mirror of
https://github.com/golang/go
synced 2024-11-19 14:14:40 -07:00
7d4cca07d2
While debugging a recent regression it was discovered that the assembler for ppc64x was not always generating the correct instruction for DS form loads and stores. When an instruction is DS form then the offset must be a multiple of 4, and if it isn't then bits outside the offset field were being incorrectly set resulting in unexpected and incorrect instructions. This change adds a check to determine when the opcode is DS form and then verifies that the offset is a multiple of 4 before generating the instruction, otherwise logs an error. This also changes a few asm files that were using unaligned offsets for DS form loads and stores. In the runtime package these were instructions intended to cause a crash so using aligned or unaligned offsets doesn't change that behavior. Change-Id: Ie3a7e1e65dcc9933b54de7a46a054da8459cb56f Reviewed-on: https://go-review.googlesource.com/40476 Reviewed-by: Michael Hudson-Doyle <michael.hudson@canonical.com>
1394 lines
36 KiB
ArmAsm
1394 lines
36 KiB
ArmAsm
// Copyright 2014 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// +build ppc64 ppc64le
|
|
|
|
#include "go_asm.h"
|
|
#include "go_tls.h"
|
|
#include "funcdata.h"
|
|
#include "textflag.h"
|
|
#include "asm_ppc64x.h"
|
|
|
|
TEXT runtime·rt0_go(SB),NOSPLIT,$0
|
|
// R1 = stack; R3 = argc; R4 = argv; R13 = C TLS base pointer
|
|
|
|
// initialize essential registers
|
|
BL runtime·reginit(SB)
|
|
|
|
SUB $(FIXED_FRAME+16), R1
|
|
MOVD R2, 24(R1) // stash the TOC pointer away again now we've created a new frame
|
|
MOVW R3, FIXED_FRAME+0(R1) // argc
|
|
MOVD R4, FIXED_FRAME+8(R1) // argv
|
|
|
|
// create istack out of the given (operating system) stack.
|
|
// _cgo_init may update stackguard.
|
|
MOVD $runtime·g0(SB), g
|
|
MOVD $(-64*1024), R31
|
|
ADD R31, R1, R3
|
|
MOVD R3, g_stackguard0(g)
|
|
MOVD R3, g_stackguard1(g)
|
|
MOVD R3, (g_stack+stack_lo)(g)
|
|
MOVD R1, (g_stack+stack_hi)(g)
|
|
|
|
// if there is a _cgo_init, call it using the gcc ABI.
|
|
MOVD _cgo_init(SB), R12
|
|
CMP R0, R12
|
|
BEQ nocgo
|
|
MOVD R12, CTR // r12 = "global function entry point"
|
|
MOVD R13, R5 // arg 2: TLS base pointer
|
|
MOVD $setg_gcc<>(SB), R4 // arg 1: setg
|
|
MOVD g, R3 // arg 0: G
|
|
// C functions expect 32 bytes of space on caller stack frame
|
|
// and a 16-byte aligned R1
|
|
MOVD R1, R14 // save current stack
|
|
SUB $32, R1 // reserve 32 bytes
|
|
RLDCR $0, R1, $~15, R1 // 16-byte align
|
|
BL (CTR) // may clobber R0, R3-R12
|
|
MOVD R14, R1 // restore stack
|
|
MOVD 24(R1), R2
|
|
XOR R0, R0 // fix R0
|
|
|
|
nocgo:
|
|
// update stackguard after _cgo_init
|
|
MOVD (g_stack+stack_lo)(g), R3
|
|
ADD $const__StackGuard, R3
|
|
MOVD R3, g_stackguard0(g)
|
|
MOVD R3, g_stackguard1(g)
|
|
|
|
// set the per-goroutine and per-mach "registers"
|
|
MOVD $runtime·m0(SB), R3
|
|
|
|
// save m->g0 = g0
|
|
MOVD g, m_g0(R3)
|
|
// save m0 to g0->m
|
|
MOVD R3, g_m(g)
|
|
|
|
BL runtime·check(SB)
|
|
|
|
// args are already prepared
|
|
BL runtime·args(SB)
|
|
BL runtime·osinit(SB)
|
|
BL runtime·schedinit(SB)
|
|
|
|
// create a new goroutine to start program
|
|
MOVD $runtime·mainPC(SB), R3 // entry
|
|
MOVDU R3, -8(R1)
|
|
MOVDU R0, -8(R1)
|
|
MOVDU R0, -8(R1)
|
|
MOVDU R0, -8(R1)
|
|
MOVDU R0, -8(R1)
|
|
MOVDU R0, -8(R1)
|
|
BL runtime·newproc(SB)
|
|
ADD $(16+FIXED_FRAME), R1
|
|
|
|
// start this M
|
|
BL runtime·mstart(SB)
|
|
|
|
MOVD R0, 0(R0)
|
|
RET
|
|
|
|
DATA runtime·mainPC+0(SB)/8,$runtime·main(SB)
|
|
GLOBL runtime·mainPC(SB),RODATA,$8
|
|
|
|
TEXT runtime·breakpoint(SB),NOSPLIT|NOFRAME,$0-0
|
|
MOVD R0, 0(R0) // TODO: TD
|
|
RET
|
|
|
|
TEXT runtime·asminit(SB),NOSPLIT|NOFRAME,$0-0
|
|
RET
|
|
|
|
TEXT _cgo_reginit(SB),NOSPLIT|NOFRAME,$0-0
|
|
// crosscall_ppc64 and crosscall2 need to reginit, but can't
|
|
// get at the 'runtime.reginit' symbol.
|
|
BR runtime·reginit(SB)
|
|
|
|
TEXT runtime·reginit(SB),NOSPLIT|NOFRAME,$0-0
|
|
// set R0 to zero, it's expected by the toolchain
|
|
XOR R0, R0
|
|
RET
|
|
|
|
/*
|
|
* go-routine
|
|
*/
|
|
|
|
// void gosave(Gobuf*)
|
|
// save state in Gobuf; setjmp
|
|
TEXT runtime·gosave(SB), NOSPLIT|NOFRAME, $0-8
|
|
MOVD buf+0(FP), R3
|
|
MOVD R1, gobuf_sp(R3)
|
|
MOVD LR, R31
|
|
MOVD R31, gobuf_pc(R3)
|
|
MOVD g, gobuf_g(R3)
|
|
MOVD R0, gobuf_lr(R3)
|
|
MOVD R0, gobuf_ret(R3)
|
|
// Assert ctxt is zero. See func save.
|
|
MOVD gobuf_ctxt(R3), R3
|
|
CMP R0, R3
|
|
BEQ 2(PC)
|
|
BL runtime·badctxt(SB)
|
|
RET
|
|
|
|
// void gogo(Gobuf*)
|
|
// restore state from Gobuf; longjmp
|
|
TEXT runtime·gogo(SB), NOSPLIT, $16-8
|
|
MOVD buf+0(FP), R5
|
|
|
|
// If ctxt is not nil, invoke deletion barrier before overwriting.
|
|
MOVD gobuf_ctxt(R5), R3
|
|
CMP R0, R3
|
|
BEQ nilctxt
|
|
MOVD $gobuf_ctxt(R5), R3
|
|
MOVD R3, FIXED_FRAME+0(R1)
|
|
MOVD R0, FIXED_FRAME+8(R1)
|
|
BL runtime·writebarrierptr_prewrite(SB)
|
|
MOVD buf+0(FP), R5
|
|
|
|
nilctxt:
|
|
MOVD gobuf_g(R5), g // make sure g is not nil
|
|
BL runtime·save_g(SB)
|
|
|
|
MOVD 0(g), R4
|
|
MOVD gobuf_sp(R5), R1
|
|
MOVD gobuf_lr(R5), R31
|
|
MOVD R31, LR
|
|
MOVD gobuf_ret(R5), R3
|
|
MOVD gobuf_ctxt(R5), R11
|
|
MOVD R0, gobuf_sp(R5)
|
|
MOVD R0, gobuf_ret(R5)
|
|
MOVD R0, gobuf_lr(R5)
|
|
MOVD R0, gobuf_ctxt(R5)
|
|
CMP R0, R0 // set condition codes for == test, needed by stack split
|
|
MOVD gobuf_pc(R5), R12
|
|
MOVD R12, CTR
|
|
BR (CTR)
|
|
|
|
// void mcall(fn func(*g))
|
|
// Switch to m->g0's stack, call fn(g).
