1
0
mirror of https://github.com/golang/go synced 2024-10-04 16:31:22 -06:00
go/usr/austin/eval/expr.go
Austin Clements 96e844393e Implement all unary and binary arithmetic operators.
R=rsc
APPROVED=rsc
DELTA=689  (497 added, 169 deleted, 23 changed)
OCL=31755
CL=31772
2009-07-17 10:38:44 -07:00

1163 lines
32 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package eval
import (
"bignum";
"eval";
"go/ast";
"go/token";
"log";
"strconv";
"strings";
)
// An exprContext stores information used throughout the compilation
// of an entire expression.
type exprContext struct {
scope *Scope;
constant bool;
// TODO(austin) Error list
}
// An exprCompiler compiles a single node in an expression. It stores
// the whole expression's context plus information specific to this node.
// After compilation, it stores the type of the expression and its
// evaluator function.
type exprCompiler struct {
*exprContext;
pos token.Position;
t Type;
// Evaluate this node as the given type.
evalBool func (f *Frame) bool;
evalUint func (f *Frame) uint64;
evalInt func (f *Frame) int64;
evalIdealInt func () *bignum.Integer;
evalFloat func (f *Frame) float64;
evalIdealFloat func () *bignum.Rational;
evalString func (f *Frame) string;
evalPtr func (f *Frame) Value;
// Evaluate to the "address of" this value; that is, the
// settable Value object. nil for expressions whose address
// cannot be taken.
evalAddr func (f *Frame) Value;
// A short string describing this expression for error
// messages. Only necessary if t != nil.
desc string;
}
func newExprCompiler(c *exprContext, pos token.Position) *exprCompiler {
return &exprCompiler{
exprContext: c,
pos: pos,
desc: "<missing description>"
};
}
// Operator generators
// TODO(austin) Remove these forward declarations
func (a *exprCompiler) genIdentOp(t Type, s *Scope, index int)
func (a *exprCompiler) genStarOp(v *exprCompiler)
func (a *exprCompiler) genUnaryOpNeg(v *exprCompiler)
func (a *exprCompiler) genUnaryOpNot(v *exprCompiler)
func (a *exprCompiler) genUnaryOpXor(v *exprCompiler)
func (a *exprCompiler) genBinOpAdd(l *exprCompiler, r *exprCompiler)
func (a *exprCompiler) genBinOpSub(l *exprCompiler, r *exprCompiler)
func (a *exprCompiler) genBinOpMul(l *exprCompiler, r *exprCompiler)
func (a *exprCompiler) genBinOpQuo(l *exprCompiler, r *exprCompiler)
func (a *exprCompiler) genBinOpRem(l *exprCompiler, r *exprCompiler)
func (a *exprCompiler) genBinOpAnd(l *exprCompiler, r *exprCompiler)
func (a *exprCompiler) genBinOpOr(l *exprCompiler, r *exprCompiler)
func (a *exprCompiler) genBinOpXor(l *exprCompiler, r *exprCompiler)
func (a *exprCompiler) genBinOpAndNot(l *exprCompiler, r *exprCompiler)
func (a *exprCompiler) genBinOpShl(l *exprCompiler, r *exprCompiler)
func (a *exprCompiler) genBinOpShr(l *exprCompiler, r *exprCompiler)
func (a *exprCompiler) fork(x ast.Expr) *exprCompiler {
ec := newExprCompiler(a.exprContext, x.Pos());
x.Visit(ec);
return ec;
}
func (a *exprCompiler) diag(format string, args ...) {
diag(a.pos, format, args);
}
func (a *exprCompiler) diagOpType(op token.Token, vt Type) {
a.diag("illegal operand type for '%v' operator\n\t%v", op, vt);
}
func (a *exprCompiler) diagOpTypes(op token.Token, lt Type, rt Type) {
a.diag("illegal operand types for '%v' operator\n\t%v\n\t%v", op, lt, rt);
}
func (a *exprCompiler) asBool() (func (f *Frame) bool) {
if a.evalBool == nil {
log.Crashf("tried to get %v node as boolType", a.t);
}
return a.evalBool;
}
func (a *exprCompiler) asUint() (func (f *Frame) uint64) {
if a.evalUint == nil {
log.Crashf("tried to get %v node as uintType", a.t);
}
return a.evalUint;
}
func (a *exprCompiler) asInt() (func (f *Frame) int64) {
if a.evalInt == nil {
log.Crashf("tried to get %v node as intType", a.t);
}
return a.evalInt;
}
func (a *exprCompiler) asIdealInt() (func () *bignum.Integer) {
if a.evalIdealInt == nil {
log.Crashf("tried to get %v node as idealIntType", a.t);
}
return a.evalIdealInt;
}
func (a *exprCompiler) asFloat() (func (f *Frame) float64) {
if a.evalFloat == nil {
log.Crashf("tried to get %v node as floatType", a.t);
}
return a.evalFloat;
}
func (a *exprCompiler) asIdealFloat() (func () *bignum.Rational) {
if a.evalIdealFloat == nil {
log.Crashf("tried to get %v node as idealFloatType", a.t);
}
return a.evalIdealFloat;
}
func (a *exprCompiler) asString() (func (f *Frame) string) {
if a.evalString == nil {
log.Crashf("tried to get %v node as stringType", a.t);
}
return a.evalString;
}
func (a *exprCompiler) asPtr() (func (f *Frame) Value) {
if a.evalPtr == nil {
log.Crashf("tried to get %v node as PtrType", a.t);
}
return a.evalPtr;
}
func (a *exprCompiler) DoBadExpr(x *ast.BadExpr) {
// Do nothing. Already reported by parser.
