mirror of
https://github.com/golang/go
synced 2024-11-19 13:34:45 -07:00
da4874cba4
Previously, the typeDead check in greyobject was under a separate !useCheckmark conditional. Put it with the rest of the !useCheckmark code. Also move a comment about atomic update of the marked bit to where we actually do that update now. Change-Id: Ief5f16401a25739ad57d959607b8d81ffe0bc211 Reviewed-on: https://go-review.googlesource.com/6271 Reviewed-by: Rick Hudson <rlh@golang.org>
903 lines
29 KiB
Go
903 lines
29 KiB
Go
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Garbage collector: type and heap bitmaps.
|
|
//
|
|
// Type bitmaps
|
|
//
|
|
// The global variables (in the data and bss sections) and types that aren't too large
|
|
// record information about the layout of their memory words using a type bitmap.
|
|
// The bitmap holds two bits for each pointer-sized word. The two-bit values are:
|
|
//
|
|
// 00 - typeDead: not a pointer, and no pointers in the rest of the object
|
|
// 01 - typeScalar: not a pointer
|
|
// 10 - typePointer: a pointer that GC should trace
|
|
// 11 - unused
|
|
//
|
|
// typeDead only appears in type bitmaps in Go type descriptors
|
|
// and in type bitmaps embedded in the heap bitmap (see below).
|
|
// It is not used in the type bitmap for the global variables.
|
|
//
|
|
// Heap bitmap
|
|
//
|
|
// The allocated heap comes from a subset of the memory in the range [start, used),
|
|
// where start == mheap_.arena_start and used == mheap_.arena_used.
|
|
// The heap bitmap comprises 4 bits for each pointer-sized word in that range,
|
|
// stored in bytes indexed backward in memory from start.
|
|
// That is, the byte at address start-1 holds the 4-bit entries for the two words
|
|
// start, start+ptrSize, the byte at start-2 holds the entries for start+2*ptrSize,
|
|
// start+3*ptrSize, and so on.
|
|
// In the byte holding the entries for addresses p and p+ptrSize, the low 4 bits
|
|
// describe p and the high 4 bits describe p+ptrSize.
|
|
//
|
|
// The 4 bits for each word are:
|
|
// 0001 - bitBoundary: this is the start of an object
|
|
// 0010 - bitMarked: this object has been marked by GC
|
|
// tt00 - word type bits, as in a type bitmap.
|
|
//
|
|
// The code makes use of the fact that the zero value for a heap bitmap nibble
|
|
// has no boundary bit set, no marked bit set, and type bits == typeDead.
|
|
// These properties must be preserved when modifying the encoding.
|
|
//
|
|
// Checkmarks
|
|
//
|
|
// In a concurrent garbage collector, one worries about failing to mark
|
|
// a live object due to mutations without write barriers or bugs in the
|
|
// collector implementation. As a sanity check, the GC has a 'checkmark'
|
|
// mode that retraverses the object graph with the world stopped, to make
|
|
// sure that everything that should be marked is marked.
|
|
// In checkmark mode, in the heap bitmap, the type bits for the first word
|
|
// of an object are redefined:
|
|
//
|
|
// 00 - typeScalarCheckmarked // typeScalar, checkmarked
|
|
// 01 - typeScalar // typeScalar, not checkmarked
|
|
// 10 - typePointer // typePointer, not checkmarked
|
|
// 11 - typePointerCheckmarked // typePointer, checkmarked
|
|
//
|
|
// That is, typeDead is redefined to be typeScalar + a checkmark, and the
|
|
// previously unused 11 pattern is redefined to be typePointer + a checkmark.
|
|
// To prepare for this mode, we must move any typeDead in the first word of
|
|
// a multiword object to the second word.
