1
0
mirror of https://github.com/golang/go synced 2024-11-17 18:44:44 -07:00
go/src/math/sin_s390x.s
Michael Munday 32e6461dc6 cmd/asm, math: add s390x floating point test instructions
Floating point test instructions allow special cases (NaN, ±∞ and
a few other useful properties) to be checked directly.

This CL adds the following instructions to the assembler:
 * LTEBR - load and test (float32)
 * LTDBR - load and test (float64)
 * TCEB  - test data class (float32)
 * TCDB  - test data class (float64)

Note that I have only added immediate versions of the 'test data
class' instructions for now as that's the only case I think the
compiler will use.

Change-Id: I3398aab2b3a758bf909bd158042234030c8af582
Reviewed-on: https://go-review.googlesource.com/104457
Reviewed-by: Brad Fitzpatrick <bradfitz@golang.org>
Run-TryBot: Michael Munday <mike.munday@ibm.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2018-04-03 16:08:04 +00:00

357 lines
8.3 KiB
ArmAsm

// Copyright 2016 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "textflag.h"
// Various constants
DATA sincosxnan<>+0(SB)/8, $0x7ff8000000000000
GLOBL sincosxnan<>+0(SB), RODATA, $8
DATA sincosxlim<>+0(SB)/8, $0x432921fb54442d19
GLOBL sincosxlim<>+0(SB), RODATA, $8
DATA sincosxadd<>+0(SB)/8, $0xc338000000000000
GLOBL sincosxadd<>+0(SB), RODATA, $8
DATA sincosxpi2l<>+0(SB)/8, $0.108285667392191389e-31
GLOBL sincosxpi2l<>+0(SB), RODATA, $8
DATA sincosxpi2m<>+0(SB)/8, $0.612323399573676480e-16
GLOBL sincosxpi2m<>+0(SB), RODATA, $8
DATA sincosxpi2h<>+0(SB)/8, $0.157079632679489656e+01
GLOBL sincosxpi2h<>+0(SB), RODATA, $8
DATA sincosrpi2<>+0(SB)/8, $0.636619772367581341e+00
GLOBL sincosrpi2<>+0(SB), RODATA, $8
// Minimax polynomial approximations
DATA sincosc0<>+0(SB)/8, $0.100000000000000000E+01
GLOBL sincosc0<>+0(SB), RODATA, $8
DATA sincosc1<>+0(SB)/8, $-.499999999999999833E+00
GLOBL sincosc1<>+0(SB), RODATA, $8
DATA sincosc2<>+0(SB)/8, $0.416666666666625843E-01
GLOBL sincosc2<>+0(SB), RODATA, $8
DATA sincosc3<>+0(SB)/8, $-.138888888885498984E-02
GLOBL sincosc3<>+0(SB), RODATA, $8
DATA sincosc4<>+0(SB)/8, $0.248015871681607202E-04
GLOBL sincosc4<>+0(SB), RODATA, $8
DATA sincosc5<>+0(SB)/8, $-.275572911309937875E-06
GLOBL sincosc5<>+0(SB), RODATA, $8
DATA sincosc6<>+0(SB)/8, $0.208735047247632818E-08
GLOBL sincosc6<>+0(SB), RODATA, $8
DATA sincosc7<>+0(SB)/8, $-.112753632738365317E-10
GLOBL sincosc7<>+0(SB), RODATA, $8
DATA sincoss0<>+0(SB)/8, $0.100000000000000000E+01
GLOBL sincoss0<>+0(SB), RODATA, $8
DATA sincoss1<>+0(SB)/8, $-.166666666666666657E+00
GLOBL sincoss1<>+0(SB), RODATA, $8
DATA sincoss2<>+0(SB)/8, $0.833333333333309209E-02
GLOBL sincoss2<>+0(SB), RODATA, $8
DATA sincoss3<>+0(SB)/8, $-.198412698410701448E-03
GLOBL sincoss3<>+0(SB), RODATA, $8
DATA sincoss4<>+0(SB)/8, $0.275573191453906794E-05
GLOBL sincoss4<>+0(SB), RODATA, $8