}
func (a *exprCompiler) DoIdent(x *ast.Ident) {
def, dscope := a.scope.Lookup(x.Value);
if def == nil {
a.diag("%s: undefined", x.Value);
return;
}
switch def := def.(type) {
case *Constant:
a.t = def.Type;
switch _ := a.t.literal().(type) {
case *idealIntType:
val := def.Value.(IdealIntValue).Get();
a.evalIdealInt = func () *bignum.Integer { return val; };
case *idealFloatType:
val := def.Value.(IdealFloatValue).Get();
a.evalIdealFloat = func () *bignum.Rational { return val; };
default:
log.Crashf("unexpected constant type: %v", a.t);
}
a.desc = "constant";
case *Variable:
if a.constant {
a.diag("expression must be a constant");
return;
}
a.t = def.Type;
defidx := def.Index;
a.genIdentOp(def.Type, dscope, defidx);
a.evalAddr = func (f *Frame) Value {
return f.Get(dscope, defidx);
};
a.desc = "variable";
case Type:
a.diag("type %v used as expression", x.Value);
default:
log.Crashf("name %s has unknown type %T", x.Value, def);
}
}
func (a *exprCompiler) doIdealInt(i *bignum.Integer) {
a.t = IdealIntType;
a.evalIdealInt = func () *bignum.Integer { return i };
}
func (a *exprCompiler) DoIntLit(x *ast.IntLit) {
i, _, _2 := bignum.IntFromString(string(x.Value), 0);
a.doIdealInt(i);
a.desc = "integer literal";
}
func (a *exprCompiler) DoCharLit(x *ast.CharLit) {
if x.Value[0] != '\'' {
// Shouldn't get past the parser
log.Crashf("unexpected character literal %s at %v", x.Value, x.Pos());
}
v, mb, tail, err := strconv.UnquoteChar(string(x.Value[1:len(x.Value)]), '\'');
if err != nil {
a.diag("illegal character literal, %v", err);
return;
}
if tail != "'" {
a.diag("character literal must contain only one character");
return;
}
a.doIdealInt(bignum.Int(int64(v)));
a.desc = "character literal";
}
func (a *exprCompiler) DoFloatLit(x *ast.FloatLit) {
a.t = IdealFloatType;
f, _, _2 := bignum.RatFromString(string(x.Value), 0);
a.evalIdealFloat = func () *bignum.Rational { return f };
a.desc = "float literal";
}
func (a *exprCompiler) doString(s string) {
a.t = StringType;
a.evalString = func (*Frame) string { return s };
}
func (a *exprCompiler) DoStringLit(x *ast.StringLit) {
s, err := strconv.Unquote(string(x.Value));
if err != nil {
a.diag("illegal string literal, %v", err);
return;
}
a.doString(s);
a.desc = "string literal";
}
func (a *exprCompiler) DoStringList(x *ast.StringList) {
ss := make([]string, len(x.Strings));
for i := 0; i < len(x.Strings); i++ {
s, err := strconv.Unquote(string(x.Strings[i].Value));
if err != nil {
a.diag("illegal string literal, %v", err);
return;
}
ss[i] = s;
}
a.doString(strings.Join(ss, ""));
a.desc = "string literal";
}
func (a *exprCompiler) DoFuncLit(x *ast.FuncLit) {
log.Crash("Not implemented");
}
func (a *exprCompiler) DoCompositeLit(x *ast.CompositeLit) {
log.Crash("Not implemented");
}
func (a *exprCompiler) DoParenExpr(x *ast.ParenExpr) {
x.X.Visit(a);
}
func (a *exprCompiler) DoSelectorExpr(x *ast.SelectorExpr) {
log.Crash("Not implemented");
}
func (a *exprCompiler) DoIndexExpr(x *ast.IndexExpr) {
log.Crash("Not implemented");
}
func (a *exprCompiler) DoTypeAssertExpr(x *ast.TypeAssertExpr) {
log.Crash("Not implemented");
}
func (a *exprCompiler) DoCallExpr(x *ast.CallExpr) {
log.Crash("Not implemented");
}
func (a *exprCompiler) DoStarExpr(x *ast.StarExpr) {
v := a.fork(x.X);
if v.t == nil {
return;
}
switch vt := v.t.(type) {
case *PtrType:
a.t = vt.Elem();
a.genStarOp(v);
vf := v.asPtr();
a.evalAddr = func (f *Frame) Value { return vf(f) };
a.desc = "* expression";
default:
a.diagOpType(token.MUL, v.t);
}
}
var unaryOpDescs = make(map[token.Token] string)
func (a *exprCompiler) DoUnaryExpr(x *ast.UnaryExpr) {
v := a.fork(x.X);
if v.t == nil {
return;
}
// Type check
switch x.Op {
case token.ADD, token.SUB:
if !v.t.isInteger() && !v.t.isFloat() {
a.diagOpType(x.Op, v.t);
return;
}
a.t = v.t;
case token.NOT:
if !v.t.isBoolean() {
a.diagOpType(x.Op, v.t);
return;
}
// TODO(austin) Unnamed bool? Named bool?