|
|
// Fn must never return. It should gogo(&g->sched)
|
|
// to keep running g.
|
|
TEXT runtime·mcall(SB), NOSPLIT|NOFRAME, $0-8
|
|
// Save caller state in g->sched
|
|
MOVD R1, (g_sched+gobuf_sp)(g)
|
|
MOVD LR, R31
|
|
MOVD R31, (g_sched+gobuf_pc)(g)
|
|
MOVD R0, (g_sched+gobuf_lr)(g)
|
|
MOVD g, (g_sched+gobuf_g)(g)
|
|
|
|
// Switch to m->g0 & its stack, call fn.
|
|
MOVD g, R3
|
|
MOVD g_m(g), R8
|
|
MOVD m_g0(R8), g
|
|
BL runtime·save_g(SB)
|
|
CMP g, R3
|
|
BNE 2(PC)
|
|
BR runtime·badmcall(SB)
|
|
MOVD fn+0(FP), R11 // context
|
|
MOVD 0(R11), R12 // code pointer
|
|
MOVD R12, CTR
|
|
MOVD (g_sched+gobuf_sp)(g), R1 // sp = m->g0->sched.sp
|
|
MOVDU R3, -8(R1)
|
|
MOVDU R0, -8(R1)
|
|
MOVDU R0, -8(R1)
|
|
MOVDU R0, -8(R1)
|
|
MOVDU R0, -8(R1)
|
|
BL (CTR)
|
|
MOVD 24(R1), R2
|
|
BR runtime·badmcall2(SB)
|
|
|
|
// systemstack_switch is a dummy routine that systemstack leaves at the bottom
|
|
// of the G stack. We need to distinguish the routine that
|
|
// lives at the bottom of the G stack from the one that lives
|
|
// at the top of the system stack because the one at the top of
|
|
// the system stack terminates the stack walk (see topofstack()).
|
|
TEXT runtime·systemstack_switch(SB), NOSPLIT, $0-0
|
|
// We have several undefs here so that 16 bytes past
|
|
// $runtime·systemstack_switch lies within them whether or not the
|
|
// instructions that derive r2 from r12 are there.
|
|
UNDEF
|
|
UNDEF
|
|
UNDEF
|
|
BL (LR) // make sure this function is not leaf
|
|
RET
|
|
|
|
// func systemstack(fn func())
|
|
TEXT runtime·systemstack(SB), NOSPLIT, $0-8
|
|
MOVD fn+0(FP), R3 // R3 = fn
|
|
MOVD R3, R11 // context
|
|
MOVD g_m(g), R4 // R4 = m
|
|
|
|
MOVD m_gsignal(R4), R5 // R5 = gsignal
|
|
CMP g, R5
|
|
BEQ noswitch
|
|
|
|
MOVD m_g0(R4), R5 // R5 = g0
|
|
CMP g, R5
|
|
BEQ noswitch
|
|
|
|
MOVD m_curg(R4), R6
|
|
CMP g, R6
|
|
BEQ switch
|
|
|
|
// Bad: g is not gsignal, not g0, not curg. What is it?
|
|
// Hide call from linker nosplit analysis.
|
|
MOVD $runtime·badsystemstack(SB), R12
|
|
MOVD R12, CTR
|
|
BL (CTR)
|
|
|
|
switch:
|
|
// save our state in g->sched. Pretend to
|
|
// be systemstack_switch if the G stack is scanned.
|
|
MOVD $runtime·systemstack_switch(SB), R6
|
|
ADD $16, R6 // get past prologue (including r2-setting instructions when they're there)
|
|
MOVD R6, (g_sched+gobuf_pc)(g)
|
|
MOVD R1, (g_sched+gobuf_sp)(g)
|
|
MOVD R0, (g_sched+gobuf_lr)(g)
|
|
MOVD g, (g_sched+gobuf_g)(g)
|
|
|
|
// switch to g0
|
|
MOVD R5, g
|
|
BL runtime·save_g(SB)
|
|
MOVD (g_sched+gobuf_sp)(g), R3
|
|
// make it look like mstart called systemstack on g0, to stop traceback
|
|
SUB $FIXED_FRAME, R3
|
|
MOVD $runtime·mstart(SB), R4
|
|
MOVD R4, 0(R3)
|
|
MOVD R3, R1
|
|
|
|
// call target function
|
|
MOVD 0(R11), R12 // code pointer
|
|
MOVD R12, CTR
|
|
BL (CTR)
|
|
|
|
// restore TOC pointer. It seems unlikely that we will use systemstack
|
|
// to call a function defined in another module, but the results of
|
|
// doing so would be so confusing that it's worth doing this.
|
|
MOVD g_m(g), R3
|
|
MOVD m_curg(R3), g
|
|
MOVD (g_sched+gobuf_sp)(g), R3
|
|
MOVD 24(R3), R2
|
|
// switch back to g
|
|
MOVD g_m(g), R3
|
|
MOVD m_curg(R3), g
|
|
BL runtime·save_g(SB)
|
|
MOVD (g_sched+gobuf_sp)(g), R1
|
|
MOVD R0, (g_sched+gobuf_sp)(g)
|
|
RET
|
|
|
|
noswitch:
|
|
// already on m stack, just call directly
|
|
MOVD 0(R11), R12 // code pointer
|
|
MOVD R12, CTR
|
|
BL (CTR)
|
|
MOVD 24(R1), R2
|
|
RET
|
|
|
|
/*
|
|
* support for morestack
|
|
*/
|
|
|
|
// Called during function prolog when more stack is needed.
|
|
// Caller has already loaded:
|
|
// R3: framesize, R4: argsize, R5: LR
|
|
//
|
|
// The traceback routines see morestack on a g0 as being
|
|
// the top of a stack (for example, morestack calling newstack
|
|
// calling the scheduler calling newm calling gc), so we must
|
|
// record an argument size. For that purpose, it has no arguments.
|
|
TEXT runtime·morestack(SB),NOSPLIT|NOFRAME,$0-0
|
|
// Cannot grow scheduler stack (m->g0).
|
|
MOVD g_m(g), R7
|
|
MOVD m_g0(R7), R8
|
|
CMP g, R8
|
|
BNE 3(PC)
|
|
BL runtime·badmorestackg0(SB)
|
|
BL runtime·abort(SB)
|
|
|
|
// Cannot grow signal stack (m->gsignal).
|
|
MOVD m_gsignal(R7), R8
|
|
CMP g, R8
|
|
BNE 3(PC)
|
|
BL runtime·badmorestackgsignal(SB)
|
|
BL runtime·abort(SB)
|
|
|
|
// Called from f.
|
|
// Set g->sched to context in f.
|
|
MOVD R1, (g_sched+gobuf_sp)(g)
|
|
MOVD LR, R8
|
|
MOVD R8, (g_sched+gobuf_pc)(g)
|
|
MOVD R5, (g_sched+gobuf_lr)(g)
|
|
// newstack will fill gobuf.ctxt.
|
|
|
|
// Called from f.
|
|
// Set m->morebuf to f's caller.
|
|
MOVD R5, (m_morebuf+gobuf_pc)(R7) // f's caller's PC
|
|
MOVD R1, (m_morebuf+gobuf_sp)(R7) // f's caller's SP
|
|
MOVD g, (m_morebuf+gobuf_g)(R7)
|
|
|
|
// Call newstack on m->g0's stack.
|
|
MOVD m_g0(R7), g
|
|
BL runtime·save_g(SB)
|
|
MOVD (g_sched+gobuf_sp)(g), R1
|
|
MOVDU R0, -(FIXED_FRAME+8)(R1) // create a call frame on g0
|
|
MOVD R11, FIXED_FRAME+0(R1) // ctxt argument
|
|
BL runtime·newstack(SB)
|
|
|
|
// Not reached, but make sure the return PC from the call to newstack
|
|
// is still in this function, and not the beginning of the next.
