1
0
mirror of https://github.com/golang/go synced 2024-11-05 14:36:11 -07:00
go/refactor/lexical/lexical.go
Alan Donovan 897f6677ae refactor/lexical: understand the structure of the lexical environment.
The Uses, Defs and Scope information provided by go/types is
inadequate for answering "what if?" queries about the
structure of the lexical environment.

In this code, for example,

        var x int

        func f() {
                print(x)
                x := ""
                print(x)
        }

the two referring Idents x appear at the same lexical depth,
inside the function f's Scope object, yet they resolve to
different objects.

This package associates a lexical.Environment instance with
every reference to capture these differences.  Each
environment is a linked list of enclosing Blocks, and for each
block, a number indicating what prefix of its bindings are
visible.  (Zero for the first 'x' reference above, 1 for the
second.)

+ Smoke test over stdlib.

This functionality could be integrated with the type checker
in lieu of the not-so-useful types.Info.Scopes data, at little
extra cost in code or in running time/space.  We should talk
about that.

LGTM=sameer
R=gri, sameer
CC=golang-codereviews
https://golang.org/cl/143790043
2014-09-19 13:11:01 -04:00

757 lines
18 KiB
Go

// Package lexical computes the structure of the lexical environment,
// including the definition of and references to all universal,
// package-level, file-level and function-local entities. It does not
// record qualified identifiers, labels, struct fields, or methods.
//
// It is intended for renaming and refactoring tools, which need a more
// precise understanding of identifier resolution than is available from
// the output of the type-checker alone.
//
// THIS INTERFACE IS EXPERIMENTAL AND MAY CHANGE OR BE REMOVED IN FUTURE.
//
package lexical
// OVERVIEW
//
// As we traverse the AST, we build a "spaghetti stack" of Blocks,
// i.e. a tree with parent edges pointing to the root. Each time we
// visit an identifier that's a reference into the lexical environment,
// we create and save an Environment, which captures the current mapping
// state of the Block; these are saved for the client.
//
// We don't bother recording non-lexical references.
// TODO(adonovan):
// - make it robust against syntax errors. Audit all type assertions, etc.
// - better still, after the Go 1.4 thaw, move this into go/types.
// I don't think it need be a big change since the visitor is already there;
// we just need to records Environments. lexical.Block is analogous
// to types.Scope.
import (
"fmt"
"go/ast"
"go/token"
"os"
"strconv"
"code.google.com/p/go.tools/go/types"
)
const trace = false
var logf = func(format string, args ...interface{}) {
fmt.Fprintf(os.Stderr, format, args...)
}
// A Block is a level of the lexical environment, a tree of blocks.
// It maps names to objects.
//
type Block struct {
kind string // one of universe package file func block if switch typeswitch case for range
syntax ast.Node // syntax declaring the block (nil for universe and package) [needed?]
parent Environment
bindings []types.Object // bindings in lexical order
index map[string]int // maps a name to the index of its binding, for fast lookup
}
// An Environment is a snapshot of a Block taken at a certain lexical
// position. It may contain bindings for fewer names than the
// (completed) block, or different bindings for names that are
// re-defined later in the block.
//
// For example, the lexical Block for the function f below contains a
// binding for the local var x, but the Environments captured by at the