a.t = BoolType;
case token.XOR:
if !v.t.isInteger() {
a.diagOpType(x.Op, v.t);
return;
}
a.t = v.t;
case token.AND:
// The unary prefix address-of operator & generates
// the address of its operand, which must be a
// variable, pointer indirection, field selector, or
// array or slice indexing operation.
if v.evalAddr == nil {
a.diag("cannot take the address of %s", v.desc);
return;
}
// TODO(austin) Implement "It is illegal to take the
// address of a function result variable" once I have
// function result variables.
a.t = NewPtrType(v.t);
case token.ARROW:
log.Crashf("Unary op %v not implemented", x.Op);
default:
log.Crashf("unknown unary operator %v", x.Op);
}
var ok bool;
a.desc, ok = unaryOpDescs[x.Op];
if !ok {
a.desc = "unary " + x.Op.String() + " expression";
unaryOpDescs[x.Op] = a.desc;
}
// Compile
switch x.Op {
case token.ADD:
// Just compile it out
a = v;
case token.SUB:
a.genUnaryOpNeg(v);
case token.NOT:
a.genUnaryOpNot(v);
case token.XOR:
a.genUnaryOpXor(v);
case token.AND:
vf := v.evalAddr;
a.evalPtr = func (f *Frame) Value { return vf(f) };
default:
log.Crashf("Compilation of unary op %v not implemented", x.Op);
}
}
// a.convertTo(t) converts the value of the analyzed expression a,
// which must be a constant, ideal number, to a new analyzed
// expression with a constant value of type t.
func (a *exprCompiler) convertTo(t Type) *exprCompiler {
if !a.t.isIdeal() {
log.Crashf("attempted to convert from %v, expected ideal", a.t);
}
var rat *bignum.Rational;
// It is erroneous to assign a value with a non-zero
// fractional part to an integer, or if the assignment would
// overflow or underflow, or in general if the value cannot be
// represented by the type of the variable.
switch a.t {
case IdealFloatType:
rat = a.asIdealFloat()();
if t.isInteger() && !rat.IsInt() {
a.diag("constant %v truncated to integer", ratToString(rat));
return nil;
}
case IdealIntType:
i := a.asIdealInt()();
rat = bignum.MakeRat(i, bignum.Nat(1));
default:
log.Crashf("unexpected ideal type %v", a.t);
}
// Check bounds
if t, ok := t.(BoundedType); ok {
if rat.Cmp(t.minVal()) < 0 {
a.diag("constant %v underflows %v", ratToString(rat), t);
return nil;
}
if rat.Cmp(t.maxVal()) > 0 {
a.diag("constant %v overflows %v", ratToString(rat), t);
return nil;
}
}
// Convert rat to type t.
res := newExprCompiler(a.exprContext, a.pos);
res.t = t;
res.desc = a.desc;
switch t := t.(type) {
case *uintType:
n, d := rat.Value();
f := n.Quo(bignum.MakeInt(false, d));
v := f.Abs().Value();
res.evalUint = func (*Frame) uint64 { return v };
case *intType:
n, d := rat.Value();
f := n.Quo(bignum.MakeInt(false, d));
v := f.Value();
res.evalInt = func (*Frame) int64 { return v };
case *idealIntType:
n, d := rat.Value();
f := n.Quo(bignum.MakeInt(false, d));
res.evalIdealInt = func () *bignum.Integer { return f };
case *floatType:
n, d := rat.Value();
v := float64(n.Value())/float64(d.Value());
res.evalFloat = func (*Frame) float64 { return v };
case *idealFloatType:
res.evalIdealFloat = func () *bignum.Rational { return rat };
default:
log.Crashf("cannot convert to type %T", t);
}
return res;
}
var binOpDescs = make(map[token.Token] string)
func (a *exprCompiler) DoBinaryExpr(x *ast.BinaryExpr) {
l, r := a.fork(x.X), a.fork(x.Y);
if l.t == nil || r.t == nil {
return;
}
// Save the original types of l.t and r.t for error messages.
origlt := l.t;
origrt := r.t;
// XXX(Spec) What is the exact definition of a "named type"?
