1
0
mirror of https://github.com/golang/go synced 2024-11-23 07:10:05 -07:00
go/usr/gri/bignum/bignum.go
Robert Griesemer 276ffd297d - added shl operation, extra tests
- fixed code so it works with any base between 9 and 64
- work-around for 6g shift problems in various places

R=r
OCL=18080
CL=18080
2008-10-29 16:48:53 -07:00

683 lines
12 KiB
Go
Executable File

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package Bignum
// A package for arbitrary precision arithmethic.
// It implements the following numeric types:
//
// - Natural unsigned integer numbers
// - Integer signed integer numbers
// - Rational rational numbers
// ----------------------------------------------------------------------------
// Representation
//
// A natural number of the form
//
// x = x[n-1]*B^(n-1) + x[n-2]*B^(n-2) + ... + x[1]*B + x[0]
//
// with 0 <= x[i] < B and 0 <= i < n is stored in an array of length n,
// with the digits x[i] as the array elements. 0 is represented as an
// empty array (length == 0).
//
// A natural number is normalized if the array contains no leading 0 digits.
// During arithmetic operations, denormalized values may occur which are
// always normalized before returning the final result.
//
// The base B is chosen as large as possible on a given platform but there
// are a few constraints besides the largest unsigned integer type available.
// TODO describe the constraints.
type Word uint64;
const LogW = 64;
const LogH = 4; // bits for a hex digit (= "small" number)
const H = 1 << LogH;
const LogB = LogW - LogH;
const L = LogB;
const B = 1 << LogB;
const M = B - 1;
// For division
const (
L3 = L / 3;
B3 = 1 << L3;
M3 = B3 - 1;
)
type (
Word3 uint32;
Natural3 [] Word3;
)
// ----------------------------------------------------------------------------
// Support
// TODO replace this with a Go built-in assert
func assert(p bool) {
if !p {
panic("assert failed");
}
}
func IsSmall(x Word) bool {
return x < H;
}
func Split(x Word) (Word, Word) {
return x>>L, x&M;
}
export func Dump(x *[]Word) {
print("[", len(x), "]");
for i := len(x) - 1; i >= 0; i-- {
print(" ", x[i]);
}
println();
}
// ----------------------------------------------------------------------------
// Natural numbers
export type Natural []Word;
export var NatZero *Natural = new(Natural, 0);
export func NewNat(x Word) *Natural {
var z *Natural;
switch {
case x == 0:
z = NatZero;
case x < B:
z = new(Natural, 1);
z[0] = x;
return z;
default:
z = new(Natural, 2);
z[1], z[0] = Split(x);
}
return z;
}
func Normalize(x *Natural) *Natural {
n := len(x);
for n > 0 && x[n - 1] == 0 { n-- }
if n < len(x) {
x = x[0 : n]; // trim leading 0's
}
return x;
}
func Normalize3(x *Natural3) *Natural3 {
n := len(x);
for n > 0 && x[n - 1] == 0 { n-- }
if n < len(x) {
x = x[0 : n]; // trim leading 0's
}
return x;
}
func (x *Natural) IsZero() bool {
return len(x) == 0;
}
func (x *Natural) Add(y *Natural) *Natural {
n := len(x);
m := len(y);
if n < m {
return y.Add(x);
}
assert(n >= m);
z := new(Natural, n + 1);
i := 0;
c := Word(0);
for ; i < m; i++ { c, z[i] = Split(x[i] + y[i] + c); }
for ; i < n; i++ { c, z[i] = Split(x[i] + c); }
z[i] = c;
return Normalize(z);
}
func (x *Natural) Sub(y *Natural) *Natural {
n := len(x);
m := len(y);
assert(n >= m);
z := new(Natural, n);
i := 0;
c := Word(0);
for ; i < m; i++ { c, z[i] = Split(x[i] - y[i] + c); }
for ; i < n; i++ { c, z[i] = Split(x[i] + c); }
assert(c == 0); // x.Sub(y) must be called with x >= y
return Normalize(z);
}
// Computes x = x*a + c (in place) for "small" a's.