|
|
|
|
package runtime
|
|
|
|
import "unsafe"
|
|
|
|
const (
|
|
typeDead = 0
|
|
typeScalarCheckmarked = 0
|
|
typeScalar = 1
|
|
typePointer = 2
|
|
typePointerCheckmarked = 3
|
|
|
|
typeBitsWidth = 2 // # of type bits per pointer-sized word
|
|
typeMask = 1<<typeBitsWidth - 1
|
|
typeBitmapScale = ptrSize * (8 / typeBitsWidth) // number of data bytes per type bitmap byte
|
|
|
|
heapBitsWidth = 4
|
|
heapBitmapScale = ptrSize * (8 / heapBitsWidth) // number of data bytes per heap bitmap byte
|
|
bitBoundary = 1
|
|
bitMarked = 2
|
|
typeShift = 2
|
|
)
|
|
|
|
// Information from the compiler about the layout of stack frames.
|
|
type bitvector struct {
|
|
n int32 // # of bits
|
|
bytedata *uint8
|
|
}
|
|
|
|
// addb returns the byte pointer p+n.
|
|
//go:nowritebarrier
|
|
func addb(p *byte, n uintptr) *byte {
|
|
return (*byte)(add(unsafe.Pointer(p), n))
|
|
}
|
|
|
|
// subtractb returns the byte pointer p-n.
|
|
//go:nowritebarrier
|
|
func subtractb(p *byte, n uintptr) *byte {
|
|
return (*byte)(add(unsafe.Pointer(p), -n))
|
|
}
|
|
|
|
// mHeap_MapBits is called each time arena_used is extended.
|
|
// It maps any additional bitmap memory needed for the new arena memory.
|
|
//
|
|
//go:nowritebarrier
|
|
func mHeap_MapBits(h *mheap) {
|
|
// Caller has added extra mappings to the arena.
|
|
// Add extra mappings of bitmap words as needed.
|
|
// We allocate extra bitmap pieces in chunks of bitmapChunk.
|
|
const bitmapChunk = 8192
|
|
|
|
n := (mheap_.arena_used - mheap_.arena_start) / heapBitmapScale
|
|
n = round(n, bitmapChunk)
|
|
n = round(n, _PhysPageSize)
|
|
if h.bitmap_mapped >= n {
|
|
return
|
|
}
|
|
|
|
sysMap(unsafe.Pointer(h.arena_start-n), n-h.bitmap_mapped, h.arena_reserved, &memstats.gc_sys)
|
|
h.bitmap_mapped = n
|
|
}
|
|
|
|
// heapBits provides access to the bitmap bits for a single heap word.
|
|
// The methods on heapBits take value receivers so that the compiler
|
|
// can more easily inline calls to those methods and registerize the
|
|
// struct fields independently.
|
|
type heapBits struct {
|
|
bitp *uint8
|
|
shift uint32
|
|
}
|
|
|
|
// heapBitsForAddr returns the heapBits for the address addr.
|
|
// The caller must have already checked that addr is in the range [mheap_.arena_start, mheap_.arena_used).
|
|
func heapBitsForAddr(addr uintptr) heapBits {
|
|
off := (addr - mheap_.arena_start) / ptrSize
|
|
return heapBits{(*uint8)(unsafe.Pointer(mheap_.arena_start - off/2 - 1)), uint32(4 * (off & 1))}
|
|
}
|
|
|
|
// heapBitsForSpan returns the heapBits for the span base address base.
|
|
func heapBitsForSpan(base uintptr) (hbits heapBits) {
|
|
if base < mheap_.arena_start || base >= mheap_.arena_end {
|
|
throw("heapBitsForSpan: base out of range")
|
|
}
|
|
hbits = heapBitsForAddr(base)
|
|
if hbits.shift != 0 {
|
|
throw("heapBitsForSpan: unaligned start")
|
|
}
|
|
return hbits
|
|
}
|
|
|
|
// heapBitsForObject returns the base address for the heap object
|
|
// containing the address p, along with the heapBits for base.
|
|
// If p does not point into a heap object, heapBitsForObject returns base == 0.