|
|
UNDEF
|
|
|
|
TEXT runtime·morestack_noctxt(SB),NOSPLIT|NOFRAME,$0-0
|
|
MOVD R0, R11
|
|
BR runtime·morestack(SB)
|
|
|
|
// reflectcall: call a function with the given argument list
|
|
// func call(argtype *_type, f *FuncVal, arg *byte, argsize, retoffset uint32).
|
|
// we don't have variable-sized frames, so we use a small number
|
|
// of constant-sized-frame functions to encode a few bits of size in the pc.
|
|
// Caution: ugly multiline assembly macros in your future!
|
|
|
|
#define DISPATCH(NAME,MAXSIZE) \
|
|
MOVD $MAXSIZE, R31; \
|
|
CMP R3, R31; \
|
|
BGT 4(PC); \
|
|
MOVD $NAME(SB), R12; \
|
|
MOVD R12, CTR; \
|
|
BR (CTR)
|
|
// Note: can't just "BR NAME(SB)" - bad inlining results.
|
|
|
|
TEXT reflect·call(SB), NOSPLIT, $0-0
|
|
BR ·reflectcall(SB)
|
|
|
|
TEXT ·reflectcall(SB), NOSPLIT|NOFRAME, $0-32
|
|
MOVWZ argsize+24(FP), R3
|
|
DISPATCH(runtime·call32, 32)
|
|
DISPATCH(runtime·call64, 64)
|
|
DISPATCH(runtime·call128, 128)
|
|
DISPATCH(runtime·call256, 256)
|
|
DISPATCH(runtime·call512, 512)
|
|
DISPATCH(runtime·call1024, 1024)
|
|
DISPATCH(runtime·call2048, 2048)
|
|
DISPATCH(runtime·call4096, 4096)
|
|
DISPATCH(runtime·call8192, 8192)
|
|
DISPATCH(runtime·call16384, 16384)
|
|
DISPATCH(runtime·call32768, 32768)
|
|
DISPATCH(runtime·call65536, 65536)
|
|
DISPATCH(runtime·call131072, 131072)
|
|
DISPATCH(runtime·call262144, 262144)
|
|
DISPATCH(runtime·call524288, 524288)
|
|
DISPATCH(runtime·call1048576, 1048576)
|
|
DISPATCH(runtime·call2097152, 2097152)
|
|
DISPATCH(runtime·call4194304, 4194304)
|
|
DISPATCH(runtime·call8388608, 8388608)
|
|
DISPATCH(runtime·call16777216, 16777216)
|
|
DISPATCH(runtime·call33554432, 33554432)
|
|
DISPATCH(runtime·call67108864, 67108864)
|
|
DISPATCH(runtime·call134217728, 134217728)
|
|
DISPATCH(runtime·call268435456, 268435456)
|
|
DISPATCH(runtime·call536870912, 536870912)
|
|
DISPATCH(runtime·call1073741824, 1073741824)
|
|
MOVD $runtime·badreflectcall(SB), R12
|
|
MOVD R12, CTR
|
|
BR (CTR)
|
|
|
|
#define CALLFN(NAME,MAXSIZE) \
|
|
TEXT NAME(SB), WRAPPER, $MAXSIZE-24; \
|
|
NO_LOCAL_POINTERS; \
|
|
/* copy arguments to stack */ \
|
|
MOVD arg+16(FP), R3; \
|
|
MOVWZ argsize+24(FP), R4; \
|
|
MOVD R1, R5; \
|
|
ADD $(FIXED_FRAME-1), R5; \
|
|
SUB $1, R3; \
|
|
ADD R5, R4; \
|
|
CMP R5, R4; \
|
|
BEQ 4(PC); \
|
|
MOVBZU 1(R3), R6; \
|
|
MOVBZU R6, 1(R5); \
|
|
BR -4(PC); \
|
|
/* call function */ \
|
|
MOVD f+8(FP), R11; \
|
|
MOVD (R11), R12; \
|
|
MOVD R12, CTR; \
|
|
PCDATA $PCDATA_StackMapIndex, $0; \
|
|
BL (CTR); \
|
|
MOVD 24(R1), R2; \
|
|
/* copy return values back */ \
|
|
MOVD argtype+0(FP), R7; \
|
|
MOVD arg+16(FP), R3; \
|
|
MOVWZ n+24(FP), R4; \
|
|
MOVWZ retoffset+28(FP), R6; \
|
|
ADD $FIXED_FRAME, R1, R5; \
|
|
ADD R6, R5; \
|
|
ADD R6, R3; \
|
|
SUB R6, R4; \
|
|
BL callRet<>(SB); \
|
|
RET
|
|
|
|
// callRet copies return values back at the end of call*. This is a
|
|
// separate function so it can allocate stack space for the arguments
|
|
// to reflectcallmove. It does not follow the Go ABI; it expects its
|
|
// arguments in registers.
|
|
TEXT callRet<>(SB), NOSPLIT, $32-0
|
|
MOVD R7, FIXED_FRAME+0(R1)
|
|
MOVD R3, FIXED_FRAME+8(R1)
|
|
MOVD R5, FIXED_FRAME+16(R1)
|
|
MOVD R4, FIXED_FRAME+24(R1)
|
|
BL runtime·reflectcallmove(SB)
|
|
RET
|
|
|
|
CALLFN(·call32, 32)
|
|
CALLFN(·call64, 64)
|
|
CALLFN(·call128, 128)
|
|
CALLFN(·call256, 256)
|
|
CALLFN(·call512, 512)
|
|
CALLFN(·call1024, 1024)
|
|
CALLFN(·call2048, 2048)
|
|
CALLFN(·call4096, 4096)
|
|
CALLFN(·call8192, 8192)
|
|
CALLFN(·call16384, 16384)
|
|
CALLFN(·call32768, 32768)
|
|
CALLFN(·call65536, 65536)
|
|
CALLFN(·call131072, 131072)
|
|
CALLFN(·call262144, 262144)
|
|
CALLFN(·call524288, 524288)
|
|
CALLFN(·call1048576, 1048576)
|
|
CALLFN(·call2097152, 2097152)
|
|
CALLFN(·call4194304, 4194304)
|
|
CALLFN(·call8388608, 8388608)
|
|
CALLFN(·call16777216, 16777216)
|
|
CALLFN(·call33554432, 33554432)
|
|
CALLFN(·call67108864, 67108864)
|
|
CALLFN(·call134217728, 134217728)
|
|
CALLFN(·call268435456, 268435456)
|
|
CALLFN(·call536870912, 536870912)
|
|
CALLFN(·call1073741824, 1073741824)
|
|
|
|
TEXT runtime·procyield(SB),NOSPLIT,$0-0
|
|
RET
|
|
|
|
// void jmpdefer(fv, sp);
|
|
// called from deferreturn.
|
|
// 1. grab stored LR for caller
|
|
// 2. sub 8 bytes to get back to either nop or toc reload before deferreturn
|
|
// 3. BR to fn
|
|
// When dynamically linking Go, it is not sufficient to rewind to the BL
|
|
// deferreturn -- we might be jumping between modules and so we need to reset
|
|
// the TOC pointer in r2. To do this, codegen inserts MOVD 24(R1), R2 *before*
|
|
// the BL deferreturn and jmpdefer rewinds to that.
|
|
TEXT runtime·jmpdefer(SB), NOSPLIT|NOFRAME, $0-16
|
|
MOVD 0(R1), R31
|
|
SUB $8, R31
|
|
MOVD R31, LR
|
|
|
|
MOVD fv+0(FP), R11
|
|
MOVD argp+8(FP), R1
|
|
SUB $FIXED_FRAME, R1
|
|
MOVD 0(R11), R12
|
|
MOVD R12, CTR
|
|
BR (CTR)
|
|
|
|
// Save state of caller into g->sched. Smashes R31.
|
|
TEXT gosave<>(SB),NOSPLIT|NOFRAME,$0
|
|
MOVD LR, R31
|
|
MOVD R31, (g_sched+gobuf_pc)(g)
|
|
MOVD R1, (g_sched+gobuf_sp)(g)
|
|
MOVD R0, (g_sched+gobuf_lr)(g)
|
|
MOVD R0, (g_sched+gobuf_ret)(g)
|
|
// Assert ctxt is zero. See func save.