func (x* Natural) MulAdd1(a, c Word) *Natural {
assert(IsSmall(a-1) && IsSmall(c));
if x.IsZero() || a == 0 {
return NewNat(c);
}
n := len(x);
z := new(Natural, n + 1);
for i := 0; i < n; i++ { c, z[i] = Split(x[i]*a + c); }
z[n] = c;
return Normalize(z);
}
// Returns c = x*y div B, z = x*y mod B.
func Mul1(x, y Word) (Word, Word) {
// Split x and y into 2 sub-digits each (in base sqrt(B)),
// multiply the digits separately while avoiding overflow,
// and return the product as two separate digits.
const L0 = (L + 1)/2;
const L1 = L - L0;
const DL = L0 - L1; // 0 or 1
const b = 1<<L0;
const m = b - 1;
// split x and y into sub-digits
// x = (x1*b + x0)
// y = (y1*b + y0)
x1, x0 := x>>L0, x&m;
y1, y0 := y>>L0, y&m;
// x*y = t2*b^2 + t1*b + t0
t0 := x0*y0;
t1 := x1*y0 + x0*y1;
t2 := x1*y1;
// compute the result digits but avoid overflow
// z = z1*B + z0 = x*y
z0 := (t1<<L0 + t0)&M;
z1 := t2<<DL + (t1 + t0>>L0)>>L1;
return z1, z0;
}
func (x *Natural) Mul(y *Natural) *Natural {
n := len(x);
m := len(y);
z := new(Natural, n + m);
for j := 0; j < m; j++ {
d := y[j];
if d != 0 {
c := Word(0);
for i := 0; i < n; i++ {
// z[i+j] += x[i]*d + c;
z1, z0 := Mul1(x[i], d);
c, z[i+j] = Split(z[i+j] + z0 + c);
c += z1;
}
z[n+j] = c;
}
}
return Normalize(z);
}
// BUG use these until 6g shifts are working properly
func shl(x Word, s uint) Word {
return x << s;
}
func shr(x Word, s uint) Word {
return x >> s;
}
func Shl1(x, c Word, s uint) (Word, Word) {
assert(s <= LogB);
return shr(x, (LogB - s)), shl(x, s)&M | c
}
func (x *Natural) Shl(s uint) *Natural {
n := len(x);
si := int(s/LogB);
s = s%LogB;
z := new(Natural, n + si + 1);
i := 0;
c := Word(0);
for ; i < n; i++ { c, z[i+si] = Shl1(x[i], c, s); }
z[i+si] = c;
return Normalize(z);
}
func (x *Natural) Shr(s uint) *Natural {
panic("incomplete");
return nil
}
func SplitBase(x *Natural) *Natural3 {
xl := len(x);
z := new(Natural3, xl * 3);
for i, j := 0, 0; i < xl; i, j = i + 1, j + 3 {
t := x[i];
z[j] = Word3(t & M3); t >>= L3; j++;
z[j] = Word3(t & M3); t >>= L3; j++;
z[j] = Word3(t & M3); t >>= L3; j++;
}
return Normalize3(z);
}
func Scale(x *Natural, f Word) *Natural3 {
return nil;
}
func TrialDigit(r, d *Natural3, k, m int) Word {
km := k + m;
assert(2 <= m && m <= km);
r3 := (Word(r[km]) << L3 + Word(r[km - 1])) << L3 + Word(r[km - 2]);
d2 := Word(d[m - 1]) << L3 + Word(d[m - 2]);
qt := r3 / d2;
if qt >= B {
qt = B - 1;
}
return qt;
}
func DivMod(x, y *Natural) {
xl := len(x);
yl := len(y);
assert(2 <= yl && yl <= xl); // use special-case algorithm otherwise
f := B / (y[yl - 1] + 1);
r := Scale(x, f);
d := Scale(y, f);
n := len(r);
m := len(d);
for k := n - m; k >= 0; k-- {
qt := TrialDigit(r, d, k, m);