// XXX(Spec) Arithmetic operators: "Integer types" apparently
// means all types compatible with basic integer types, though
// this is never explained. Likewise for float types, etc.
// This relates to the missing explanation of named types.
// XXX(Spec) Operators: "If both operands are ideal numbers,
// the conversion is to ideal floats if one of the operands is
// an ideal float (relevant for / and %)." How is that
// relevant only for / and %? If I add an ideal int and an
// ideal float, I get an ideal float.
if x.Op != token.SHL && x.Op != token.SHR {
// Except in shift expressions, if one operand has
// numeric type and the other operand is an ideal
// number, the ideal number is converted to match the
// type of the other operand.
if l.t.isInteger() && !l.t.isIdeal() && r.t.isIdeal() {
r = r.convertTo(l.t);
} else if r.t.isInteger() && !r.t.isIdeal() && l.t.isIdeal() {
l = l.convertTo(r.t);
}
if l == nil || r == nil {
return;
}
// Except in shift expressions, if both operands are
// ideal numbers and one is an ideal float, the other
// is converted to ideal float.
if l.t.isIdeal() && r.t.isIdeal() {
if l.t.isInteger() && r.t.isFloat() {
l = l.convertTo(r.t);
} else if l.t.isFloat() && r.t.isInteger() {
r = r.convertTo(l.t);
}
if l == nil || r == nil {
return;
}
}
}
// Useful type predicates
compat := func() bool {
return l.t.compatible(r.t);
};
integers := func() bool {
return l.t.isInteger() && r.t.isInteger();
};
floats := func() bool {
return l.t.isFloat() && r.t.isFloat();
};
strings := func() bool {
// TODO(austin) Deal with named types
return l.t == StringType && r.t == StringType;
};
booleans := func() bool {
// TODO(austin) Deal with named types
return l.t == BoolType && r.t == BoolType;
};
// Type check
switch x.Op {
case token.ADD:
if !compat() || (!integers() && !floats() && !strings()) {
a.diagOpTypes(x.Op, origlt, origrt);
return;
}
a.t = l.t;
case token.SUB, token.MUL, token.QUO:
if !compat() || (!integers() && !floats()) {
a.diagOpTypes(x.Op, origlt, origrt);
return;
}
a.t = l.t;
case token.REM, token.AND, token.OR, token.XOR, token.AND_NOT:
if !compat() || !integers() {
a.diagOpTypes(x.Op, origlt, origrt);
return;
}
a.t = l.t;
case token.SHL, token.SHR:
// XXX(Spec) Is it okay for the right operand to be an
// ideal float with no fractional part? "The right
// operand in a shift operation must be always be of
// unsigned integer type or an ideal number that can
// be safely converted into an unsigned integer type
// (§Arithmetic operators)" suggests so.
if !l.t.isInteger() || !(r.t.isInteger() || r.t.isIdeal()) {
a.diagOpTypes(x.Op, origlt, origrt);
return;
}
// The right operand in a shift operation must be
// always be of unsigned integer type or an ideal
// number that can be safely converted into an
// unsigned integer type.
if r.t.isIdeal() {
r2 := r.convertTo(UintType);
if r2 == nil {
return;
}
// If the left operand is ideal, we use the
// original right operand so we can perform
// constant evaluation. Otherwise, we use the
// conversion.
if !l.t.isIdeal() {
r = r2;
// XXX(Spec) What is the meaning of
// "ideal >> non-ideal"? Russ says
// the ideal should be converted to
// an int. 6g says it's illegal.
l = l.convertTo(IntType);
if l == nil {
return;
}
} else if r.t.isFloat() {
// Convert it to an ideal int to
// simplify the cases
r = r.convertTo(IdealIntType);
if r == nil {
log.Crashf("conversion to uintType succeeded, but conversion to idealIntType failed");
}
}
} else if _, ok := r.t.literal().(*uintType); !ok {
a.diag("right operand of shift must be unsigned");
return;
}
a.t = l.t;
case token.LOR, token.LAND:
if !booleans() {
return;
}
// XXX(Spec) There's no mention of *which* boolean
// type the logical operators return. From poking at
// 6g, it appears to be the named boolean type, NOT
// the type of the left operand, and NOT an unnamed
// boolean type.
