1
0
mirror of https://github.com/golang/go synced 2024-11-18 16:14:46 -07:00
go/internal/lsp/diff/diff.go
Rebecca Stambler 8a24307720 internal/lsp/diff: fix sources listed for diff implementation
Change-Id: I36b2903f4938c4e7a3f15567e11ab31f3f7d78f7
Reviewed-on: https://go-review.googlesource.com/c/160840
Reviewed-by: Ian Cottrell <iancottrell@google.com>
2019-02-04 17:30:30 +00:00

264 lines
5.2 KiB
Go

// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package diff implements the Myers diff algorithm.
package diff
import "strings"
// Sources:
// https://blog.jcoglan.com/2017/02/17/the-myers-diff-algorithm-part-3/
// https://www.codeproject.com/Articles/42279/%2FArticles%2F42279%2FInvestigating-Myers-diff-algorithm-Part-1-of-2
type Op struct {
Kind OpKind
Content string
I1, I2 int // indices of the line in a
J1, J2 int // indices of the line in b
}
type OpKind int
const (
Delete OpKind = iota
Insert
Equal
)
func (k OpKind) String() string {
switch k {
case Delete:
return "delete"
case Insert:
return "insert"
case Equal:
return "equal"
default:
panic("unknown operation kind")
}
}
func ApplyEdits(a []string, operations []*Op) []string {
var b []string
var prevI2 int
for _, op := range operations {
// catch up to latest indices
if op.I1-prevI2 > 0 {
for _, c := range a[prevI2:op.I1] {
b = append(b, c)
}
}
switch op.Kind {
case Equal, Insert:
b = append(b, op.Content)
}
prevI2 = op.I2
}
// final catch up
if len(a)-prevI2 > 0 {
for _, c := range a[prevI2:len(a)] {
b = append(b, c)
}
}
return b
}
// Operations returns the list of operations to convert a into b, consolidating
// operations for multiple lines and not including equal lines.
func Operations(a, b []string) []*Op {
trace, offset := shortestEditSequence(a, b)
snakes := backtrack(trace, len(a), len(b), offset)
var i int
solution := make([]*Op, len(a)+len(b))
add := func(op *Op, i2, j2 int) {
if op == nil {
return
}
op.I2 = i2
op.J2 = j2
if op.Kind == Insert {
op.Content = strings.Join(b[op.J1:op.J2], "")
}
solution[i] = op
i++
}
x, y := 0, 0
for _, snake := range snakes {
if len(snake) < 2 {
continue
}
var op *Op
// delete (horizontal)
for snake[0]-snake[1] > x-y {
if op == nil {
op = &Op{
Kind: Delete,
I1: x,
J1: y,
}
}
x++
if x == len(a) {
break
}
}
add(op, x, y)
op = nil
// insert (vertical)
for snake[0]-snake[1] < x-y {
if op == nil {
op = &Op{
Kind: Insert,
I1: x,
J1: y,
}
}
y++
}
add(op, x, y)
op = nil
// equal (diagonal)
for x < snake[0] {
x++
y++
}
if x >= len(a) && y >= len(b) {
break
}
}
return solution[:i]
}
// Lines returns a list of per-line operations to convert a into b.
func Lines(a, b []string) []*Op {
trace, offset := shortestEditSequence(a, b)
snakes := backtrack(trace, len(a), len(b), offset)
var i int
solution := make([]*Op, len(a)+len(b))
x, y := 0, 0
for _, snake := range snakes {
if len(snake) < 2 {
continue
}
// horizontal
for snake[0]-snake[1] > x-y {
solution[i] = &Op{
Kind: Delete,
Content: a[x],
}
i++
x++
if x == len(a) {
break
}
}
// vertical
for snake[0]-snake[1] < x-y {
solution[i] = &Op{
Kind: Insert,
Content: b[y],
}
i++
y++
}
// diagonal
for x < snake[0] {
solution[i] = &Op{
Kind: Equal,
Content: a[x],
}
i++
x++
y++
}
if x >= len(a) && y >= len(b) {
break
}
}
return solution[:i]
}
// backtrack uses the trace for the edit sequence computation and returns the
// "snakes" that make up the solution. A "snake" is a single deletion or
// insertion followed by zero or diagnonals.
func backtrack(trace [][]int, x, y, offset int) [][]int {
snakes := make([][]int, len(trace))
d := len(trace) - 1
for ; x > 0 && y > 0 && d > 0; d-- {
V := trace[d]
if len(V) == 0 {
continue
}
snakes[d] = []int{x, y}
k := x - y
var kPrev int
if k == -d || (k != d && V[k-1+offset] < V[k+1+offset]) {
kPrev = k + 1
} else {
kPrev = k - 1
}
x = V[kPrev+offset]
y = x - kPrev
}
// this feels questionable
if x < 0 || y < 0 {
return snakes
}
snakes[d] = []int{x, y}
return snakes
}
// shortestEditSequence returns the shortest edit sequence that converts a into b.
func shortestEditSequence(a, b []string) ([][]int, int) {
M, N := len(a), len(b)
V := make([]int, 2*(N+M)+1)
offset := N + M
trace := make([][]int, N+M+1)
// Iterate through the maximum possible length of the SES (N+M).
for d := 0; d <= N+M; d++ {
// k lines are represented by the equation y = x - k. We move in
// increments of 2 because end points for even d are on even k lines.
for k := -d; k <= d; k += 2 {
// At each point, we either go down or to the right. We go down if
// k == -d, and we go to the right if k == d. We also prioritize
// the maximum x value, because we prefer deletions to insertions.
var x int
if k == -d || (k != d && V[k-1+offset] < V[k+1+offset]) {
x = V[k+1+offset] // down
} else {
x = V[k-1+offset] + 1 // right
}
y := x - k
// Diagonal moves while we have equal contents.
for x < M && y < N && a[x] == b[y] {
x++
y++
}
V[k+offset] = x
// Save the state of the array.
copyV := make([]int, len(V))
copy(copyV, V)
trace[d] = copyV
// Return if we've exceeded the maximum values.
if x >= M-1 && y >= N-1 {
return trace, offset
}
}
}
return nil, 0
}