1
0
mirror of https://github.com/golang/go synced 2024-11-19 01:14:39 -07:00
go/pointer/analysis.go
Alan Donovan 5d70784aca go.tools/pointer: replace Config.Print (callback) with a Result.PrintCalls (map).
This avoids leaking nodeids into client code before the
analysis has had a chance to run the (forthcoming) constraint
optimizer, which renumbers them.

R=crawshaw
CC=golang-dev
https://golang.org/cl/39410043
2013-12-10 09:15:39 -05:00

366 lines
12 KiB
Go

// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package pointer
// This file defines the main datatypes and Analyze function of the pointer analysis.
import (
"fmt"
"go/token"
"io"
"os"
"reflect"
"code.google.com/p/go.tools/go/types"
"code.google.com/p/go.tools/go/types/typemap"
"code.google.com/p/go.tools/ssa"
)
// object.flags bitmask values.
const (
otTagged = 1 << iota // type-tagged object
otIndirect // type-tagged object with indirect payload
otFunction // function object
)
// An object represents a contiguous block of memory to which some
// (generalized) pointer may point.
//
// (Note: most variables called 'obj' are not *objects but nodeids
// such that a.nodes[obj].obj != nil.)
//
type object struct {
// flags is a bitset of the node type (ot*) flags defined above.
flags uint32
// Number of following nodes belonging to the same "object"
// allocation. Zero for all other nodes.
size uint32
// data describes this object; it has one of these types:
//
// ssa.Value for an object allocated by an SSA operation.
// types.Type for an rtype instance object or *rtype-tagged object.
// string for an instrinsic object, e.g. the array behind os.Args.
// nil for an object allocated by an instrinsic.
// (cgn provides the identity of the intrinsic.)
data interface{}
// The call-graph node (=context) in which this object was allocated.
// May be nil for global objects: Global, Const, some Functions.
cgn *cgnode
}
// nodeid denotes a node.
// It is an index within analysis.nodes.
// We use small integers, not *node pointers, for many reasons:
// - they are smaller on 64-bit systems.
// - sets of them can be represented compactly in bitvectors or BDDs.
// - order matters; a field offset can be computed by simple addition.
type nodeid uint32
// A node is an equivalence class of memory locations.
// Nodes may be pointers, pointed-to locations, neither, or both.
//
// Nodes that are pointed-to locations ("labels") have an enclosing
// object (see analysis.enclosingObject).
//
type node struct {
// If non-nil, this node is the start of an object
// (addressable memory location).
// The following obj.size words implicitly belong to the object;
// they locate their object by scanning back.
obj *object
// The type of the field denoted by this node. Non-aggregate,
// unless this is an tagged.T node (i.e. the thing
// pointed to by an interface) in which case typ is that type.
typ types.Type
// subelement indicates which directly embedded subelement of
// an object of aggregate type (struct, tuple, array) this is.
subelement *fieldInfo // e.g. ".a.b[*].c"
// Points-to sets.
pts nodeset // points-to set of this node
prevPts nodeset // pts(n) in previous iteration (for difference propagation)
// Graph edges
copyTo nodeset // simple copy constraint edges
// Complex constraints attached to this node (x).
// - *loadConstraint y=*x
// - *offsetAddrConstraint y=&x.f or y=&x[0]
// - *storeConstraint *x=z
// - *typeFilterConstraint y=x.(I)
// - *untagConstraint y=x.(C)
// - *invokeConstraint y=x.f(params...)
complex constraintset
}
type constraint interface {
String() string
// For a complex constraint, returns the nodeid of the pointer
// to which it is attached.
ptr() nodeid
// solve is called for complex constraints when the pts for
// the node to which they are attached has changed.
solve(a *analysis, n *node, delta nodeset)
}
// dst = &src
// pts(dst) ⊇ {src}
// A base constraint used to initialize the solver's pt sets
type addrConstraint struct {
dst nodeid // (ptr)
src nodeid
}
// dst = src
// A simple constraint represented directly as a copyTo graph edge.