DATA sincoss5<>+0(SB)/8, $-.250520918387633290E-07
GLOBL sincoss5<>+0(SB), RODATA, $8
DATA sincoss6<>+0(SB)/8, $0.160571285514715856E-09
GLOBL sincoss6<>+0(SB), RODATA, $8
DATA sincoss7<>+0(SB)/8, $-.753213484933210972E-12
GLOBL sincoss7<>+0(SB), RODATA, $8
// Sin returns the sine of the radian argument x.
//
// Special cases are:
// Sin(±0) = ±0
// Sin(±Inf) = NaN
// Sin(NaN) = NaN
// The algorithm used is minimax polynomial approximation.
// with coefficients determined with a Remez exchange algorithm.
TEXT ·sinAsm(SB),NOSPLIT,$0-16
FMOVD x+0(FP), F0
//special case Sin(±0) = ±0
FMOVD $(0.0), F1
FCMPU F0, F1
BEQ sinIsZero
LTDBR F0, F0
BLTU L17
FMOVD F0, F5
L2:
MOVD $sincoss7<>+0(SB), R1
FMOVD 0(R1), F4
MOVD $sincoss6<>+0(SB), R1
FMOVD 0(R1), F1
MOVD $sincoss5<>+0(SB), R1
VLEG $0, 0(R1), V18
MOVD $sincoss4<>+0(SB), R1
FMOVD 0(R1), F6
MOVD $sincoss2<>+0(SB), R1
VLEG $0, 0(R1), V16
MOVD $sincoss3<>+0(SB), R1
FMOVD 0(R1), F7
MOVD $sincoss1<>+0(SB), R1
FMOVD 0(R1), F3
MOVD $sincoss0<>+0(SB), R1
FMOVD 0(R1), F2
WFCHDBS V2, V5, V2
BEQ L18
MOVD $sincosrpi2<>+0(SB), R1
FMOVD 0(R1), F3
MOVD $sincosxadd<>+0(SB), R1
FMOVD 0(R1), F2
WFMSDB V0, V3, V2, V3
FMOVD 0(R1), F6
FADD F3, F6
MOVD $sincosxpi2h<>+0(SB), R1
FMOVD 0(R1), F2
FMSUB F2, F6, F0
MOVD $sincosxpi2m<>+0(SB), R1
FMOVD 0(R1), F4
FMADD F4, F6, F0
MOVD $sincosxpi2l<>+0(SB), R1
WFMDB V0, V0, V1
FMOVD 0(R1), F7
WFMDB V1, V1, V2
LGDR F3, R1
MOVD $sincosxlim<>+0(SB), R2
TMLL R1, $1
BEQ L6
FMOVD 0(R2), F0
WFCHDBS V0, V5, V0
BNE L14
MOVD $sincosc7<>+0(SB), R2
FMOVD 0(R2), F0
MOVD $sincosc6<>+0(SB), R2
FMOVD 0(R2), F4
MOVD $sincosc5<>+0(SB), R2
WFMADB V1, V0, V4, V0
FMOVD 0(R2), F6
MOVD $sincosc4<>+0(SB), R2
WFMADB V1, V0, V6, V0
FMOVD 0(R2), F4
MOVD $sincosc2<>+0(SB), R2
FMOVD 0(R2), F6
WFMADB V2, V4, V6, V4
MOVD $sincosc3<>+0(SB), R2
FMOVD 0(R2), F3
MOVD $sincosc1<>+0(SB), R2
WFMADB V2, V0, V3, V0
FMOVD 0(R2), F6
WFMADB V1, V4, V6, V4
TMLL R1, $2
WFMADB V2, V0, V4, V0
MOVD $sincosc0<>+0(SB), R1
FMOVD 0(R1), F2
WFMADB V1, V0, V2, V0
BNE L15
FMOVD F0, ret+8(FP)
RET
L6:
FMOVD 0(R2), F4
WFCHDBS V4, V5, V4
BNE L14
MOVD $sincoss7<>+0(SB), R2
FMOVD 0(R2), F4
MOVD $sincoss6<>+0(SB), R2
FMOVD 0(R2), F3
MOVD $sincoss5<>+0(SB), R2
WFMADB V1, V4, V3, V4
WFMADB V6, V7, V0, V6
FMOVD 0(R2), F0
MOVD $sincoss4<>+0(SB), R2
FMADD F4, F1, F0
FMOVD 0(R2), F3
MOVD $sincoss2<>+0(SB), R2
FMOVD 0(R2), F4
MOVD $sincoss3<>+0(SB), R2
WFMADB V2, V3, V4, V3
FMOVD 0(R2), F4
MOVD $sincoss1<>+0(SB), R2
WFMADB V2, V0, V4, V0
FMOVD 0(R2), F4
WFMADB V1, V3, V4, V3
FNEG F6, F4
WFMADB V2, V0, V3, V2
WFMDB V4, V1, V0
TMLL R1, $2
WFMSDB V0, V2, V6, V0
BNE L15
FMOVD F0, ret+8(FP)
RET
L14:
MOVD $sincosxnan<>+0(SB), R1
FMOVD 0(R1), F0
FMOVD F0, ret+8(FP)
RET
L18:
WFMDB V0, V0, V2
WFMADB V2, V4, V1, V4
WFMDB V2, V2, V1
WFMADB V2, V4, V18, V4
WFMADB V1, V6, V16, V6
WFMADB V1, V4, V7, V4
WFMADB V2, V6, V3, V6
FMUL F0, F2
