words.
if(size == PtrSize) {
// Possible only on 64-bits (minimal size class is 8 bytes).
// Poor man's memset(0x11).
if(0x11 != ((bitBoundary+BitsDead)<<gcBits) + (bitBoundary+BitsDead))
runtime·throw("markspan: bad bits");
if((n%(wordsPerBitmapByte*PtrSize)) != 0)
runtime·throw("markspan: unaligned length");
b = b - n/wordsPerBitmapByte + 1; // find first byte
if(((uintptr)b%PtrSize) != 0)
runtime·throw("markspan: unaligned pointer");
for(i = 0; i != n; i += wordsPerBitmapByte*PtrSize, b += PtrSize)
*(uintptr*)b = (uintptr)0x1111111111111111ULL; // bitBoundary+BitsDead
return;
}
if(leftover)
n++; // mark a boundary just past end of last block too
step = size/(PtrSize*wordsPerBitmapByte);
for(i = 0; i != n; i++, b -= step)
*b = bitBoundary|(BitsDead<<2);
}
// unmark the span of memory at v of length n bytes.
void
runtime·unmarkspan(void *v, uintptr n)
{
uintptr off;
byte *b;
if((byte*)v+n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start)
runtime·throw("markspan: bad pointer");
off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start; // word offset
if((off % (PtrSize*wordsPerBitmapByte)) != 0)
runtime·throw("markspan: unaligned pointer");
b = runtime·mheap.arena_start - off/wordsPerBitmapByte - 1;
n /= PtrSize;
if(n%(PtrSize*wordsPerBitmapByte) != 0)
runtime·throw("unmarkspan: unaligned length");
// Okay to use non-atomic ops here, because we control
// the entire span, and each bitmap word has bits for only
// one span, so no other goroutines are changing these
// bitmap words.
n /= wordsPerBitmapByte;
runtime·memclr(b - n + 1, n);
}
void
runtime·MHeap_MapBits(MHeap *h)
{
// Caller has added extra mappings to the arena.
// Add extra mappings of bitmap words as needed.
// We allocate extra bitmap pieces in chunks of bitmapChunk.
enum {
bitmapChunk = 8192
};
uintptr n;
n = (h->arena_used - h->arena_start) / (PtrSize*wordsPerBitmapByte);
n = ROUND(n, bitmapChunk);
n = ROUND(n, PhysPageSize);
if(h->bitmap_mapped >= n)
return;
runtime·SysMap(h->arena_start - n, n - h->bitmap_mapped, h->arena_reserved, &mstats.gc_sys);
h->bitmap_mapped = n;
}
static bool
getgcmaskcb(Stkframe *frame, void *ctxt)
{
Stkframe *frame0;
frame0 = ctxt;
if(frame0->sp >= (uintptr)frame->varp - frame->sp && frame0->sp < (uintptr)frame->varp) {
*frame0 = *frame;
return false;
}
return true;
}
// Returns GC type info for object p for testing.
void
runtime·getgcmask(byte *p, Type *t, byte **mask, uintptr *len)
{
Stkframe frame;
uintptr i, n, off;
byte *base, bits, shift, *b;
*mask = nil;
*len = 0;
// data
if(p >= data && p < edata) {
n = ((PtrType*)t)->elem->size;
*len = n/PtrSize;
*mask = runtime·mallocgc(*len, nil, 0);
for(i = 0; i < n; i += PtrSize) {
off = (p+i-data)/PtrSize;
bits = (((byte*)runtime·gcdatamask.data)[off/PointersPerByte] >> ((off%PointersPerByte)*BitsPerPointer))&BitsMask;
(*mask)[i/PtrSize] = bits;
}
return;
}
// bss
if(p >= bss && p < ebss) {
n = ((PtrType*)t)->elem->size;
*len = n/PtrSize;
*mask = runtime·mallocgc(*len, nil, 0);
for(i = 0; i < n; i += PtrSize) {
off = (p+i-bss)/PtrSize;
bits = (((byte*)runtime·gcbssmask.data)[off/PointersPerByte] >> ((off%PointersPerByte)*BitsPerPointer))&BitsMask;
(*mask)[i/PtrSize] = bits;
}
return;
}
// heap
if(runtime·mlookup(p, &base, &n, nil)) {
*len = n/PtrSize;
*mask = runtime·mallocgc(*len, nil, 0);
for(i = 0; i < n; i += PtrSize) {
off = (uintptr*)(base+i) - (uintptr*)runtime·mheap.arena_start;
b = runtime·mheap.arena_start - off/wordsPerBitmapByte - 1;
shift = (off % wordsPerBitmapByte) * gcBits;
bits = (*b >> (shift+2))&BitsMask;
(*mask)[i/PtrSize] = bits;
}
return;
}
// stack
frame.fn = nil;
frame.sp = (uintptr)p;
runtime·gentraceback((uintptr)runtime·getcallerpc(&p), (uintptr)runtime·getcallersp(&p), 0, g, 0, nil, 1000, getgcmaskcb, &frame, false);
if(frame.fn != nil) {
Func *f;
StackMap *stackmap;
BitVector bv;
uintptr size;
uintptr targetpc;
int32 pcdata;
f = frame.fn;
targetpc = frame.continpc;
if(targetpc == 0)
return;
if(targetpc != f->entry)
targetpc--;
pcdata = runtime·pcdatavalue(f, PCDATA_StackMapIndex, targetpc);
if(pcdata == -1)
return;
stackmap = runtime·funcdata(f, FUNCDATA_LocalsPointerMaps);
if(stackmap == nil || stackmap->n <= 0)
return;
bv = runtime·stackmapdata(stackmap, pcdata);
size = bv.n/BitsPerPointer*PtrSize;
n = ((PtrType*)t)->elem->size;
*len = n/PtrSize;
*mask = runtime·mallocgc(*len, nil, 0);
for(i = 0; i < n; i += PtrSize) {
off = (p+i-frame.varp+size)/PtrSize;
bits = (bv.data[off*BitsPerPointer/32] >> ((off*BitsPerPointer)%32))&BitsMask;
(*mask)[i/PtrSize] = bits;
}
}
}
void runtime·gc_unixnanotime(int64 *now);
int64 runtime·unixnanotime(void)
{
int64 now;
runtime·gc_unixnanotime(&now);
return now;
}