// two print(x) calls differ: the first contains this binding, the
// second does not. The first Environment contains a different binding
// for x: the string var defined in the package block, an ancestor.
//
// var x string
// func f() {
// print(x)
// x := 1
// print(x)
// }
//
type Environment struct {
block *Block
nbindings int // length of prefix of block.bindings that's visible
}
// Depth returns the depth of this block in the block tree.
// The universal block has depth 1, a package block 2, a file block 3, etc.
func (b *Block) Depth() int {
if b == nil {
return 0
}
return 1 + b.parent.block.Depth()
}
// env returns an Environment that is a snapshot of b's current state.
func (b *Block) env() Environment {
return Environment{b, len(b.bindings)}
}
// Lookup returns the definition of name in the environment specified by
// env, and the Block that defines it, which may be an ancestor.
func (env Environment) Lookup(name string) (types.Object, *Block) {
if env.block == nil {
return nil, nil
}
return lookup(env.block, name, env.nbindings)
}
// nbindings specifies what prefix of b.bindings should be considered visible.
func lookup(b *Block, name string, nbindings int) (types.Object, *Block) {
if b == nil {
return nil, nil
}
if i, ok := b.index[name]; ok && i < nbindings {
return b.bindings[i], b
}
parent := b.parent
if parent.block == nil {
return nil, nil
}
return lookup(parent.block, name, parent.nbindings)
}
// Lookup returns the definition of name in the environment specified by
// b, and the Block that defines it, which may be an ancestor.
func (b *Block) Lookup(name string) (types.Object, *Block) {
return b.env().Lookup(name)
}
// Block returns the block of which this environment is a partial view.
func (env Environment) Block() *Block {
return env.block
}
func (env Environment) String() string {
return fmt.Sprintf("%s:%d", env.block, env.nbindings)
}
func (b *Block) String() string {
var s string
if b.parent.block != nil {
s = b.parent.block.String()
s += "."
}
return s + b.kind
}
var universe = &Block{kind: "universe", index: make(map[string]int)}
func init() {
for i, name := range types.Universe.Names() {
obj := types.Universe.Lookup(name)
universe.bindings = append(universe.bindings, obj)
universe.index[name] = i
}
}
// -- resolver ---------------------------------------------------------
// A Reference provides the lexical environment for a given reference to
// an object in lexical scope.
type Reference struct {
Id *ast.Ident
Env Environment
}
// resolver holds the state of the identifier resolution visitation:
// the package information, the result, and the current block.
type resolver struct {
fset *token.FileSet
imports map[string]*types.Package
pkg *types.Package
info *types.Info
// visitor state
block *Block
result *Info
}
func (r *resolver) setBlock(kind string, syntax ast.Node) *Block {
b := &Block{
kind: kind,
syntax: syntax,
parent: r.block.env(),
index: make(map[string]int),
}
if syntax != nil {
r.result.Blocks[syntax] = b
}
r.block = b
return b
}
func (r *resolver) use(id *ast.Ident, env Environment) {
if id.Name == "_" {
return // an error
}
obj, _ := env.Lookup(id.Name)
if obj == nil {
logf("%s: lookup of %s failed\n", r.fset.Position(id.Pos()), id.Name)
} else if want := r.info.Uses[id]; obj != want {
// sanity check against go/types resolver
logf("%s: internal error: lookup of %s yielded wrong object: got %v (%s), want %v\n",
r.fset.Position(id.Pos()), id.Name, types.ObjectString(r.pkg, obj),
r.fset.Position(obj.Pos()),
want)
}
if trace {
logf("use %s = %v in %s\n", id.Name, types.ObjectString(r.pkg, obj), env)
}