|
|
MOVD (g_sched+gobuf_ctxt)(g), R31
|
|
CMP R0, R31
|
|
BEQ 2(PC)
|
|
BL runtime·badctxt(SB)
|
|
RET
|
|
|
|
// func asmcgocall(fn, arg unsafe.Pointer) int32
|
|
// Call fn(arg) on the scheduler stack,
|
|
// aligned appropriately for the gcc ABI.
|
|
// See cgocall.go for more details.
|
|
TEXT ·asmcgocall(SB),NOSPLIT,$0-20
|
|
MOVD fn+0(FP), R3
|
|
MOVD arg+8(FP), R4
|
|
|
|
MOVD R1, R7 // save original stack pointer
|
|
MOVD g, R5
|
|
|
|
// Figure out if we need to switch to m->g0 stack.
|
|
// We get called to create new OS threads too, and those
|
|
// come in on the m->g0 stack already.
|
|
MOVD g_m(g), R6
|
|
MOVD m_g0(R6), R6
|
|
CMP R6, g
|
|
BEQ g0
|
|
BL gosave<>(SB)
|
|
MOVD R6, g
|
|
BL runtime·save_g(SB)
|
|
MOVD (g_sched+gobuf_sp)(g), R1
|
|
|
|
// Now on a scheduling stack (a pthread-created stack).
|
|
g0:
|
|
// Save room for two of our pointers, plus 32 bytes of callee
|
|
// save area that lives on the caller stack.
|
|
SUB $48, R1
|
|
RLDCR $0, R1, $~15, R1 // 16-byte alignment for gcc ABI
|
|
MOVD R5, 40(R1) // save old g on stack
|
|
MOVD (g_stack+stack_hi)(R5), R5
|
|
SUB R7, R5
|
|
MOVD R5, 32(R1) // save depth in old g stack (can't just save SP, as stack might be copied during a callback)
|
|
MOVD R0, 0(R1) // clear back chain pointer (TODO can we give it real back trace information?)
|
|
// This is a "global call", so put the global entry point in r12
|
|
MOVD R3, R12
|
|
MOVD R12, CTR
|
|
MOVD R4, R3 // arg in r3
|
|
BL (CTR)
|
|
|
|
// C code can clobber R0, so set it back to 0. F27-F31 are
|
|
// callee save, so we don't need to recover those.
|
|
XOR R0, R0
|
|
// Restore g, stack pointer, toc pointer.
|
|
// R3 is errno, so don't touch it
|
|
MOVD 40(R1), g
|
|
MOVD (g_stack+stack_hi)(g), R5
|
|
MOVD 32(R1), R6
|
|
SUB R6, R5
|
|
MOVD 24(R5), R2
|
|
BL runtime·save_g(SB)
|
|
MOVD (g_stack+stack_hi)(g), R5
|
|
MOVD 32(R1), R6
|
|
SUB R6, R5
|
|
MOVD R5, R1
|
|
|
|
MOVW R3, ret+16(FP)
|
|
RET
|
|
|
|
// cgocallback(void (*fn)(void*), void *frame, uintptr framesize, uintptr ctxt)
|
|
// Turn the fn into a Go func (by taking its address) and call
|
|
// cgocallback_gofunc.
|
|
TEXT runtime·cgocallback(SB),NOSPLIT,$32-32
|
|
MOVD $fn+0(FP), R3
|
|
MOVD R3, FIXED_FRAME+0(R1)
|
|
MOVD frame+8(FP), R3
|
|
MOVD R3, FIXED_FRAME+8(R1)
|
|
MOVD framesize+16(FP), R3
|
|
MOVD R3, FIXED_FRAME+16(R1)
|
|
MOVD ctxt+24(FP), R3
|
|
MOVD R3, FIXED_FRAME+24(R1)
|
|
MOVD $runtime·cgocallback_gofunc(SB), R12
|
|
MOVD R12, CTR
|
|
BL (CTR)
|
|
RET
|
|
|
|
// cgocallback_gofunc(FuncVal*, void *frame, uintptr framesize, uintptr ctxt)
|
|
// See cgocall.go for more details.
|
|
TEXT ·cgocallback_gofunc(SB),NOSPLIT,$16-32
|
|
NO_LOCAL_POINTERS
|
|
|
|
// Load m and g from thread-local storage.
|
|
MOVB runtime·iscgo(SB), R3
|
|
CMP R3, $0
|
|
BEQ nocgo
|
|
BL runtime·load_g(SB)
|
|
nocgo:
|
|
|
|
// If g is nil, Go did not create the current thread.
|
|
// Call needm to obtain one for temporary use.
|
|
// In this case, we're running on the thread stack, so there's
|
|
// lots of space, but the linker doesn't know. Hide the call from
|
|
// the linker analysis by using an indirect call.
|
|
CMP g, $0
|
|
BEQ needm
|
|
|
|
MOVD g_m(g), R8
|
|
MOVD R8, savedm-8(SP)
|
|
BR havem
|
|
|
|
needm:
|
|
MOVD g, savedm-8(SP) // g is zero, so is m.
|
|
MOVD $runtime·needm(SB), R12
|
|
MOVD R12, CTR
|
|
BL (CTR)
|
|
|
|
// Set m->sched.sp = SP, so that if a panic happens
|
|
// during the function we are about to execute, it will
|
|
// have a valid SP to run on the g0 stack.
|
|
// The next few lines (after the havem label)
|
|
// will save this SP onto the stack and then write
|
|
// the same SP back to m->sched.sp. That seems redundant,
|
|
// but if an unrecovered panic happens, unwindm will
|
|
// restore the g->sched.sp from the stack location
|
|
// and then systemstack will try to use it. If we don't set it here,
|
|
// that restored SP will be uninitialized (typically 0) and
|
|
// will not be usable.
|
|
MOVD g_m(g), R8
|
|
MOVD m_g0(R8), R3
|
|
MOVD R1, (g_sched+gobuf_sp)(R3)
|
|
|
|
havem:
|
|
// Now there's a valid m, and we're running on its m->g0.
|
|
// Save current m->g0->sched.sp on stack and then set it to SP.
|
|
// Save current sp in m->g0->sched.sp in preparation for
|
|
// switch back to m->curg stack.
|
|
// NOTE: unwindm knows that the saved g->sched.sp is at 8(R1) aka savedsp-16(SP).
|
|
MOVD m_g0(R8), R3
|
|
MOVD (g_sched+gobuf_sp)(R3), R4
|
|
MOVD R4, savedsp-16(SP)
|
|
MOVD R1, (g_sched+gobuf_sp)(R3)
|
|
|
|
// Switch to m->curg stack and call runtime.cgocallbackg.
|
|
// Because we are taking over the execution of m->curg
|
|
// but *not* resuming what had been running, we need to
|
|
// save that information (m->curg->sched) so we can restore it.
|
|
// We can restore m->curg->sched.sp easily, because calling
|
|
// runtime.cgocallbackg leaves SP unchanged upon return.
|
|
// To save m->curg->sched.pc, we push it onto the stack.
|
|
// This has the added benefit that it looks to the traceback
|
|
// routine like cgocallbackg is going to return to that
|
|
// PC (because the frame we allocate below has the same
|
|
// size as cgocallback_gofunc's frame declared above)
|
|
// so that the traceback will seamlessly trace back into
|
|
// the earlier calls.
|
|
//
|
|
// In the new goroutine, -8(SP) is unused (where SP refers to
|
|
// m->curg's SP while we're setting it up, before we've adjusted it).
|
|
MOVD m_curg(R8), g
|
|
BL runtime·save_g(SB)
|
|
MOVD (g_sched+gobuf_sp)(g), R4 // prepare stack as R4
|
|
MOVD (g_sched+gobuf_pc)(g), R5
|
|
MOVD R5, -(FIXED_FRAME+16)(R4)
|
|
MOVD ctxt+24(FP), R3
|
|
MOVD R3, -16(R4)
|
|
MOVD $-(FIXED_FRAME+16)(R4), R1
|
|
BL runtime·cgocallbackg(SB)
|
|
|
|
// Restore g->sched (== m->curg->sched) from saved values.