// TODO(austin) Named bool type
a.t = BoolType;
case token.ARROW:
// The operands in channel sends differ in type: one
// is always a channel and the other is a variable or
// value of the channel's element type.
log.Crash("Binary op <- not implemented");
a.t = BoolType;
case token.LSS, token.GTR, token.LEQ, token.GEQ:
// ... booleans may be compared only for equality or
// inequality.
if l.t.literal() == BoolType || r.t.literal() == BoolType {
a.diagOpTypes(x.Op, origlt, origrt);
return;
}
fallthrough;
case token.EQL, token.NEQ:
// When comparing two operands of channel type, the
// channel value types must be compatible but the
// channel direction is ignored.
// XXX(Spec) Operators: "When comparing two operands
// of channel type, the channel value types must be
// compatible but the channel direction is ignored."
// By "compatible" this really means "comparison
// compatible". Really, the rules for type checking
// comparison operators are entirely different from
// other binary operators, but this just barely hints
// at that.
// XXX(Spec) Comparison operators: "All comparison
// operators apply to basic types except bools."
// "except bools" is really weird here, since this is
// actually explained in the Comparison compatibility
// section.
log.Crashf("Binary op %v not implemented", x.Op);
// TODO(austin) Unnamed bool? Named bool?
a.t = BoolType;
default:
log.Crashf("unknown binary operator %v", x.Op);
}
var ok bool;
a.desc, ok = binOpDescs[x.Op];
if !ok {
a.desc = x.Op.String() + " expression";
binOpDescs[x.Op] = a.desc;
}
// Compile
switch x.Op {
case token.ADD:
a.genBinOpAdd(l, r);
case token.SUB:
a.genBinOpSub(l, r);
case token.MUL:
a.genBinOpMul(l, r);
case token.QUO:
// TODO(austin) What if divisor is zero?
// TODO(austin) Clear higher bits that may have
// accumulated in our temporary.
a.genBinOpQuo(l, r);
case token.REM:
// TODO(austin) What if divisor is zero?
// TODO(austin) Clear higher bits that may have
// accumulated in our temporary.
a.genBinOpRem(l, r);
case token.AND:
a.genBinOpAnd(l, r);
case token.OR:
a.genBinOpOr(l, r);
case token.XOR:
a.genBinOpXor(l, r);
case token.AND_NOT:
if l.t.isIdeal() || r.t.isIdeal() {
log.Crashf("&^ for ideals not implemented");
}
a.genBinOpAndNot(l, r);
case token.SHL:
// TODO(austin) bignum.Integer.Shl takes a uint
if r.t.isIdeal() {
log.Crashf("<< ideal not implemented");
}
a.genBinOpShl(l, r);
case token.SHR:
// TODO(austin) bignum.Integer.Shr takes a uint
if r.t.isIdeal() {
log.Crashf(">> ideal not implemented");
}
a.genBinOpShr(l, r);
default:
log.Crashf("Compilation of binary op %v not implemented", x.Op);
}
}
func (a *exprCompiler) DoKeyValueExpr(x *ast.KeyValueExpr) {
log.Crash("Not implemented");
}
func (a *exprCompiler) DoEllipsis(x *ast.Ellipsis) {
log.Crash("Not implemented");
}
func (a *exprCompiler) DoArrayType(x *ast.ArrayType) {
log.Crash("Not implemented");
}
func (a *exprCompiler) DoStructType(x *ast.StructType) {
log.Crash("Not implemented");
}
func (a *exprCompiler) DoFuncType(x *ast.FuncType) {
log.Crash("Not implemented");
}
func (a *exprCompiler) DoInterfaceType(x *ast.InterfaceType) {
log.Crash("Not implemented");
}
func (a *exprCompiler) DoMapType(x *ast.MapType) {
log.Crash("Not implemented");
}
func (a *exprCompiler) DoChanType(x *ast.ChanType) {
log.Crash("Not implemented");
}
func compileExpr(expr ast.Expr, scope *Scope) *exprCompiler {
ec := newExprCompiler(&exprContext{scope, false}, expr.Pos());
expr.Visit(ec);
if ec.t == nil {
return nil;
}
return ec;
}
/*
* Public interface
*/
type Expr struct {
f func (f *Frame) Value;
}
func (expr *Expr) Eval(f *Frame) Value {
return expr.f(f);
}
func CompileExpr(expr ast.Expr, scope *Scope) *Expr {
ec := compileExpr(expr, scope);
if ec == nil {
return nil;
}
// TODO(austin) This still uses Value as a generic container
// and is the only user of the 'value' methods on each type.