}
}
func (x *Natural) Div(y *Natural) *Natural {
panic("UNIMPLEMENTED");
return nil;
}
func (x *Natural) Mod(y *Natural) *Natural {
panic("UNIMPLEMENTED");
return nil;
}
func (x *Natural) Cmp(y *Natural) int {
xl := len(x);
yl := len(y);
if xl != yl || xl == 0 {
return xl - yl;
}
i := xl - 1;
for i > 0 && x[i] == y[i] { i--; }
d := 0;
switch {
case x[i] < y[i]: d = -1;
case x[i] > y[i]: d = 1;
}
return d;
}
func Log1(x Word) int {
n := -1;
for x != 0 { x >>= 1; n++; }
return n;
}
func (x *Natural) Log() int {
n := len(x);
if n > 0 {
n = (n - 1)*L + Log1(x[n - 1]);
} else {
n = -1;
}
return n;
}
func (x *Natural) And(y *Natural) *Natural {
n := len(x);
m := len(y);
if n < m {
return y.And(x);
}
assert(n >= m);
z := new(Natural, n);
i := 0;
for ; i < m; i++ { z[i] = x[i] & y[i]; }
for ; i < n; i++ { z[i] = x[i]; }
return Normalize(z);
}
func (x *Natural) Or(y *Natural) *Natural {
n := len(x);
m := len(y);
if n < m {
return y.Or(x);
}
assert(n >= m);
z := new(Natural, n);
i := 0;
for ; i < m; i++ { z[i] = x[i] | y[i]; }
for ; i < n; i++ { z[i] = x[i]; }
return Normalize(z);
}
func (x *Natural) Xor(y *Natural) *Natural {
n := len(x);
m := len(y);
if n < m {
return y.Xor(x);
}
assert(n >= m);
z := new(Natural, n);
i := 0;
for ; i < m; i++ { z[i] = x[i] ^ y[i]; }
for ; i < n; i++ { z[i] = x[i]; }
return Normalize(z);
}
func Copy(x *Natural) *Natural {
z := new(Natural, len(x));
//*z = *x; // BUG assignment does't work yet
for i := len(x) - 1; i >= 0; i-- { z[i] = x[i]; }
return z;
}
// Computes x = x div d (in place - the recv maybe modified) for "small" d's.
// Returns updated x and x mod d.
func (x *Natural) DivMod1(d Word) (*Natural, Word) {
assert(0 < d && IsSmall(d - 1));
c := Word(0);
for i := len(x) - 1; i >= 0; i-- {
c = c<<L + x[i];
x[i] = c/d;
c %= d;
}
return Normalize(x), c;
}
func (x *Natural) String(base Word) string {
if x.IsZero() {
return "0";
}
// allocate string
// TODO n is too small for bases < 10!!!
assert(base >= 10); // for now
// approx. length: 1 char for 3 bits
n := x.Log()/3 + 10; // +10 (round up) - what is the right number?
s := new([]byte, n);
// convert
const hex = "0123456789abcdef";
i := n;
x = Copy(x); // don't destroy recv
for !x.IsZero() {
i--;
var d Word;
x, d = x.DivMod1(base);
s[i] = hex[d];
};
return string(s[i : n]);
}
func MulRange(a, b Word) *Natural {
switch {
case a > b: return NewNat(1);
case a == b: return NewNat(a);
case a + 1 == b: return NewNat(a).Mul(NewNat(b));
}
m := (a + b)>>1;
assert(a <= m && m < b);
return MulRange(a, m).Mul(MulRange(m + 1, b));
}
export func Fact(n Word) *Natural {
// Using MulRange() instead of the basic for-loop
// lead to faster factorial computation.