|
|
MOVD 0(R1), R5
|
|
MOVD R5, (g_sched+gobuf_pc)(g)
|
|
MOVD $(FIXED_FRAME+16)(R1), R4
|
|
MOVD R4, (g_sched+gobuf_sp)(g)
|
|
|
|
// Switch back to m->g0's stack and restore m->g0->sched.sp.
|
|
// (Unlike m->curg, the g0 goroutine never uses sched.pc,
|
|
// so we do not have to restore it.)
|
|
MOVD g_m(g), R8
|
|
MOVD m_g0(R8), g
|
|
BL runtime·save_g(SB)
|
|
MOVD (g_sched+gobuf_sp)(g), R1
|
|
MOVD savedsp-16(SP), R4
|
|
MOVD R4, (g_sched+gobuf_sp)(g)
|
|
|
|
// If the m on entry was nil, we called needm above to borrow an m
|
|
// for the duration of the call. Since the call is over, return it with dropm.
|
|
MOVD savedm-8(SP), R6
|
|
CMP R6, $0
|
|
BNE droppedm
|
|
MOVD $runtime·dropm(SB), R12
|
|
MOVD R12, CTR
|
|
BL (CTR)
|
|
droppedm:
|
|
|
|
// Done!
|
|
RET
|
|
|
|
// void setg(G*); set g. for use by needm.
|
|
TEXT runtime·setg(SB), NOSPLIT, $0-8
|
|
MOVD gg+0(FP), g
|
|
// This only happens if iscgo, so jump straight to save_g
|
|
BL runtime·save_g(SB)
|
|
RET
|
|
|
|
// void setg_gcc(G*); set g in C TLS.
|
|
// Must obey the gcc calling convention.
|
|
TEXT setg_gcc<>(SB),NOSPLIT|NOFRAME,$0-0
|
|
// The standard prologue clobbers R31, which is callee-save in
|
|
// the C ABI, so we have to use $-8-0 and save LR ourselves.
|
|
MOVD LR, R4
|
|
// Also save g and R31, since they're callee-save in C ABI
|
|
MOVD R31, R5
|
|
MOVD g, R6
|
|
|
|
MOVD R3, g
|
|
BL runtime·save_g(SB)
|
|
|
|
MOVD R6, g
|
|
MOVD R5, R31
|
|
MOVD R4, LR
|
|
RET
|
|
|
|
TEXT runtime·getcallerpc(SB),NOSPLIT,$8-16
|
|
MOVD FIXED_FRAME+8(R1), R3 // LR saved by caller
|
|
MOVD R3, ret+8(FP)
|
|
RET
|
|
|
|
TEXT runtime·abort(SB),NOSPLIT|NOFRAME,$0-0
|
|
MOVW (R0), R0
|
|
UNDEF
|
|
|
|
#define TBRL 268
|
|
#define TBRU 269 /* Time base Upper/Lower */
|
|
|
|
// int64 runtime·cputicks(void)
|
|
TEXT runtime·cputicks(SB),NOSPLIT,$0-8
|
|
MOVW SPR(TBRU), R4
|
|
MOVW SPR(TBRL), R3
|
|
MOVW SPR(TBRU), R5
|
|
CMPW R4, R5
|
|
BNE -4(PC)
|
|
SLD $32, R5
|
|
OR R5, R3
|
|
MOVD R3, ret+0(FP)
|
|
RET
|
|
|
|
// memhash_varlen(p unsafe.Pointer, h seed) uintptr
|
|
// redirects to memhash(p, h, size) using the size
|
|
// stored in the closure.
|
|
TEXT runtime·memhash_varlen(SB),NOSPLIT,$40-24
|
|
GO_ARGS
|
|
NO_LOCAL_POINTERS
|
|
MOVD p+0(FP), R3
|
|
MOVD h+8(FP), R4
|
|
MOVD 8(R11), R5
|
|
MOVD R3, FIXED_FRAME+0(R1)
|
|
MOVD R4, FIXED_FRAME+8(R1)
|
|
MOVD R5, FIXED_FRAME+16(R1)
|
|
BL runtime·memhash(SB)
|
|
MOVD FIXED_FRAME+24(R1), R3
|
|
MOVD R3, ret+16(FP)
|
|
RET
|
|
|
|
// AES hashing not implemented for ppc64
|
|
TEXT runtime·aeshash(SB),NOSPLIT|NOFRAME,$0-0
|
|
MOVW (R0), R1
|
|
TEXT runtime·aeshash32(SB),NOSPLIT|NOFRAME,$0-0
|
|
MOVW (R0), R1
|
|
TEXT runtime·aeshash64(SB),NOSPLIT|NOFRAME,$0-0
|
|
MOVW (R0), R1
|
|
TEXT runtime·aeshashstr(SB),NOSPLIT|NOFRAME,$0-0
|
|
MOVW (R0), R1
|
|
|
|
TEXT runtime·memequal(SB),NOSPLIT,$0-25
|
|
MOVD a+0(FP), R3
|
|
MOVD b+8(FP), R4
|
|
MOVD size+16(FP), R5
|
|
|
|
BL runtime·memeqbody(SB)
|
|
MOVB R9, ret+24(FP)
|
|
RET
|
|
|
|
// memequal_varlen(a, b unsafe.Pointer) bool
|
|
TEXT runtime·memequal_varlen(SB),NOSPLIT,$40-17
|
|
MOVD a+0(FP), R3
|
|
MOVD b+8(FP), R4
|
|
CMP R3, R4
|
|
BEQ eq
|
|
MOVD 8(R11), R5 // compiler stores size at offset 8 in the closure
|
|
BL runtime·memeqbody(SB)
|
|
MOVB R9, ret+16(FP)
|
|
RET
|
|
eq:
|
|
MOVD $1, R3
|
|
MOVB R3, ret+16(FP)
|
|
RET
|
|
|
|
// Do an efficient memcmp for ppc64le
|
|
// R3 = s1 len
|
|
// R4 = s2 len
|
|
// R5 = s1 addr
|
|
// R6 = s2 addr
|
|
// R7 = addr of return value
|
|
TEXT cmpbodyLE<>(SB),NOSPLIT|NOFRAME,$0-0
|
|
MOVD R3,R8 // set up length
|
|
CMP R3,R4,CR2 // unequal?
|
|
BC 12,8,setuplen // BLT CR2
|
|
MOVD R4,R8 // use R4 for comparison len
|
|
setuplen:
|
|
MOVD R8,CTR // set up loop counter
|
|
CMP R8,$8 // only optimize >=8
|
|
BLT simplecheck
|
|
DCBT (R5) // cache hint
|
|
DCBT (R6)
|
|
CMP R8,$32 // optimize >= 32
|
|
MOVD R8,R9
|
|
BLT setup8a // 8 byte moves only
|
|
setup32a:
|
|
SRADCC $5,R8,R9 // number of 32 byte chunks
|
|
MOVD R9,CTR
|
|
|
|
// Special processing for 32 bytes or longer.
|
|
// Loading this way is faster and correct as long as the
|
|
// doublewords being compared are equal. Once they
|
|
// are found unequal, reload them in proper byte order
|
|
// to determine greater or less than.
|
|
loop32a:
|
|
MOVD 0(R5),R9 // doublewords to compare
|
|
MOVD 0(R6),R10 // get 4 doublewords
|
|
MOVD 8(R5),R14
|
|
MOVD 8(R6),R15
|
|
CMPU R9,R10 // bytes equal?
|
|
MOVD $0,R16 // set up for cmpne
|
|
BNE cmpne // further compare for LT or GT
|
|
MOVD 16(R5),R9 // get next pair of doublewords
|
|
MOVD 16(R6),R10
|
|
CMPU R14,R15 // bytes match?
|
|
MOVD $8,R16 // set up for cmpne
|
|
BNE cmpne // further compare for LT or GT
|
|
MOVD 24(R5),R14 // get next pair of doublewords
|
|
MOVD 24(R6),R15
|
|
CMPU R9,R10 // bytes match?