// Need to figure out a better way to do this.
switch t := ec.t.(type) {
case *boolType:
return &Expr{func (f *Frame) Value { return t.value(ec.evalBool(f)) }};
case *uintType:
return &Expr{func (f *Frame) Value { return t.value(ec.evalUint(f)) }};
case *intType:
return &Expr{func (f *Frame) Value { return t.value(ec.evalInt(f)) }};
case *idealIntType:
return &Expr{func (f *Frame) Value { return t.value(ec.evalIdealInt()) }};
case *floatType:
return &Expr{func (f *Frame) Value { return t.value(ec.evalFloat(f)) }};
case *idealFloatType:
return &Expr{func (f *Frame) Value { return t.value(ec.evalIdealFloat()) }};
case *stringType:
return &Expr{func (f *Frame) Value { return t.value(ec.evalString(f)) }};
case *PtrType:
return &Expr{func (f *Frame) Value { return t.value(ec.evalPtr(f)) }};
}
log.Crashf("unexpected type %v", ec.t);
return nil;
}
/*
* Operator generators
* Everything below here is MACHINE GENERATED by gen.py genOps
*/
func (a *exprCompiler) genIdentOp(t Type, s *Scope, index int) {
switch _ := t.literal().(type) {
case *boolType:
a.evalBool = func(f *Frame) bool { return f.Get(s, index).(BoolValue).Get() };
case *uintType:
a.evalUint = func(f *Frame) uint64 { return f.Get(s, index).(UintValue).Get() };
case *intType:
a.evalInt = func(f *Frame) int64 { return f.Get(s, index).(IntValue).Get() };
case *floatType:
a.evalFloat = func(f *Frame) float64 { return f.Get(s, index).(FloatValue).Get() };
case *stringType:
a.evalString = func(f *Frame) string { return f.Get(s, index).(StringValue).Get() };
case *PtrType:
a.evalPtr = func(f *Frame) Value { return f.Get(s, index).(PtrValue).Get() };
default:
log.Crashf("unexpected identifier type %v at %v", t.literal(), a.pos);
}
}
func (a *exprCompiler) genStarOp(v *exprCompiler) {
vf := v.asPtr();
switch _ := v.t.literal().(type) {
case *boolType:
a.evalBool = func(f *Frame) bool { return vf(f).(BoolValue).Get() };
case *uintType:
a.evalUint = func(f *Frame) uint64 { return vf(f).(UintValue).Get() };
case *intType:
a.evalInt = func(f *Frame) int64 { return vf(f).(IntValue).Get() };
case *floatType:
a.evalFloat = func(f *Frame) float64 { return vf(f).(FloatValue).Get() };
case *stringType:
a.evalString = func(f *Frame) string { return vf(f).(StringValue).Get() };
case *PtrType:
a.evalPtr = func(f *Frame) Value { return vf(f).(PtrValue).Get() };
default:
log.Crashf("unexpected operand type %v at %v", v.t.literal(), a.pos);
}
}
func (a *exprCompiler) genUnaryOpNeg(v *exprCompiler) {
switch _ := v.t.literal().(type) {
case *uintType:
vf := v.asUint();
a.evalUint = func(f *Frame) uint64 { return -vf(f) };
case *intType:
vf := v.asInt();
a.evalInt = func(f *Frame) int64 { return -vf(f) };
case *idealIntType:
vf := v.asIdealInt();
val := vf().Neg();
a.evalIdealInt = func() *bignum.Integer { return val };
case *floatType:
vf := v.asFloat();
a.evalFloat = func(f *Frame) float64 { return -vf(f) };
case *idealFloatType:
vf := v.asIdealFloat();
val := vf().Neg();
a.evalIdealFloat = func() *bignum.Rational { return val };
default:
log.Crashf("unexpected operand type %v at %v", v.t.literal(), a.pos);
}
}
func (a *exprCompiler) genUnaryOpNot(v *exprCompiler) {
switch _ := v.t.literal().(type) {
case *boolType:
vf := v.asBool();
a.evalBool = func(f *Frame) bool { return !vf(f) };
default:
log.Crashf("unexpected operand type %v at %v", v.t.literal(), a.pos);
}
}
func (a *exprCompiler) genUnaryOpXor(v *exprCompiler) {
switch _ := v.t.literal().(type) {
case *uintType:
vf := v.asUint();
a.evalUint = func(f *Frame) uint64 { return ^vf(f) };
case *intType:
vf := v.asInt();
a.evalInt = func(f *Frame) int64 { return ^vf(f) };
case *idealIntType:
vf := v.asIdealInt();
val := vf().Neg().Sub(bignum.Int(1));