|
|
func heapBitsForObject(p uintptr) (base uintptr, hbits heapBits) {
|
|
if p < mheap_.arena_start || p >= mheap_.arena_used {
|
|
return
|
|
}
|
|
|
|
// If heap bits for the pointer-sized word containing p have bitBoundary set,
|
|
// then we know this is the base of the object, and we can stop now.
|
|
// This handles the case where p is the base and, due to rounding
|
|
// when looking up the heap bits, also the case where p points beyond
|
|
// the base but still into the first pointer-sized word of the object.
|
|
hbits = heapBitsForAddr(p)
|
|
if hbits.isBoundary() {
|
|
base = p &^ (ptrSize - 1)
|
|
return
|
|
}
|
|
|
|
// Otherwise, p points into the middle of an object.
|
|
// Consult the span table to find the block beginning.
|
|
// TODO(rsc): Factor this out.
|
|
k := p >> _PageShift
|
|
x := k
|
|
x -= mheap_.arena_start >> _PageShift
|
|
s := h_spans[x]
|
|
if s == nil || pageID(k) < s.start || p >= s.limit || s.state != mSpanInUse {
|
|
if s == nil || s.state == _MSpanStack {
|
|
// If s is nil, the virtual address has never been part of the heap.
|
|
// This pointer may be to some mmap'd region, so we allow it.
|
|
// Pointers into stacks are also ok, the runtime manages these explicitly.
|
|
return
|
|
}
|
|
|
|
// The following ensures that we are rigorous about what data
|
|
// structures hold valid pointers.
|
|
// TODO(rsc): Check if this still happens.
|
|
if false {
|
|
// Still happens sometimes. We don't know why.
|
|
printlock()
|
|
print("runtime:objectstart Span weird: p=", hex(p), " k=", hex(k))
|
|
if s == nil {
|
|
print(" s=nil\n")
|
|
} else {
|
|
print(" s.start=", hex(s.start<<_PageShift), " s.limit=", hex(s.limit), " s.state=", s.state, "\n")
|
|
}
|
|
printunlock()
|
|
throw("objectstart: bad pointer in unexpected span")
|
|
}
|
|
return
|
|
}
|
|
base = s.base()
|
|
if p-base >= s.elemsize {
|
|
base += (p - base) / s.elemsize * s.elemsize
|
|
}
|
|
if base == p {
|
|
print("runtime: failed to find block beginning for ", hex(p), " s=", hex(s.start*_PageSize), " s.limit=", hex(s.limit), "\n")
|
|
throw("failed to find block beginning")
|
|
}
|
|
|
|
// Now that we know the actual base, compute heapBits to return to caller.
|
|
hbits = heapBitsForAddr(base)
|
|
if !hbits.isBoundary() {
|
|
throw("missing boundary at computed object start")
|
|
}
|
|
return
|
|
}
|
|
|
|
// next returns the heapBits describing the next pointer-sized word in memory.
|
|
// That is, if h describes address p, h.next() describes p+ptrSize.
|
|
// Note that next does not modify h. The caller must record the result.
|
|
func (h heapBits) next() heapBits {
|
|
if h.shift == 0 {
|
|
return heapBits{h.bitp, 4}
|
|
}
|
|
return heapBits{subtractb(h.bitp, 1), 0}
|
|
}
|
|
|
|
// isMarked reports whether the heap bits have the marked bit set.
|
|
func (h heapBits) isMarked() bool {
|
|
return *h.bitp&(bitMarked<<h.shift) != 0
|
|
}
|
|
|
|
// setMarked sets the marked bit in the heap bits, atomically.
|
|
func (h heapBits) setMarked() {
|
|
// Each byte of GC bitmap holds info for two words.
|
|
// Might be racing with other updates, so use atomic update always.
|
|
// We used to be clever here and use a non-atomic update in certain
|
|
// cases, but it's not worth the risk.