|
|
MOVD $16,R16 // set up for cmpne
|
|
BNE cmpne // further compare for LT or GT
|
|
MOVD $-8,R16 // for cmpne, R5,R6 already inc by 32
|
|
ADD $32,R5 // bump up to next 32
|
|
ADD $32,R6
|
|
CMPU R14,R15 // bytes match?
|
|
BC 8,2,loop32a // br ctr and cr
|
|
BNE cmpne
|
|
ANDCC $24,R8,R9 // Any 8 byte chunks?
|
|
BEQ leftover // and result is 0
|
|
setup8a:
|
|
SRADCC $3,R9,R9 // get the 8 byte count
|
|
BEQ leftover // shifted value is 0
|
|
MOVD R9,CTR // loop count for doublewords
|
|
loop8:
|
|
MOVDBR (R5+R0),R9 // doublewords to compare
|
|
MOVDBR (R6+R0),R10 // LE compare order
|
|
ADD $8,R5
|
|
ADD $8,R6
|
|
CMPU R9,R10 // match?
|
|
BC 8,2,loop8 // bt ctr <> 0 && cr
|
|
BGT greater
|
|
BLT less
|
|
leftover:
|
|
ANDCC $7,R8,R9 // check for leftover bytes
|
|
MOVD R9,CTR // save the ctr
|
|
BNE simple // leftover bytes
|
|
BC 12,10,equal // test CR2 for length comparison
|
|
BC 12,8,less
|
|
BR greater
|
|
simplecheck:
|
|
CMP R8,$0 // remaining compare length 0
|
|
BNE simple // do simple compare
|
|
BC 12,10,equal // test CR2 for length comparison
|
|
BC 12,8,less // 1st len < 2nd len, result less
|
|
BR greater // 1st len > 2nd len must be greater
|
|
simple:
|
|
MOVBZ 0(R5), R9 // get byte from 1st operand
|
|
ADD $1,R5
|
|
MOVBZ 0(R6), R10 // get byte from 2nd operand
|
|
ADD $1,R6
|
|
CMPU R9, R10
|
|
BC 8,2,simple // bc ctr <> 0 && cr
|
|
BGT greater // 1st > 2nd
|
|
BLT less // 1st < 2nd
|
|
BC 12,10,equal // test CR2 for length comparison
|
|
BC 12,9,greater // 2nd len > 1st len
|
|
BR less // must be less
|
|
cmpne: // only here is not equal
|
|
MOVDBR (R5+R16),R8 // reload in reverse order
|
|
MOVDBR (R6+R16),R9
|
|
CMPU R8,R9 // compare correct endianness
|
|
BGT greater // here only if NE
|
|
less:
|
|
MOVD $-1,R3
|
|
MOVD R3,(R7) // return value if A < B
|
|
RET
|
|
equal:
|
|
MOVD $0,(R7) // return value if A == B
|
|
RET
|
|
greater:
|
|
MOVD $1,R3
|
|
MOVD R3,(R7) // return value if A > B
|
|
RET
|
|
|
|
// Do an efficient memcmp for ppc64 (BE)
|
|
// R3 = s1 len
|
|
// R4 = s2 len
|
|
// R5 = s1 addr
|
|
// R6 = s2 addr
|
|
// R7 = addr of return value
|
|
TEXT cmpbodyBE<>(SB),NOSPLIT|NOFRAME,$0-0
|
|
MOVD R3,R8 // set up length
|
|
CMP R3,R4,CR2 // unequal?
|
|
BC 12,8,setuplen // BLT CR2
|
|
MOVD R4,R8 // use R4 for comparison len
|
|
setuplen:
|
|
MOVD R8,CTR // set up loop counter
|
|
CMP R8,$8 // only optimize >=8
|
|
BLT simplecheck
|
|
DCBT (R5) // cache hint
|
|
DCBT (R6)
|
|
CMP R8,$32 // optimize >= 32
|
|
MOVD R8,R9
|
|
BLT setup8a // 8 byte moves only
|
|
|
|
setup32a:
|
|
SRADCC $5,R8,R9 // number of 32 byte chunks
|
|
MOVD R9,CTR
|
|
loop32a:
|
|
MOVD 0(R5),R9 // doublewords to compare
|
|
MOVD 0(R6),R10 // get 4 doublewords
|
|
MOVD 8(R5),R14
|
|
MOVD 8(R6),R15
|
|
CMPU R9,R10 // bytes equal?
|
|
BLT less // found to be less
|
|
BGT greater // found to be greater
|
|
MOVD 16(R5),R9 // get next pair of doublewords
|
|
MOVD 16(R6),R10
|
|
CMPU R14,R15 // bytes match?
|
|
BLT less // found less
|
|
BGT greater // found greater
|
|
MOVD 24(R5),R14 // get next pair of doublewords
|
|
MOVD 24(R6),R15
|
|
CMPU R9,R10 // bytes match?
|
|
BLT less // found to be less
|
|
BGT greater // found to be greater
|
|
ADD $32,R5 // bump up to next 32
|
|
ADD $32,R6
|
|
CMPU R14,R15 // bytes match?
|
|
BC 8,2,loop32a // br ctr and cr
|
|
BLT less // with BE, byte ordering is
|
|
BGT greater // good for compare
|
|
ANDCC $24,R8,R9 // Any 8 byte chunks?
|
|
BEQ leftover // and result is 0
|
|
setup8a:
|
|
SRADCC $3,R9,R9 // get the 8 byte count
|
|
BEQ leftover // shifted value is 0
|
|
MOVD R9,CTR // loop count for doublewords
|
|
loop8:
|
|
MOVD (R5),R9
|
|
MOVD (R6),R10
|
|
ADD $8,R5
|
|
ADD $8,R6
|
|
CMPU R9,R10 // match?
|
|
BC 8,2,loop8 // bt ctr <> 0 && cr
|
|
BGT greater
|
|
BLT less
|
|
leftover:
|
|
ANDCC $7,R8,R9 // check for leftover bytes
|
|
MOVD R9,CTR // save the ctr
|
|
BNE simple // leftover bytes
|
|
BC 12,10,equal // test CR2 for length comparison
|
|
BC 12,8,less
|
|
BR greater
|
|
simplecheck:
|
|
CMP R8,$0 // remaining compare length 0
|
|
BNE simple // do simple compare
|
|
BC 12,10,equal // test CR2 for length comparison
|
|
BC 12,8,less // 1st len < 2nd len, result less
|
|
BR greater // same len, must be equal
|
|
simple:
|
|
MOVBZ 0(R5),R9 // get byte from 1st operand
|
|
ADD $1,R5
|
|
MOVBZ 0(R6),R10 // get byte from 2nd operand
|
|
ADD $1,R6
|
|
CMPU R9,R10
|
|
BC 8,2,simple // bc ctr <> 0 && cr
|
|
BGT greater // 1st > 2nd
|
|
BLT less // 1st < 2nd
|
|
BC 12,10,equal // test CR2 for length comparison
|
|
BC 12,9,greater // 2nd len > 1st len
|
|
less:
|
|
MOVD $-1,R3
|
|
MOVD R3,(R7) // return value if A < B
|
|
RET
|
|
equal:
|
|
MOVD $0,(R7) // return value if A == B
|
|
RET
|
|
greater:
|
|
MOVD $1,R3
|
|
MOVD R3,(R7) // return value if A > B
|
|
RET
|
|
|
|
// Do an efficient memequal for ppc64
|
|
// R3 = s1
|
|
// R4 = s2
|
|
// R5 = len
|
|
// R9 = return value
|
|
TEXT runtime·memeqbody(SB),NOSPLIT|NOFRAME,$0-0
|
|
MOVD R5,CTR
|
|
CMP R5,$8 // only optimize >=8
|
|
BLT simplecheck
|
|
DCBT (R3) // cache hint
|
|
DCBT (R4)
|
|
CMP R5,$32 // optimize >= 32
|
|
MOVD R5,R6 // needed if setup8a branch
|
|
BLT setup8a // 8 byte moves only
|
|
setup32a: // 8 byte aligned, >= 32 bytes
|
|
SRADCC $5,R5,R6 // number of 32 byte chunks to compare
|
|
MOVD R6,CTR
|
|
loop32a:
|
|
MOVD 0(R3),R6 // doublewords to compare
|
|
MOVD 0(R4),R7
|
|
MOVD 8(R3),R8 //
|
|
MOVD 8(R4),R9
|
|
CMP R6,R7 // bytes batch?