r.result.Refs[obj] = append(r.result.Refs[obj], Reference{id, env})
}
func (r *resolver) define(b *Block, id *ast.Ident) {
obj := r.info.Defs[id]
if obj == nil {
logf("%s: internal error: not a defining ident: %s\n",
r.fset.Position(id.Pos()), id.Name)
panic(id)
}
r.defineObject(b, id.Name, obj)
// Objects (other than PkgName) defined at file scope
// are also defined in the enclosing package scope.
if _, ok := b.syntax.(*ast.File); ok {
switch obj.(type) {
default:
r.defineObject(b.parent.block, id.Name, obj)
case nil, *types.PkgName:
}
}
}
// Used for implicit objects created by some ImportSpecs and CaseClauses.
func (r *resolver) defineImplicit(b *Block, n ast.Node, name string) {
obj := r.info.Implicits[n]
if obj == nil {
logf("%s: internal error: not an implicit definition: %T\n",
r.fset.Position(n.Pos()), n)
}
r.defineObject(b, name, obj)
}
func (r *resolver) defineObject(b *Block, name string, obj types.Object) {
if obj.Name() == "_" {
return
}
i := len(b.bindings)
b.bindings = append(b.bindings, obj)
b.index[name] = i
if trace {
logf("def %s = %s in %s\n", name, types.ObjectString(r.pkg, obj), b)
}
r.result.Defs[obj] = b
}
func (r *resolver) function(recv *ast.FieldList, typ *ast.FuncType, body *ast.BlockStmt, syntax ast.Node) {
// Use all signature types in enclosing block.
r.expr(typ)
r.fieldList(recv, false)
savedBlock := r.block // save
r.setBlock("func", syntax)
// Define all parameters/results, and visit the body, within the func block.
r.fieldList(typ.Params, true)
r.fieldList(typ.Results, true)
r.fieldList(recv, true)
if body != nil {
r.stmtList(body.List)
}
r.block = savedBlock // restore
}
func (r *resolver) fieldList(list *ast.FieldList, def bool) {
if list != nil {
for _, f := range list.List {
if def {
for _, id := range f.Names {
r.define(r.block, id)
}
} else {
r.expr(f.Type)
}
}
}
}
func (r *resolver) exprList(list []ast.Expr) {
for _, x := range list {
r.expr(x)
}
}
func (r *resolver) expr(n ast.Expr) {
switch n := n.(type) {
case *ast.BadExpr:
case *ast.BasicLit:
// no-op
case *ast.Ident:
r.use(n, r.block.env())
case *ast.Ellipsis:
if n.Elt != nil {
r.expr(n.Elt)
}
case *ast.FuncLit:
r.function(nil, n.Type, n.Body, n)
case *ast.CompositeLit:
if n.Type != nil {
r.expr(n.Type)
}
tv := r.info.Types[n]
if _, ok := deref(tv.Type).Underlying().(*types.Struct); ok {
for _, elt := range n.Elts {
if kv, ok := elt.(*ast.KeyValueExpr); ok {
r.expr(kv.Value)
// Also uses field kv.Key (non-lexical)
// id := kv.Key.(*ast.Ident)
// obj := r.info.Uses[id]
// logf("use %s = %v (field)\n",
// id.Name, types.ObjectString(r.pkg, obj))
// TODO make a fake FieldVal selection?
} else {
r.expr(elt)
}
}
} else {
r.exprList(n.Elts)
}
case *ast.ParenExpr:
r.expr(n.X)
case *ast.SelectorExpr:
r.expr(n.X)
// Non-lexical reference to field/method, or qualified identifier.
// if sel, ok := r.info.Selections[n]; ok { // selection
// switch sel.Kind() {
// case types.FieldVal:
// logf("use %s = %v (field)\n",
// n.Sel.Name, types.ObjectString(r.pkg, sel.Obj()))
// case types.MethodExpr, types.MethodVal:
// logf("use %s = %v (method)\n",
// n.Sel.Name, types.ObjectString(r.pkg, sel.Obj()))
// }
// } else { // qualified identifier
// obj := r.info.Uses[n.Sel]
// logf("use %s = %v (qualified)\n", n.Sel.Name, obj)
// }
case *ast.IndexExpr:
r.expr(n.X)
r.expr(n.Index)
case *ast.SliceExpr:
r.expr(n.X)
if n.Low != nil {
r.expr(n.Low)
}
if n.High != nil {
r.expr(n.High)
}
if n.Max != nil {
r.expr(n.Max)
}
case *ast.TypeAssertExpr:
r.expr(n.X)
if n.Type != nil {
r.expr(n.Type)
}
case *ast.CallExpr:
r.expr(n.Fun)
r.exprList(n.Args)
case *ast.StarExpr:
r.expr(n.X)
case *ast.UnaryExpr:
r.expr(n.X)