|
|
atomicor8(h.bitp, bitMarked<<h.shift)
|
|
}
|
|
|
|
// setMarkedNonAtomic sets the marked bit in the heap bits, non-atomically.
|
|
func (h heapBits) setMarkedNonAtomic() {
|
|
*h.bitp |= bitMarked << h.shift
|
|
}
|
|
|
|
// isBoundary reports whether the heap bits have the boundary bit set.
|
|
func (h heapBits) isBoundary() bool {
|
|
return *h.bitp&(bitBoundary<<h.shift) != 0
|
|
}
|
|
|
|
// Note that there is no setBoundary or setBoundaryNonAtomic.
|
|
// Boundaries are always in bulk, for the entire span.
|
|
|
|
// typeBits returns the heap bits' type bits.
|
|
func (h heapBits) typeBits() uint8 {
|
|
return (*h.bitp >> (h.shift + typeShift)) & typeMask
|
|
}
|
|
|
|
// isCheckmarked reports whether the heap bits have the checkmarked bit set.
|
|
func (h heapBits) isCheckmarked() bool {
|
|
typ := h.typeBits()
|
|
return typ == typeScalarCheckmarked || typ == typePointerCheckmarked
|
|
}
|
|
|
|
// setCheckmarked sets the checkmarked bit.
|
|
func (h heapBits) setCheckmarked() {
|
|
typ := h.typeBits()
|
|
if typ == typeScalar {
|
|
// Clear low type bit to turn 01 into 00.
|
|
atomicand8(h.bitp, ^((1 << typeShift) << h.shift))
|
|
} else if typ == typePointer {
|
|
// Set low type bit to turn 10 into 11.
|
|
atomicor8(h.bitp, (1<<typeShift)<<h.shift)
|
|
}
|
|
}
|
|
|
|
// The methods operating on spans all require that h has been returned
|
|
// by heapBitsForSpan and that size, n, total are the span layout description
|
|
// returned by the mspan's layout method.
|
|
// If total > size*n, it means that there is extra leftover memory in the span,
|
|
// usually due to rounding.
|
|
//
|
|
// TODO(rsc): Perhaps introduce a different heapBitsSpan type.
|
|
|
|
// initSpan initializes the heap bitmap for a span.
|
|
func (h heapBits) initSpan(size, n, total uintptr) {
|
|
if size == ptrSize {
|
|
// Only possible on 64-bit system, since minimum size is 8.
|
|
// Set all nibbles to bitBoundary using uint64 writes.
|
|
nbyte := n * ptrSize / heapBitmapScale
|
|
nuint64 := nbyte / 8
|
|
bitp := subtractb(h.bitp, nbyte-1)
|
|
for i := uintptr(0); i < nuint64; i++ {
|
|
const boundary64 = bitBoundary |
|
|
bitBoundary<<4 |
|
|
bitBoundary<<8 |
|
|
bitBoundary<<12 |
|
|
bitBoundary<<16 |
|
|
bitBoundary<<20 |
|
|
bitBoundary<<24 |
|
|
bitBoundary<<28 |
|
|
bitBoundary<<32 |
|
|
bitBoundary<<36 |
|
|
bitBoundary<<40 |
|
|
bitBoundary<<44 |
|
|
bitBoundary<<48 |
|
|
bitBoundary<<52 |
|
|
bitBoundary<<56 |
|
|
bitBoundary<<60
|
|
|
|
*(*uint64)(unsafe.Pointer(bitp)) = boundary64
|
|
bitp = addb(bitp, 8)
|
|
}
|
|
return
|
|
}
|
|
|
|
if size*n < total {
|
|
// To detect end of object during GC object scan,
|
|
// add boundary just past end of last block.
|
|
// The object scan knows to stop when it reaches
|
|
// the end of the span, but in this case the object
|
|
// ends before the end of the span.