type copyConstraint struct {
dst nodeid
src nodeid // (ptr)
}
// dst = src[offset]
// A complex constraint attached to src (the pointer)
type loadConstraint struct {
offset uint32
dst nodeid
src nodeid // (ptr)
}
// dst[offset] = src
// A complex constraint attached to dst (the pointer)
type storeConstraint struct {
offset uint32
dst nodeid // (ptr)
src nodeid
}
// dst = &src.f or dst = &src[0]
// A complex constraint attached to dst (the pointer)
type offsetAddrConstraint struct {
offset uint32
dst nodeid
src nodeid // (ptr)
}
// dst = src.(typ) where typ is an interface
// A complex constraint attached to src (the interface).
// No representation change: pts(dst) and pts(src) contains tagged objects.
type typeFilterConstraint struct {
typ types.Type // an interface type
dst nodeid
src nodeid // (ptr)
}
// dst = src.(typ) where typ is a concrete type
// A complex constraint attached to src (the interface).
//
// If exact, only tagged objects identical to typ are untagged.
// If !exact, tagged objects assignable to typ are untagged too.
// The latter is needed for various reflect operators, e.g. Send.
//
// This entails a representation change:
// pts(src) contains tagged objects,
// pts(dst) contains their payloads.
type untagConstraint struct {
typ types.Type // a concrete type
dst nodeid
src nodeid // (ptr)
exact bool
}
// src.method(params...)
// A complex constraint attached to iface.
type invokeConstraint struct {
method *types.Func // the abstract method
iface nodeid // (ptr) the interface
params nodeid // the first parameter in the params/results block
}
// An analysis instance holds the state of a single pointer analysis problem.
type analysis struct {
config *Config // the client's control/observer interface
prog *ssa.Program // the program being analyzed
log io.Writer // log stream; nil to disable
panicNode nodeid // sink for panic, source for recover
nodes []*node // indexed by nodeid
flattenMemo map[types.Type][]*fieldInfo // memoization of flatten()
constraints []constraint // set of constraints
cgnodes []*cgnode // all cgnodes
genq []*cgnode // queue of functions to generate constraints for
intrinsics map[*ssa.Function]intrinsic // non-nil values are summaries for intrinsic fns
probes map[*ssa.CallCommon]nodeid // maps call to print() to argument variable
globalval map[ssa.Value]nodeid // node for each global ssa.Value
globalobj map[ssa.Value]nodeid // maps v to sole member of pts(v), if singleton
localval map[ssa.Value]nodeid // node for each local ssa.Value
localobj map[ssa.Value]nodeid // maps v to sole member of pts(v), if singleton
work worklist // solver's worklist
result *Result // results of the analysis
// Reflection & intrinsics:
hasher typemap.Hasher // cache of type hashes
reflectValueObj types.Object // type symbol for reflect.Value (if present)
reflectValueCall *ssa.Function // (reflect.Value).Call
reflectRtypeObj types.Object // *types.TypeName for reflect.rtype (if present)
reflectRtypePtr *types.Pointer // *reflect.rtype
reflectType *types.Named // reflect.Type
rtypes typemap.M // nodeid of canonical *rtype-tagged object for type T
reflectZeros typemap.M // nodeid of canonical T-tagged object for zero value
runtimeSetFinalizer *ssa.Function // runtime.SetFinalizer
}
// enclosingObj returns the object (addressible memory object) that encloses node id.
// Panic ensues if that node does not belong to any object.
func (a *analysis) enclosingObj(id nodeid) *object {
// Find previous node with obj != nil.
for i := id; i >= 0; i-- {
n := a.nodes[i]
if obj := n.obj; obj != nil {
if i+nodeid(obj.size) <= id {
break // out of bounds
}
return obj
}
}
panic("node has no enclosing object")
}
// labelFor returns the Label for node id.
// Panic ensues if that node is not addressable.
func (a *analysis) labelFor(id nodeid) *Label {
return &Label{
obj: a.enclosingObj(id),
subelement: a.nodes[id].subelement,
}
}
func (a *analysis) warnf(pos token.Pos, format string, args ...interface{}) {
a.result.Warnings = append(a.result.Warnings, Warning{pos, fmt.Sprintf(format, args...)})
}
// Analyze runs the pointer analysis with the scope and options
// specified by config, and returns the (synthetic) root of the callgraph.