case *ast.BinaryExpr:
r.expr(n.X)
r.expr(n.Y)
case *ast.KeyValueExpr:
r.expr(n.Key)
r.expr(n.Value)
case *ast.ArrayType:
if n.Len != nil {
r.expr(n.Len)
}
r.expr(n.Elt)
case *ast.StructType:
// Use all the type names, but don't define any fields.
r.fieldList(n.Fields, false)
case *ast.FuncType:
// Use all the type names, but don't define any vars.
r.fieldList(n.Params, false)
r.fieldList(n.Results, false)
case *ast.InterfaceType:
// Use all the type names, but don't define any methods.
r.fieldList(n.Methods, false)
case *ast.MapType:
r.expr(n.Key)
r.expr(n.Value)
case *ast.ChanType:
r.expr(n.Value)
default:
panic(n)
}
}
func (r *resolver) stmtList(list []ast.Stmt) {
for _, s := range list {
r.stmt(s)
}
}
func (r *resolver) stmt(n ast.Stmt) {
switch n := n.(type) {
case *ast.BadStmt:
case *ast.EmptyStmt:
// nothing to do
case *ast.DeclStmt:
decl := n.Decl.(*ast.GenDecl)
for _, spec := range decl.Specs {
switch spec := spec.(type) {
case *ast.ValueSpec: // const or var
if spec.Type != nil {
r.expr(spec.Type)
}
r.exprList(spec.Values)
for _, name := range spec.Names {
r.define(r.block, name)
}
case *ast.TypeSpec:
r.define(r.block, spec.Name)
r.expr(spec.Type)
}
}
case *ast.LabeledStmt:
// Also defines label n.Label (non-lexical)
r.stmt(n.Stmt)
case *ast.ExprStmt:
r.expr(n.X)
case *ast.SendStmt:
r.expr(n.Chan)
r.expr(n.Value)
case *ast.IncDecStmt:
r.expr(n.X)
case *ast.AssignStmt:
if n.Tok == token.DEFINE {
r.exprList(n.Rhs)
for _, lhs := range n.Lhs {
id := lhs.(*ast.Ident)
if _, ok := r.info.Defs[id]; ok {
r.define(r.block, id)
} else {
r.use(id, r.block.env())
}
}
} else { // ASSIGN
r.exprList(n.Lhs)
r.exprList(n.Rhs)
}
case *ast.GoStmt:
r.expr(n.Call)
case *ast.DeferStmt:
r.expr(n.Call)
case *ast.ReturnStmt:
r.exprList(n.Results)
case *ast.BranchStmt:
if n.Label != nil {
// Also uses label n.Label (non-lexical)
}
case *ast.SelectStmt:
r.stmtList(n.Body.List)
case *ast.BlockStmt: // (explicit blocks only)
savedBlock := r.block // save
r.setBlock("block", n)
r.stmtList(n.List)
r.block = savedBlock // restore
case *ast.IfStmt:
savedBlock := r.block // save
r.setBlock("if", n)
if n.Init != nil {
r.stmt(n.Init)
}
r.expr(n.Cond)
r.stmt(n.Body) // new block
if n.Else != nil {
r.stmt(n.Else)
}
r.block = savedBlock // restore
case *ast.CaseClause:
savedBlock := r.block // save
r.setBlock("case", n)
if obj, ok := r.info.Implicits[n]; ok {
// e.g.
// switch y := x.(type) {
// case T: // we declare an implicit 'var y T' in this block
// }
r.defineImplicit(r.block, n, obj.Name())
}
r.exprList(n.List)
r.stmtList(n.Body)
r.block = savedBlock // restore
case *ast.SwitchStmt:
savedBlock := r.block // save
r.setBlock("switch", n)
if n.Init != nil {
r.stmt(n.Init)
}
if n.Tag != nil {
r.expr(n.Tag)
}
r.stmtList(n.Body.List)
r.block = savedBlock // restore
case *ast.TypeSwitchStmt:
savedBlock := r.block // save
r.setBlock("typeswitch", n)
if n.Init != nil {
r.stmt(n.Init)
}
if assign, ok := n.Assign.(*ast.AssignStmt); ok { // y := x.(type)
r.expr(assign.Rhs[0]) // skip y: not a defining ident
} else {
r.stmt(n.Assign)
}
r.stmtList(n.Body.List)
r.block = savedBlock // restore
case *ast.CommClause:
savedBlock := r.block // save
r.setBlock("case", n)
if n.Comm != nil {
r.stmt(n.Comm)
}
r.stmtList(n.Body)
r.block = savedBlock // restore
case *ast.ForStmt:
savedBlock := r.block // save
r.setBlock("for", n)
if n.Init != nil {
r.stmt(n.Init)
}
if n.Cond != nil {
r.expr(n.Cond)
}
if n.Post != nil {
r.stmt(n.Post)
}
r.stmt(n.Body)
r.block = savedBlock // restore
case *ast.RangeStmt:
r.expr(n.X)
savedBlock := r.block // save
r.setBlock("range", n)
if n.Tok == token.DEFINE {
if n.Key != nil {