|
|
//
|
|
// TODO(rsc): If the bitmap bits were going to be typeDead
|
|
// otherwise, what's the point of this?
|
|
// Can we delete this logic?
|
|
n++
|
|
}
|
|
step := size / heapBitmapScale
|
|
bitp := h.bitp
|
|
for i := uintptr(0); i < n; i++ {
|
|
*bitp = bitBoundary
|
|
bitp = subtractb(bitp, step)
|
|
}
|
|
}
|
|
|
|
// clearSpan clears the heap bitmap bytes for the span.
|
|
func (h heapBits) clearSpan(size, n, total uintptr) {
|
|
if total%heapBitmapScale != 0 {
|
|
throw("clearSpan: unaligned length")
|
|
}
|
|
nbyte := total / heapBitmapScale
|
|
memclr(unsafe.Pointer(subtractb(h.bitp, nbyte-1)), nbyte)
|
|
}
|
|
|
|
// initCheckmarkSpan initializes a span for being checkmarked.
|
|
// This would be a no-op except that we need to rewrite any
|
|
// typeDead bits in the first word of the object into typeScalar
|
|
// followed by a typeDead in the second word of the object.
|
|
func (h heapBits) initCheckmarkSpan(size, n, total uintptr) {
|
|
if size == ptrSize {
|
|
// Only possible on 64-bit system, since minimum size is 8.
|
|
// Must update both top and bottom nibble of each byte.
|
|
// There is no second word in these objects, so all we have
|
|
// to do is rewrite typeDead to typeScalar by adding the 1<<typeShift bit.
|
|
bitp := h.bitp
|
|
for i := uintptr(0); i < n; i += 2 {
|
|
x := int(*bitp)
|
|
if x&0x11 != 0x11 {
|
|
throw("missing bitBoundary")
|
|
}
|
|
if (x>>typeShift)&typeMask == typeDead {
|
|
x += (typeScalar - typeDead) << typeShift
|
|
}
|
|
if (x>>(4+typeShift))&typeMask == typeDead {
|
|
x += (typeScalar - typeDead) << (4 + typeShift)
|
|
}
|
|
*bitp = uint8(x)
|
|
bitp = subtractb(bitp, 1)
|
|
}
|
|
return
|
|
}
|
|
|
|
// Update bottom nibble for first word of each object.
|
|
// If the bottom nibble says typeDead, change to typeScalar
|
|
// and clear top nibble to mark as typeDead.
|
|
bitp := h.bitp
|
|
step := size / heapBitmapScale
|
|
for i := uintptr(0); i < n; i++ {
|
|
if *bitp&bitBoundary == 0 {
|
|
throw("missing bitBoundary")
|
|
}
|
|
x := *bitp
|
|
if (x>>typeShift)&typeMask == typeDead {
|
|
x += (typeScalar - typeDead) << typeShift
|
|
x &= 0x0f // clear top nibble to typeDead
|
|
}
|
|
bitp = subtractb(bitp, step)
|
|
}
|
|
}
|
|
|
|
// clearCheckmarkSpan removes all the checkmarks from a span.
|
|
// If it finds a multiword object starting with typeScalar typeDead,
|
|
// it rewrites the heap bits to the simpler typeDead typeDead.
|
|
func (h heapBits) clearCheckmarkSpan(size, n, total uintptr) {
|
|
if size == ptrSize {
|
|
// Only possible on 64-bit system, since minimum size is 8.
|
|
// Must update both top and bottom nibble of each byte.
|
|
// typeScalarCheckmarked can be left as typeDead,
|
|
// but we want to change typeScalar back to typeDead.