//
func Analyze(config *Config) *Result {
a := &analysis{
config: config,
log: config.Log,
prog: config.prog(),
globalval: make(map[ssa.Value]nodeid),
globalobj: make(map[ssa.Value]nodeid),
flattenMemo: make(map[types.Type][]*fieldInfo),
hasher: typemap.MakeHasher(),
intrinsics: make(map[*ssa.Function]intrinsic),
work: makeMapWorklist(),
result: &Result{
Queries: make(map[ssa.Value][]Pointer),
IndirectQueries: make(map[ssa.Value][]Pointer),
PrintCalls: make(map[*ssa.CallCommon]Pointer),
},
}
if false {
a.log = os.Stderr // for debugging crashes; extremely verbose
}
if a.log != nil {
fmt.Fprintln(a.log, "======== NEW ANALYSIS ========")
}
if reflect := a.prog.ImportedPackage("reflect"); reflect != nil {
rV := reflect.Object.Scope().Lookup("Value")
a.reflectValueObj = rV
a.reflectValueCall = a.prog.Method(rV.Type().MethodSet().Lookup(nil, "Call"))
a.reflectType = reflect.Object.Scope().Lookup("Type").Type().(*types.Named)
a.reflectRtypeObj = reflect.Object.Scope().Lookup("rtype")
a.reflectRtypePtr = types.NewPointer(a.reflectRtypeObj.Type())
// Override flattening of reflect.Value, treating it like a basic type.
tReflectValue := a.reflectValueObj.Type()
a.flattenMemo[tReflectValue] = []*fieldInfo{{typ: tReflectValue}}
a.rtypes.SetHasher(a.hasher)
a.reflectZeros.SetHasher(a.hasher)
}
if runtime := a.prog.ImportedPackage("runtime"); runtime != nil {
a.runtimeSetFinalizer = runtime.Func("SetFinalizer")
}
root := a.generate()
if a.log != nil {
// Show size of constraint system.
counts := make(map[reflect.Type]int)
for _, c := range a.constraints {
counts[reflect.TypeOf(c)]++
}
fmt.Fprintf(a.log, "# constraints:\t%d\n", len(a.constraints))
for t, n := range counts {
fmt.Fprintf(a.log, "\t%s:\t%d\n", t, n)
}
fmt.Fprintf(a.log, "# nodes:\t%d\n", len(a.nodes))
}
//a.optimize()
a.solve()
if a.log != nil {
// Dump solution.
for i, n := range a.nodes {
if n.pts != nil {
fmt.Fprintf(a.log, "pts(n%d) = %s : %s\n", i, n.pts, n.typ)
}
}
}
// Add dynamic edges to call graph.
for _, caller := range a.cgnodes {
for _, site := range caller.sites {
for callee := range a.nodes[site.targets].pts {
a.callEdge(site, callee)
}
}
}
if a.config.BuildCallGraph {
a.result.CallGraph = &cgraph{root, a.cgnodes}
}
return a.result
}
// callEdge is called for each edge in the callgraph.
// calleeid is the callee's object node (has otFunction flag).
//
func (a *analysis) callEdge(site *callsite, calleeid nodeid) {
obj := a.nodes[calleeid].obj
if obj.flags&otFunction == 0 {
panic(fmt.Sprintf("callEdge %s -> n%d: not a function object", site, calleeid))
}
callee := obj.cgn
if a.config.BuildCallGraph {
site.callees = append(site.callees, callee)
}
if a.log != nil {
fmt.Fprintf(a.log, "\tcall edge %s -> %s\n", site, callee)
}
// Warn about calls to non-intrinsic external functions.
// TODO(adonovan): de-dup these messages.
if fn := callee.fn; fn.Blocks == nil && a.findIntrinsic(fn) == nil {
a.warnf(site.pos(), "unsound call to unknown intrinsic: %s", fn)
a.warnf(fn.Pos(), " (declared here)")
}
}