return MulRange(2, n);
}
func HexValue(ch byte) Word {
d := Word(H);
switch {
case '0' <= ch && ch <= '9': d = Word(ch - '0');
case 'a' <= ch && ch <= 'f': d = Word(ch - 'a') + 10;
case 'A' <= ch && ch <= 'F': d = Word(ch - 'A') + 10;
}
return d;
}
// TODO auto-detect base if base argument is 0
export func NatFromString(s string, base Word) *Natural {
x := NatZero;
for i := 0; i < len(s); i++ {
d := HexValue(s[i]);
if d < base {
x = x.MulAdd1(base, d);
} else {
break;
}
}
return x;
}
// ----------------------------------------------------------------------------
// Integer numbers
export type Integer struct {
sign bool;
mant *Natural;
}
func (x *Integer) Add(y *Integer) *Integer {
var z *Integer;
if x.sign == y.sign {
// x + y == x + y
// (-x) + (-y) == -(x + y)
z = &Integer{x.sign, x.mant.Add(y.mant)};
} else {
// x + (-y) == x - y == -(y - x)
// (-x) + y == y - x == -(x - y)
if x.mant.Cmp(y.mant) >= 0 {
z = &Integer{false, x.mant.Sub(y.mant)};
} else {
z = &Integer{true, y.mant.Sub(x.mant)};
}
}
if x.sign {
z.sign = !z.sign;
}
return z;
}
func (x *Integer) Sub(y *Integer) *Integer {
var z *Integer;
if x.sign != y.sign {
// x - (-y) == x + y
// (-x) - y == -(x + y)
z = &Integer{x.sign, x.mant.Add(y.mant)};
} else {
// x - y == x - y == -(y - x)
// (-x) - (-y) == y - x == -(x - y)
if x.mant.Cmp(y.mant) >= 0 {
z = &Integer{false, x.mant.Sub(y.mant)};
} else {
z = &Integer{true, y.mant.Sub(x.mant)};
}
}
if x.sign {
z.sign = !z.sign;
}
return z;
}
func (x *Integer) Mul(y *Integer) *Integer {
// x * y == x * y
// x * (-y) == -(x * y)
// (-x) * y == -(x * y)
// (-x) * (-y) == x * y
return &Integer{x.sign != y.sign, x.mant.Mul(y.mant)};
}
func (x *Integer) Div(y *Integer) *Integer {
panic("UNIMPLEMENTED");
return nil;
}
func (x *Integer) Mod(y *Integer) *Integer {
panic("UNIMPLEMENTED");
return nil;
}
func (x *Integer) Cmp(y *Integer) int {
panic("UNIMPLEMENTED");
return 0;
}
func (x *Integer) String(base Word) string {
if x.mant.IsZero() {
return "0";
}
var s string;
if x.sign {
s = "-";
}
return s + x.mant.String(base);
}
export func IntFromString(s string, base Word) *Integer {
// get sign, if any
sign := false;
if len(s) > 0 && (s[0] == '-' || s[0] == '+') {
sign = s[0] == '-';
}
return &Integer{sign, NatFromString(s[1 : len(s)], base)};
}
// ----------------------------------------------------------------------------
// Rational numbers
export type Rational struct {
a, b *Integer; // a = numerator, b = denominator
}
func NewRat(a, b *Integer) *Rational {
// TODO normalize the rational
return &Rational{a, b};
}
func (x *Rational) Add(y *Rational) *Rational {
return NewRat((x.a.Mul(y.b)).Add(x.b.Mul(y.a)), x.b.Mul(y.b));
}
func (x *Rational) Sub(y *Rational) *Rational {
return NewRat((x.a.Mul(y.b)).Sub(x.b.Mul(y.a)), x.b.Mul(y.b));
}
func (x *Rational) Mul(y *Rational) *Rational {
return NewRat(x.a.Mul(y.a), x.b.Mul(y.b));
}
func (x *Rational) Div(y *Rational) *Rational {
return NewRat(x.a.Mul(y.b), x.b.Mul(y.a));
}
func (x *Rational) Mod(y *Rational) *Rational {
panic("UNIMPLEMENTED");
return nil;
}
func (x *Rational) Cmp(y *Rational) int {
panic("UNIMPLEMENTED");
return 0;
}
export func RatFromString(s string) *Rational {
panic("UNIMPLEMENTED");
return nil;
}