|
|
bitp := h.bitp
|
|
for i := uintptr(0); i < n; i += 2 {
|
|
x := int(*bitp)
|
|
if x&(bitBoundary|bitBoundary<<4) != (bitBoundary | bitBoundary<<4) {
|
|
throw("missing bitBoundary")
|
|
}
|
|
|
|
switch typ := (x >> typeShift) & typeMask; typ {
|
|
case typeScalar:
|
|
x += (typeDead - typeScalar) << typeShift
|
|
case typePointerCheckmarked:
|
|
x += (typePointer - typePointerCheckmarked) << typeShift
|
|
}
|
|
|
|
switch typ := (x >> (4 + typeShift)) & typeMask; typ {
|
|
case typeScalar:
|
|
x += (typeDead - typeScalar) << (4 + typeShift)
|
|
case typePointerCheckmarked:
|
|
x += (typePointer - typePointerCheckmarked) << (4 + typeShift)
|
|
}
|
|
|
|
*bitp = uint8(x)
|
|
bitp = subtractb(bitp, 1)
|
|
}
|
|
return
|
|
}
|
|
|
|
// Update bottom nibble for first word of each object.
|
|
// If the bottom nibble says typeScalarCheckmarked and the top is not typeDead,
|
|
// change to typeScalar. Otherwise leave, since typeScalarCheckmarked == typeDead.
|
|
// If the bottom nibble says typePointerCheckmarked, change to typePointer.
|
|
bitp := h.bitp
|
|
step := size / heapBitmapScale
|
|
for i := uintptr(0); i < n; i++ {
|
|
x := int(*bitp)
|
|
if x&bitBoundary == 0 {
|
|
throw("missing bitBoundary")
|
|
}
|
|
|
|
switch typ := (x >> typeShift) & typeMask; {
|
|
case typ == typeScalarCheckmarked && (x>>(4+typeShift))&typeMask != typeDead:
|
|
x += (typeScalar - typeScalarCheckmarked) << typeShift
|
|
case typ == typePointerCheckmarked:
|
|
x += (typePointer - typePointerCheckmarked) << typeShift
|
|
}
|
|
|
|
*bitp = uint8(x)
|
|
bitp = subtractb(bitp, step)
|
|
}
|
|
}
|
|
|
|
// heapBitsSweepSpan coordinates the sweeping of a span by reading
|
|
// and updating the corresponding heap bitmap entries.
|
|
// For each free object in the span, heapBitsSweepSpan sets the type
|
|
// bits for the first two words (or one for single-word objects) to typeDead
|
|
// and then calls f(p), where p is the object's base address.
|
|
// f is expected to add the object to a free list.
|
|
func heapBitsSweepSpan(base, size, n uintptr, f func(uintptr)) {
|
|
h := heapBitsForSpan(base)
|
|
if size == ptrSize {
|
|
// Only possible on 64-bit system, since minimum size is 8.
|
|
// Must read and update both top and bottom nibble of each byte.
|
|
bitp := h.bitp
|
|
for i := uintptr(0); i < n; i += 2 {
|
|
x := int(*bitp)
|
|
if x&bitMarked != 0 {
|
|
x &^= bitMarked
|
|
} else {
|
|
x &^= typeMask << typeShift
|
|
f(base + i*ptrSize)
|
|
}
|
|
if x&(bitMarked<<4) != 0 {
|
|
x &^= bitMarked << 4
|
|
} else {
|
|
x &^= typeMask << (4 + typeShift)
|
|
f(base + (i+1)*ptrSize)
|
|
}
|
|
*bitp = uint8(x)
|
|
bitp = subtractb(bitp, 1)
|
|
}
|
|
return
|
|
}
|
|
|
|
bitp := h.bitp
|
|
step := size / heapBitmapScale
|
|
for i := uintptr(0); i < n; i++ {
|
|
x := int(*bitp)
|
|
if x&bitMarked != 0 {
|
|
x &^= bitMarked
|
|
} else {
|
|
x = bitBoundary // clear marked bit, set type bits to typeDead
|
|
f(base + i*size)
|
|
}
|
|
*bitp = uint8(x)
|
|
bitp = subtractb(bitp, step)
|
|
}
|
|
}
|
|
|
|
// TODO(rsc): Clean up the next two functions.