|
|
BNE noteq
|
|
MOVD 16(R3),R6
|
|
MOVD 16(R4),R7
|
|
CMP R8,R9 // bytes match?
|
|
MOVD 24(R3),R8
|
|
MOVD 24(R4),R9
|
|
BNE noteq
|
|
CMP R6,R7 // bytes match?
|
|
BNE noteq
|
|
ADD $32,R3 // bump up to next 32
|
|
ADD $32,R4
|
|
CMP R8,R9 // bytes match?
|
|
BC 8,2,loop32a // br ctr and cr
|
|
BNE noteq
|
|
ANDCC $24,R5,R6 // Any 8 byte chunks?
|
|
BEQ leftover // and result is 0
|
|
setup8a:
|
|
SRADCC $3,R6,R6 // get the 8 byte count
|
|
BEQ leftover // shifted value is 0
|
|
MOVD R6,CTR
|
|
loop8:
|
|
MOVD 0(R3),R6 // doublewords to compare
|
|
ADD $8,R3
|
|
MOVD 0(R4),R7
|
|
ADD $8,R4
|
|
CMP R6,R7 // match?
|
|
BC 8,2,loop8 // bt ctr <> 0 && cr
|
|
BNE noteq
|
|
leftover:
|
|
ANDCC $7,R5,R6 // check for leftover bytes
|
|
BEQ equal
|
|
MOVD R6,CTR
|
|
BR simple
|
|
simplecheck:
|
|
CMP R5,$0
|
|
BEQ equal
|
|
simple:
|
|
MOVBZ 0(R3), R6
|
|
ADD $1,R3
|
|
MOVBZ 0(R4), R7
|
|
ADD $1,R4
|
|
CMP R6, R7
|
|
BNE noteq
|
|
BC 8,2,simple
|
|
BNE noteq
|
|
BR equal
|
|
noteq:
|
|
MOVD $0, R9
|
|
RET
|
|
equal:
|
|
MOVD $1, R9
|
|
RET
|
|
|
|
// eqstring tests whether two strings are equal.
|
|
// The compiler guarantees that strings passed
|
|
// to eqstring have equal length.
|
|
// See runtime_test.go:eqstring_generic for
|
|
// equivalent Go code.
|
|
TEXT runtime·eqstring(SB),NOSPLIT,$0-33
|
|
MOVD s1_base+0(FP), R3
|
|
MOVD s2_base+16(FP), R4
|
|
MOVD $1, R5
|
|
MOVB R5, ret+32(FP)
|
|
CMP R3, R4
|
|
BNE 2(PC)
|
|
RET
|
|
MOVD s1_len+8(FP), R5
|
|
BL runtime·memeqbody(SB)
|
|
MOVB R9, ret+32(FP)
|
|
RET
|
|
|
|
TEXT bytes·Equal(SB),NOSPLIT,$0-49
|
|
MOVD a_len+8(FP), R4
|
|
MOVD b_len+32(FP), R5
|
|
CMP R5, R4 // unequal lengths are not equal
|
|
BNE noteq
|
|
MOVD a+0(FP), R3
|
|
MOVD b+24(FP), R4
|
|
BL runtime·memeqbody(SB)
|
|
|
|
MOVBZ R9,ret+48(FP)
|
|
RET
|
|
|
|
noteq:
|
|
MOVBZ $0,ret+48(FP)
|
|
RET
|
|
|
|
equal:
|
|
MOVD $1,R3
|
|
MOVBZ R3,ret+48(FP)
|
|
RET
|
|
|
|
TEXT bytes·IndexByte(SB),NOSPLIT|NOFRAME,$0-40
|
|
MOVD s+0(FP), R3 // R3 = byte array pointer
|
|
MOVD s_len+8(FP), R4 // R4 = length
|
|
MOVBZ c+24(FP), R5 // R5 = byte
|
|
MOVD $ret+32(FP), R14 // R14 = &ret
|
|
BR runtime·indexbytebody<>(SB)
|
|
|
|
TEXT strings·IndexByte(SB),NOSPLIT|NOFRAME,$0-32
|
|
MOVD s+0(FP), R3 // R3 = string
|
|
MOVD s_len+8(FP), R4 // R4 = length
|
|
MOVBZ c+16(FP), R5 // R5 = byte
|
|
MOVD $ret+24(FP), R14 // R14 = &ret
|
|
BR runtime·indexbytebody<>(SB)
|
|
|
|
TEXT runtime·indexbytebody<>(SB),NOSPLIT|NOFRAME,$0-0
|
|
DCBT (R3) // Prepare cache line.
|
|
MOVD R3,R10 // Save base address for calculating the index later.
|
|
RLDICR $0,R3,$60,R8 // Align address to doubleword boundary in R8.
|
|
RLDIMI $8,R5,$48,R5 // Replicating the byte across the register.
|
|
|
|
// Calculate last acceptable address and check for possible overflow
|
|
// using a saturated add.
|
|
// Overflows set last acceptable address to 0xffffffffffffffff.
|
|
ADD R4,R3,R7
|
|
SUBC R3,R7,R6
|
|
SUBE R0,R0,R9
|
|
MOVW R9,R6
|
|
OR R6,R7,R7
|
|
|
|
RLDIMI $16,R5,$32,R5
|
|
CMPU R4,$32 // Check if it's a small string (<32 bytes). Those will be processed differently.
|
|
MOVD $-1,R9
|
|
WORD $0x54661EB8 // Calculate padding in R6 (rlwinm r6,r3,3,26,28).
|
|
RLDIMI $32,R5,$0,R5
|
|
ADD $-1,R7,R7
|
|
#ifdef GOARCH_ppc64le
|
|
SLD R6,R9,R9 // Prepare mask for Little Endian
|
|
#else
|
|
SRD R6,R9,R9 // Same for Big Endian
|
|
#endif
|
|
BLE small_string // Jump to the small string case if it's <32 bytes.
|
|
|
|
// Case for length >32 bytes
|
|
MOVD 0(R8),R12 // Load one doubleword from the aligned address in R8.
|
|
CMPB R12,R5,R3 // Check for a match.
|
|
AND R9,R3,R3 // Mask bytes below s_base
|
|
RLDICL $0,R7,$61,R4 // length-1
|
|
RLDICR $0,R7,$60,R7 // Last doubleword in R7
|
|
CMPU R3,$0,CR7 // If we have a match, jump to the final computation
|
|
BNE CR7,done
|
|
|
|
// Check for doubleword alignment and jump to the loop setup if aligned.
|
|
MOVFL R8,CR7
|
|
BC 12,28,loop_setup
|
|
|
|
// Not aligned, so handle the second doubleword
|
|
MOVDU 8(R8),R12
|
|
CMPB R12,R5,R3
|
|
CMPU R3,$0,CR7
|
|
BNE CR7,done
|
|
|
|
loop_setup:
|
|
// We are now aligned to a 16-byte boundary. We will load two doublewords
|
|
// per loop iteration. The last doubleword is in R7, so our loop counter
|
|
// starts at (R7-R8)/16.
|
|
SUB R8,R7,R6
|
|
SRD $4,R6,R6
|
|
MOVD R6,CTR
|
|
|
|
// Note: when we have an align directive, align this loop to 32 bytes so
|
|
// it fits in a single icache sector.
|
|
loop:
|
|
// Load two doublewords, then compare and merge in a single register. We
|
|
// will check two doublewords per iteration, then find out which of them
|
|
// contains the byte later. This speeds up the search.