WFMADB V1, V4, V6, V4
FMADD F4, F2, F0
FMOVD F0, ret+8(FP)
RET
L17:
FNEG F0, F5
BR L2
L15:
FNEG F0, F0
FMOVD F0, ret+8(FP)
RET
sinIsZero:
FMOVD F0, ret+8(FP)
RET
// Cos returns the cosine of the radian argument.
//
// Special cases are:
// Cos(±Inf) = NaN
// Cos(NaN) = NaN
// The algorithm used is minimax polynomial approximation.
// with coefficients determined with a Remez exchange algorithm.
TEXT ·cosAsm(SB),NOSPLIT,$0-16
FMOVD x+0(FP), F0
LTDBR F0, F0
BLTU L35
FMOVD F0, F1
L21:
MOVD $sincosc7<>+0(SB), R1
FMOVD 0(R1), F4
MOVD $sincosc6<>+0(SB), R1
VLEG $0, 0(R1), V20
MOVD $sincosc5<>+0(SB), R1
VLEG $0, 0(R1), V18
MOVD $sincosc4<>+0(SB), R1
FMOVD 0(R1), F6
MOVD $sincosc2<>+0(SB), R1
VLEG $0, 0(R1), V16
MOVD $sincosc3<>+0(SB), R1
FMOVD 0(R1), F7
MOVD $sincosc1<>+0(SB), R1
FMOVD 0(R1), F5
MOVD $sincosrpi2<>+0(SB), R1
FMOVD 0(R1), F2
MOVD $sincosxadd<>+0(SB), R1
FMOVD 0(R1), F3
MOVD $sincoss0<>+0(SB), R1
WFMSDB V0, V2, V3, V2
FMOVD 0(R1), F3
WFCHDBS V3, V1, V3
LGDR F2, R1
BEQ L36
MOVD $sincosxadd<>+0(SB), R2
FMOVD 0(R2), F4
FADD F2, F4
MOVD $sincosxpi2h<>+0(SB), R2
FMOVD 0(R2), F2
WFMSDB V4, V2, V0, V2
MOVD $sincosxpi2m<>+0(SB), R2
FMOVD 0(R2), F0
WFMADB V4, V0, V2, V0
MOVD $sincosxpi2l<>+0(SB), R2
WFMDB V0, V0, V2
FMOVD 0(R2), F5
WFMDB V2, V2, V6
MOVD $sincosxlim<>+0(SB), R2
TMLL R1, $1
BNE L25
FMOVD 0(R2), F0
WFCHDBS V0, V1, V0
BNE L33
MOVD $sincosc7<>+0(SB), R2
FMOVD 0(R2), F0
MOVD $sincosc6<>+0(SB), R2
FMOVD 0(R2), F4
MOVD $sincosc5<>+0(SB), R2
WFMADB V2, V0, V4, V0
FMOVD 0(R2), F1
MOVD $sincosc4<>+0(SB), R2
WFMADB V2, V0, V1, V0
FMOVD 0(R2), F4
MOVD $sincosc2<>+0(SB), R2
FMOVD 0(R2), F1
WFMADB V6, V4, V1, V4
MOVD $sincosc3<>+0(SB), R2
FMOVD 0(R2), F3
MOVD $sincosc1<>+0(SB), R2
WFMADB V6, V0, V3, V0
FMOVD 0(R2), F1
WFMADB V2, V4, V1, V4
TMLL R1, $2
WFMADB V6, V0, V4, V0
MOVD $sincosc0<>+0(SB), R1
FMOVD 0(R1), F4
WFMADB V2, V0, V4, V0
BNE L34
FMOVD F0, ret+8(FP)
RET
L25:
FMOVD 0(R2), F3
WFCHDBS V3, V1, V1
BNE L33
MOVD $sincoss7<>+0(SB), R2
FMOVD 0(R2), F1
MOVD $sincoss6<>+0(SB), R2
FMOVD 0(R2), F3
MOVD $sincoss5<>+0(SB), R2
WFMADB V2, V1, V3, V1
FMOVD 0(R2), F3
MOVD $sincoss4<>+0(SB), R2
WFMADB V2, V1, V3, V1
FMOVD 0(R2), F3
MOVD $sincoss2<>+0(SB), R2
FMOVD 0(R2), F7
WFMADB V6, V3, V7, V3
MOVD $sincoss3<>+0(SB), R2
FMADD F5, F4, F0
FMOVD 0(R2), F4
MOVD $sincoss1<>+0(SB), R2
FMADD F1, F6, F4
FMOVD 0(R2), F1
FMADD F3, F2, F1
FMUL F0, F2
WFMADB V6, V4, V1, V6
TMLL R1, $2
FMADD F6, F2, F0
BNE L34
FMOVD F0, ret+8(FP)
RET
L33:
MOVD $sincosxnan<>+0(SB), R1
FMOVD 0(R1), F0
FMOVD F0, ret+8(FP)
RET
L36:
FMUL F0, F0
MOVD $sincosc0<>+0(SB), R1
WFMDB V0, V0, V1
WFMADB V0, V4, V20, V4
WFMADB V1, V6, V16, V6
WFMADB V0, V4, V18, V4
WFMADB V0, V6, V5, V6
WFMADB V1, V4, V7, V4
FMOVD 0(R1), F2
WFMADB V1, V4, V6, V4
WFMADB V0, V4, V2, V0
FMOVD F0, ret+8(FP)
RET
L35:
FNEG F0, F1
BR L21
L34:
FNEG F0, F0
FMOVD F0, ret+8(FP)
RET