r.define(r.block, n.Key.(*ast.Ident))
}
if n.Value != nil {
r.define(r.block, n.Value.(*ast.Ident))
}
} else {
if n.Key != nil {
r.expr(n.Key)
}
if n.Value != nil {
r.expr(n.Value)
}
}
r.stmt(n.Body)
r.block = savedBlock // restore
default:
panic(n)
}
}
func (r *resolver) doImport(s *ast.ImportSpec, fileBlock *Block) {
path, _ := strconv.Unquote(s.Path.Value)
pkg := r.imports[path]
if s.Name == nil { // normal
r.defineImplicit(fileBlock, s, pkg.Name())
} else if s.Name.Name == "." { // dot import
for _, name := range pkg.Scope().Names() {
if ast.IsExported(name) {
obj := pkg.Scope().Lookup(name)
r.defineObject(fileBlock, name, obj)
}
}
} else { // renaming import
r.define(fileBlock, s.Name)
}
}
func (r *resolver) doPackage(pkg *types.Package, files []*ast.File) {
r.block = universe
r.result.Blocks[nil] = universe
r.result.PackageBlock = r.setBlock("package", nil)
var fileBlocks []*Block
// 1. Insert all package-level objects into file and package blocks.
// (PkgName objects are only inserted into file blocks.)
for _, f := range files {
r.block = r.result.PackageBlock
fileBlock := r.setBlock("file", f) // package is not yet visible to file
fileBlocks = append(fileBlocks, fileBlock)
for _, d := range f.Decls {
switch d := d.(type) {
case *ast.GenDecl:
for _, s := range d.Specs {
switch s := s.(type) {
case *ast.ImportSpec:
r.doImport(s, fileBlock)
case *ast.ValueSpec: // const or var
for _, name := range s.Names {
r.define(r.result.PackageBlock, name)
}
case *ast.TypeSpec:
r.define(r.result.PackageBlock, s.Name)
}
}
case *ast.FuncDecl:
if d.Recv == nil { // function
if d.Name.Name != "init" {
r.define(r.result.PackageBlock, d.Name)
}
}
}
}
}
// 2. Now resolve bodies of GenDecls and FuncDecls.
for i, f := range files {
fileBlock := fileBlocks[i]
fileBlock.parent = r.result.PackageBlock.env() // make entire package visible to this file
for _, d := range f.Decls {
r.block = fileBlock
switch d := d.(type) {
case *ast.GenDecl:
for _, s := range d.Specs {
switch s := s.(type) {
case *ast.ValueSpec: // const or var
if s.Type != nil {
r.expr(s.Type)
}
r.exprList(s.Values)
case *ast.TypeSpec:
r.expr(s.Type)
}
}
case *ast.FuncDecl:
r.function(d.Recv, d.Type, d.Body, d)
}
}
}
r.block = nil
}
// An Info contains the lexical reference structure of a package.
type Info struct {
Defs map[types.Object]*Block // maps each object to its defining lexical block
Refs map[types.Object][]Reference // maps each object to the set of references to it
Blocks map[ast.Node]*Block // maps declaring syntax to block; nil => universe
PackageBlock *Block // the package-level lexical block
}
// Structure computes the structure of the lexical environment of the
// package specified by (pkg, info, files).
//
// The info.{Types,Defs,Uses,Implicits} maps must have been populated
// by the type-checker
//
// fset is used for logging.
//
func Structure(fset *token.FileSet, pkg *types.Package, info *types.Info, files []*ast.File) *Info {
r := resolver{
fset: fset,
imports: make(map[string]*types.Package),
result: &Info{
Defs: make(map[types.Object]*Block),
Refs: make(map[types.Object][]Reference),
Blocks: make(map[ast.Node]*Block),
},
pkg: pkg,
info: info,
}
// Build import map for just this package.
r.imports["unsafe"] = types.Unsafe
for _, imp := range pkg.Imports() {
r.imports[imp.Path()] = imp
}
r.doPackage(pkg, files)
return r.result
}
// -- Plundered from code.google.com/p/go.tools/go/ssa -----------------
// deref returns a pointer's element type; otherwise it returns typ.
func deref(typ types.Type) types.Type {
if p, ok := typ.Underlying().(*types.Pointer); ok {
return p.Elem()
}
return typ
}