|
|
|
|
// heapBitsSetType records that the new allocation [x, x+size)
|
|
// holds in [x, x+dataSize) one or more values of type typ.
|
|
// (The number of values is given by dataSize / typ.size.)
|
|
// If dataSize < size, the fragment [x+dataSize, x+size) is
|
|
// recorded as non-pointer data.
|
|
func heapBitsSetType(x, size, dataSize uintptr, typ *_type) {
|
|
// From here till marked label marking the object as allocated
|
|
// and storing type info in the GC bitmap.
|
|
h := heapBitsForAddr(x)
|
|
if debugMalloc && (*h.bitp>>h.shift)&0x0f != bitBoundary {
|
|
println("runtime: bits =", (*h.bitp>>h.shift)&0x0f)
|
|
throw("bad bits in markallocated")
|
|
}
|
|
|
|
var ti, te uintptr
|
|
var ptrmask *uint8
|
|
if size == ptrSize {
|
|
// It's one word and it has pointers, it must be a pointer.
|
|
// The bitmap byte is shared with the one-word object
|
|
// next to it, and concurrent GC might be marking that
|
|
// object, so we must use an atomic update.
|
|
atomicor8(h.bitp, typePointer<<(typeShift+h.shift))
|
|
return
|
|
}
|
|
if typ.kind&kindGCProg != 0 {
|
|
nptr := (uintptr(typ.size) + ptrSize - 1) / ptrSize
|
|
masksize := nptr
|
|
if masksize%2 != 0 {
|
|
masksize *= 2 // repeated
|
|
}
|
|
const typeBitsPerByte = 8 / typeBitsWidth
|
|
masksize = masksize * typeBitsPerByte / 8 // 4 bits per word
|
|
masksize++ // unroll flag in the beginning
|
|
if masksize > maxGCMask && typ.gc[1] != 0 {
|
|
// write barriers have not been updated to deal with this case yet.
|
|
throw("maxGCMask too small for now")
|
|
// If the mask is too large, unroll the program directly
|
|
// into the GC bitmap. It's 7 times slower than copying
|
|
// from the pre-unrolled mask, but saves 1/16 of type size
|
|
// memory for the mask.
|
|
systemstack(func() {
|
|
unrollgcproginplace_m(unsafe.Pointer(x), typ, size, dataSize)
|
|
})
|
|
return
|
|
}
|
|
ptrmask = (*uint8)(unsafe.Pointer(uintptr(typ.gc[0])))
|
|
// Check whether the program is already unrolled
|
|
// by checking if the unroll flag byte is set
|
|
maskword := uintptr(atomicloadp(unsafe.Pointer(ptrmask)))
|
|
if *(*uint8)(unsafe.Pointer(&maskword)) == 0 {
|
|
systemstack(func() {
|
|
unrollgcprog_m(typ)
|
|
})
|
|
}
|
|
ptrmask = (*uint8)(add(unsafe.Pointer(ptrmask), 1)) // skip the unroll flag byte
|
|
} else {
|
|
ptrmask = (*uint8)(unsafe.Pointer(typ.gc[0])) // pointer to unrolled mask
|
|
}
|
|
if size == 2*ptrSize {
|
|
*h.bitp = *ptrmask | bitBoundary
|
|
return
|
|
}
|
|
te = uintptr(typ.size) / ptrSize
|
|
// If the type occupies odd number of words, its mask is repeated.
|
|
if te%2 == 0 {
|
|
te /= 2
|
|
}
|
|
// Copy pointer bitmask into the bitmap.