a.evalIdealInt = func() *bignum.Integer { return val };
default:
log.Crashf("unexpected operand type %v at %v", v.t.literal(), a.pos);
}
}
func (a *exprCompiler) genBinOpAdd(l *exprCompiler, r *exprCompiler) {
switch _ := l.t.literal().(type) {
case *uintType:
lf := l.asUint();
rf := r.asUint();
a.evalUint = func(f *Frame) uint64 { return lf(f) + rf(f) };
case *intType:
lf := l.asInt();
rf := r.asInt();
a.evalInt = func(f *Frame) int64 { return lf(f) + rf(f) };
case *idealIntType:
lf := l.asIdealInt();
rf := r.asIdealInt();
val := lf().Add(rf());
a.evalIdealInt = func() *bignum.Integer { return val };
case *floatType:
lf := l.asFloat();
rf := r.asFloat();
a.evalFloat = func(f *Frame) float64 { return lf(f) + rf(f) };
case *idealFloatType:
lf := l.asIdealFloat();
rf := r.asIdealFloat();
val := lf().Add(rf());
a.evalIdealFloat = func() *bignum.Rational { return val };
case *stringType:
lf := l.asString();
rf := r.asString();
a.evalString = func(f *Frame) string { return lf(f) + rf(f) };
default:
log.Crashf("unexpected left operand type %v at %v", l.t.literal(), a.pos);
}
}
func (a *exprCompiler) genBinOpSub(l *exprCompiler, r *exprCompiler) {
switch _ := l.t.literal().(type) {
case *uintType:
lf := l.asUint();
rf := r.asUint();
a.evalUint = func(f *Frame) uint64 { return lf(f) - rf(f) };
case *intType:
lf := l.asInt();
rf := r.asInt();
a.evalInt = func(f *Frame) int64 { return lf(f) - rf(f) };
case *idealIntType:
lf := l.asIdealInt();
rf := r.asIdealInt();
val := lf().Sub(rf());
a.evalIdealInt = func() *bignum.Integer { return val };
case *floatType:
lf := l.asFloat();
rf := r.asFloat();
a.evalFloat = func(f *Frame) float64 { return lf(f) - rf(f) };
case *idealFloatType:
lf := l.asIdealFloat();
rf := r.asIdealFloat();
val := lf().Sub(rf());
a.evalIdealFloat = func() *bignum.Rational { return val };
default:
log.Crashf("unexpected left operand type %v at %v", l.t.literal(), a.pos);
}
}
func (a *exprCompiler) genBinOpMul(l *exprCompiler, r *exprCompiler) {
switch _ := l.t.literal().(type) {
case *uintType:
lf := l.asUint();
rf := r.asUint();
a.evalUint = func(f *Frame) uint64 { return lf(f) * rf(f) };
case *intType:
lf := l.asInt();
rf := r.asInt();
a.evalInt = func(f *Frame) int64 { return lf(f) * rf(f) };
case *idealIntType:
lf := l.asIdealInt();
rf := r.asIdealInt();
val := lf().Mul(rf());
a.evalIdealInt = func() *bignum.Integer { return val };
case *floatType:
lf := l.asFloat();
rf := r.asFloat();
a.evalFloat = func(f *Frame) float64 { return lf(f) * rf(f) };
case *idealFloatType:
lf := l.asIdealFloat();
rf := r.asIdealFloat();
val := lf().Mul(rf());
a.evalIdealFloat = func() *bignum.Rational { return val };
default:
log.Crashf("unexpected left operand type %v at %v", l.t.literal(), a.pos);
}
}
func (a *exprCompiler) genBinOpQuo(l *exprCompiler, r *exprCompiler) {
switch _ := l.t.literal().(type) {
case *uintType:
lf := l.asUint();
rf := r.asUint();
a.evalUint = func(f *Frame) uint64 { return lf(f) / rf(f) };
case *intType:
lf := l.asInt();
rf := r.asInt();
a.evalInt = func(f *Frame) int64 { return lf(f) / rf(f) };
case *idealIntType:
lf := l.asIdealInt();
rf := r.asIdealInt();
val := lf().Quo(rf());
a.evalIdealInt = func() *bignum.Integer { return val };
case *floatType:
lf := l.asFloat();
rf := r.asFloat();
a.evalFloat = func(f *Frame) float64 { return lf(f) / rf(f) };
case *idealFloatType:
lf := l.asIdealFloat();
rf := r.asIdealFloat();
val := lf().Quo(rf());
a.evalIdealFloat = func() *bignum.Rational { return val };
default:
log.Crashf("unexpected left operand type %v at %v", l.t.literal(), a.pos);
}
}
func (a *exprCompiler) genBinOpRem(l *exprCompiler, r *exprCompiler) {
switch _ := l.t.literal().(type) {