|
|
MOVD 8(R8),R12
|
|
MOVDU 16(R8),R11
|
|
CMPB R12,R5,R3
|
|
CMPB R11,R5,R9
|
|
OR R3,R9,R6
|
|
CMPU R6,$0,CR7
|
|
BNE CR7,found
|
|
BC 16,0,loop
|
|
|
|
// Counter zeroed, but we may have another doubleword to read
|
|
CMPU R8,R7
|
|
BEQ notfound
|
|
|
|
MOVDU 8(R8),R12
|
|
CMPB R12,R5,R3
|
|
CMPU R3,$0,CR6
|
|
BNE CR6,done
|
|
|
|
notfound:
|
|
MOVD $-1,R3
|
|
MOVD R3,(R14)
|
|
RET
|
|
|
|
found:
|
|
// One of the doublewords from the loop contains the byte we are looking
|
|
// for. Check the first doubleword and adjust the address if found.
|
|
CMPU R3,$0,CR6
|
|
ADD $-8,R8,R8
|
|
BNE CR6,done
|
|
|
|
// Not found, so it must be in the second doubleword of the merged pair.
|
|
MOVD R9,R3
|
|
ADD $8,R8,R8
|
|
|
|
done:
|
|
// At this point, R3 has 0xFF in the same position as the byte we are
|
|
// looking for in the doubleword. Use that to calculate the exact index
|
|
// of the byte.
|
|
#ifdef GOARCH_ppc64le
|
|
ADD $-1,R3,R11
|
|
ANDN R3,R11,R11
|
|
POPCNTD R11,R11 // Count trailing zeros (Little Endian).
|
|
#else
|
|
CNTLZD R3,R11 // Count leading zeros (Big Endian).
|
|
#endif
|
|
CMPU R8,R7 // Check if we are at the last doubleword.
|
|
SRD $3,R11 // Convert trailing zeros to bytes.
|
|
ADD R11,R8,R3
|
|
CMPU R11,R4,CR7 // If at the last doubleword, check the byte offset.
|
|
BNE return
|
|
BLE CR7,return
|
|
MOVD $-1,R3
|
|
MOVD R3,(R14)
|
|
RET
|
|
|
|
return:
|
|
SUB R10,R3 // Calculate index.
|
|
MOVD R3,(R14)
|
|
RET
|
|
|
|
small_string:
|
|
// We unroll this loop for better performance.
|
|
CMPU R4,$0 // Check for length=0
|
|
BEQ notfound
|
|
|
|
MOVD 0(R8),R12 // Load one doubleword from the aligned address in R8.
|
|
CMPB R12,R5,R3 // Check for a match.
|
|
AND R9,R3,R3 // Mask bytes below s_base.
|
|
CMPU R3,$0,CR7 // If we have a match, jump to the final computation.
|
|
RLDICL $0,R7,$61,R4 // length-1
|
|
RLDICR $0,R7,$60,R7 // Last doubleword in R7.
|
|
CMPU R8,R7
|
|
BNE CR7,done
|
|
BEQ notfound // Hit length.
|
|
|
|
MOVDU 8(R8),R12
|
|
CMPB R12,R5,R3
|
|
CMPU R3,$0,CR6
|
|
CMPU R8,R7
|
|
BNE CR6,done
|
|
BEQ notfound
|
|
|
|
MOVDU 8(R8),R12
|
|
CMPB R12,R5,R3
|
|
CMPU R3,$0,CR6
|
|
CMPU R8,R7
|
|
BNE CR6,done
|
|
BEQ notfound
|
|
|
|
MOVDU 8(R8),R12
|
|
CMPB R12,R5,R3
|
|
CMPU R3,$0,CR6
|
|
CMPU R8,R7
|
|
BNE CR6,done
|
|
BEQ notfound
|
|
|
|
MOVDU 8(R8),R12
|
|
CMPB R12,R5,R3
|
|
CMPU R3,$0,CR6
|
|
CMPU R8,R7
|
|
BNE CR6,done
|
|
BR notfound
|
|
|
|
TEXT runtime·cmpstring(SB),NOSPLIT|NOFRAME,$0-40
|
|
MOVD s1_base+0(FP), R5
|
|
MOVD s1_len+8(FP), R3
|
|
MOVD s2_base+16(FP), R6
|
|
MOVD s2_len+24(FP), R4
|
|
MOVD $ret+32(FP), R7
|
|
#ifdef GOARCH_ppc64le
|
|
BR cmpbodyLE<>(SB)
|
|
#else
|
|
BR cmpbodyBE<>(SB)
|
|
#endif
|
|
|
|
TEXT bytes·Compare(SB),NOSPLIT|NOFRAME,$0-56
|
|
MOVD s1+0(FP), R5
|
|
MOVD s1+8(FP), R3
|
|
MOVD s2+24(FP), R6
|
|
MOVD s2+32(FP), R4
|
|
MOVD $ret+48(FP), R7
|
|
#ifdef GOARCH_ppc64le
|
|
BR cmpbodyLE<>(SB)
|
|
#else
|
|
BR cmpbodyBE<>(SB)
|
|
#endif
|
|
|
|
TEXT runtime·return0(SB), NOSPLIT, $0
|
|
MOVW $0, R3
|
|
RET
|
|
|
|
// Called from cgo wrappers, this function returns g->m->curg.stack.hi.
|
|
// Must obey the gcc calling convention.
|
|
TEXT _cgo_topofstack(SB),NOSPLIT|NOFRAME,$0
|
|
// g (R30) and R31 are callee-save in the C ABI, so save them
|
|
MOVD g, R4
|
|
MOVD R31, R5
|
|
MOVD LR, R6
|
|
|
|
BL runtime·load_g(SB) // clobbers g (R30), R31
|
|
MOVD g_m(g), R3
|
|
MOVD m_curg(R3), R3
|
|
MOVD (g_stack+stack_hi)(R3), R3
|
|
|
|
MOVD R4, g
|
|
MOVD R5, R31
|
|
MOVD R6, LR
|
|
RET
|
|
|
|
// The top-most function running on a goroutine
|
|
// returns to goexit+PCQuantum.
|
|
//
|
|
// When dynamically linking Go, it can be returned to from a function
|
|
// implemented in a different module and so needs to reload the TOC pointer
|
|
// from the stack (although this function declares that it does not set up x-a
|
|
// frame, newproc1 does in fact allocate one for goexit and saves the TOC
|
|
// pointer in the correct place).
|
|
// goexit+_PCQuantum is halfway through the usual global entry point prologue
|
|
// that derives r2 from r12 which is a bit silly, but not harmful.
|
|
TEXT runtime·goexit(SB),NOSPLIT|NOFRAME,$0-0
|
|
MOVD 24(R1), R2
|
|
BL runtime·goexit1(SB) // does not return
|
|
// traceback from goexit1 must hit code range of goexit
|
|
MOVD R0, R0 // NOP
|
|
|
|
TEXT runtime·prefetcht0(SB),NOSPLIT,$0-8
|
|
RET
|
|
|
|
TEXT runtime·prefetcht1(SB),NOSPLIT,$0-8
|
|
RET
|
|
|
|
TEXT runtime·prefetcht2(SB),NOSPLIT,$0-8
|
|
RET
|
|
|
|
TEXT runtime·prefetchnta(SB),NOSPLIT,$0-8
|
|
RET
|
|
|
|
TEXT runtime·sigreturn(SB),NOSPLIT,$0-0
|
|
RET
|
|
|
|
// prepGoExitFrame saves the current TOC pointer (i.e. the TOC pointer for the
|
|
// module containing runtime) to the frame that goexit will execute in when
|
|
// the goroutine exits. It's implemented in assembly mainly because that's the
|
|
// easiest way to get access to R2.
|
|
TEXT runtime·prepGoExitFrame(SB),NOSPLIT,$0-8
|
|
MOVD sp+0(FP), R3
|
|
MOVD R2, 24(R3)
|
|
RET
|
|
|
|
TEXT runtime·addmoduledata(SB),NOSPLIT|NOFRAME,$0-0
|
|
ADD $-8, R1
|
|
MOVD R31, 0(R1)
|
|
MOVD runtime·lastmoduledatap(SB), R4
|
|
MOVD R3, moduledata_next(R4)
|
|
MOVD R3, runtime·lastmoduledatap(SB)
|
|
MOVD 0(R1), R31
|
|
ADD $8, R1
|
|
RET
|
|
|
|
TEXT ·checkASM(SB),NOSPLIT,$0-1
|
|
MOVW $1, R3
|
|
MOVB R3, ret+0(FP)
|
|
RET
|