case *uintType:
lf := l.asUint();
rf := r.asUint();
a.evalUint = func(f *Frame) uint64 { return lf(f) % rf(f) };
case *intType:
lf := l.asInt();
rf := r.asInt();
a.evalInt = func(f *Frame) int64 { return lf(f) % rf(f) };
case *idealIntType:
lf := l.asIdealInt();
rf := r.asIdealInt();
val := lf().Rem(rf());
a.evalIdealInt = func() *bignum.Integer { return val };
default:
log.Crashf("unexpected left operand type %v at %v", l.t.literal(), a.pos);
}
}
func (a *exprCompiler) genBinOpAnd(l *exprCompiler, r *exprCompiler) {
switch _ := l.t.literal().(type) {
case *uintType:
lf := l.asUint();
rf := r.asUint();
a.evalUint = func(f *Frame) uint64 { return lf(f) & rf(f) };
case *intType:
lf := l.asInt();
rf := r.asInt();
a.evalInt = func(f *Frame) int64 { return lf(f) & rf(f) };
case *idealIntType:
lf := l.asIdealInt();
rf := r.asIdealInt();
val := lf().And(rf());
a.evalIdealInt = func() *bignum.Integer { return val };
default:
log.Crashf("unexpected left operand type %v at %v", l.t.literal(), a.pos);
}
}
func (a *exprCompiler) genBinOpOr(l *exprCompiler, r *exprCompiler) {
switch _ := l.t.literal().(type) {
case *uintType:
lf := l.asUint();
rf := r.asUint();
a.evalUint = func(f *Frame) uint64 { return lf(f) | rf(f) };
case *intType:
lf := l.asInt();
rf := r.asInt();
a.evalInt = func(f *Frame) int64 { return lf(f) | rf(f) };
case *idealIntType:
lf := l.asIdealInt();
rf := r.asIdealInt();
val := lf().Or(rf());
a.evalIdealInt = func() *bignum.Integer { return val };
default:
log.Crashf("unexpected left operand type %v at %v", l.t.literal(), a.pos);
}
}
func (a *exprCompiler) genBinOpXor(l *exprCompiler, r *exprCompiler) {
switch _ := l.t.literal().(type) {
case *uintType:
lf := l.asUint();
rf := r.asUint();
a.evalUint = func(f *Frame) uint64 { return lf(f) ^ rf(f) };
case *intType:
lf := l.asInt();
rf := r.asInt();
a.evalInt = func(f *Frame) int64 { return lf(f) ^ rf(f) };
case *idealIntType:
lf := l.asIdealInt();
rf := r.asIdealInt();
val := lf().Xor(rf());
a.evalIdealInt = func() *bignum.Integer { return val };
default:
log.Crashf("unexpected left operand type %v at %v", l.t.literal(), a.pos);
}
}
func (a *exprCompiler) genBinOpAndNot(l *exprCompiler, r *exprCompiler) {
switch _ := l.t.literal().(type) {
case *uintType:
lf := l.asUint();
rf := r.asUint();
a.evalUint = func(f *Frame) uint64 { return lf(f) &^ rf(f) };
case *intType:
lf := l.asInt();
rf := r.asInt();
a.evalInt = func(f *Frame) int64 { return lf(f) &^ rf(f) };
default:
log.Crashf("unexpected left operand type %v at %v", l.t.literal(), a.pos);
}
}
func (a *exprCompiler) genBinOpShl(l *exprCompiler, r *exprCompiler) {
switch _ := l.t.literal().(type) {
case *uintType:
lf := l.asUint();
rf := r.asUint();
a.evalUint = func(f *Frame) uint64 { return lf(f) << rf(f) };
case *intType:
lf := l.asInt();
rf := r.asUint();
a.evalInt = func(f *Frame) int64 { return lf(f) << rf(f) };
// case *idealIntType:
// lf := l.asIdealInt();
// rf := r.asIdealInt();
// val := lf().Shl(rf());
// a.evalIdealInt = func() *bignum.Integer { return val };
default:
log.Crashf("unexpected left operand type %v at %v", l.t.literal(), a.pos);
}
}
func (a *exprCompiler) genBinOpShr(l *exprCompiler, r *exprCompiler) {
switch _ := l.t.literal().(type) {
case *uintType:
lf := l.asUint();
rf := r.asUint();
a.evalUint = func(f *Frame) uint64 { return lf(f) >> rf(f) };
case *intType:
lf := l.asInt();
rf := r.asUint();
a.evalInt = func(f *Frame) int64 { return lf(f) >> rf(f) };
// case *idealIntType:
// lf := l.asIdealInt();
// rf := r.asIdealInt();
// val := lf().Shr(rf());
// a.evalIdealInt = func() *bignum.Integer { return val };
default:
log.Crashf("unexpected left operand type %v at %v", l.t.literal(), a.pos);
}
}