|
|
for i := uintptr(0); i < dataSize; i += 2 * ptrSize {
|
|
v := *(*uint8)(add(unsafe.Pointer(ptrmask), ti))
|
|
ti++
|
|
if ti == te {
|
|
ti = 0
|
|
}
|
|
if i == 0 {
|
|
v |= bitBoundary
|
|
}
|
|
if i+ptrSize == dataSize {
|
|
v &^= typeMask << (4 + typeShift)
|
|
}
|
|
|
|
*h.bitp = v
|
|
h.bitp = subtractb(h.bitp, 1)
|
|
}
|
|
if dataSize%(2*ptrSize) == 0 && dataSize < size {
|
|
// Mark the word after last object's word as typeDead.
|
|
*h.bitp = 0
|
|
}
|
|
}
|
|
|
|
// typeBitmapInHeapBitmapFormat returns a bitmap holding
|
|
// the type bits for the type typ, but expanded into heap bitmap format
|
|
// to make it easier to copy them into the heap bitmap.
|
|
// TODO(rsc): Change clients to use the type bitmap format instead,
|
|
// which can be stored more densely (especially if we drop to 1 bit per pointer).
|
|
//
|
|
// To make it easier to replicate the bits when filling out the heap
|
|
// bitmap for an array of typ, if typ holds an odd number of words
|
|
// (meaning the heap bitmap would stop halfway through a byte),
|
|
// typeBitmapInHeapBitmapFormat returns the bitmap for two instances
|
|
// of typ in a row.
|
|
// TODO(rsc): Remove doubling.
|
|
func typeBitmapInHeapBitmapFormat(typ *_type) []uint8 {
|
|
var ptrmask *uint8
|
|
nptr := (uintptr(typ.size) + ptrSize - 1) / ptrSize
|
|
if typ.kind&kindGCProg != 0 {
|
|
masksize := nptr
|
|
if masksize%2 != 0 {
|
|
masksize *= 2 // repeated
|
|
}
|
|
const typeBitsPerByte = 8 / typeBitsWidth
|
|
masksize = masksize * typeBitsPerByte / 8 // 4 bits per word
|
|
masksize++ // unroll flag in the beginning
|
|
if masksize > maxGCMask && typ.gc[1] != 0 {
|
|
// write barriers have not been updated to deal with this case yet.
|
|
throw("maxGCMask too small for now")
|
|
}
|
|
ptrmask = (*uint8)(unsafe.Pointer(uintptr(typ.gc[0])))
|
|
// Check whether the program is already unrolled
|
|
// by checking if the unroll flag byte is set
|
|
maskword := uintptr(atomicloadp(unsafe.Pointer(ptrmask)))
|
|
if *(*uint8)(unsafe.Pointer(&maskword)) == 0 {
|
|
systemstack(func() {
|
|
unrollgcprog_m(typ)
|
|
})
|
|
}
|
|
ptrmask = (*uint8)(add(unsafe.Pointer(ptrmask), 1)) // skip the unroll flag byte
|
|
} else {
|
|
ptrmask = (*uint8)(unsafe.Pointer(typ.gc[0])) // pointer to unrolled mask
|
|
}
|
|
return (*[1 << 30]byte)(unsafe.Pointer(ptrmask))[:(nptr+1)/2]
|
|
}
|
|
|
|
// GC type info programs
|
|
//
|
|
// TODO(rsc): Clean up and enable.
|
|
|
|
const (
|
|
// GC type info programs.
|
|
// The programs allow to store type info required for GC in a compact form.
|
|
// Most importantly arrays take O(1) space instead of O(n).
|
|
// The program grammar is:
|
|
//
|
|
// Program = {Block} "insEnd"
|
|
// Block = Data | Array
|
|
// Data = "insData" DataSize DataBlock
|
|
// DataSize = int // size of the DataBlock in bit pairs, 1 byte
|
|
// DataBlock = binary // dense GC mask (2 bits per word) of size ]DataSize/4[ bytes
|
|
// Array = "insArray" ArrayLen Block "insArrayEnd"
|
|
// ArrayLen = int // length of the array, 8 bytes (4 bytes for 32-bit arch)
|
|
//
|
|
// Each instruction (insData, insArray, etc) is 1 byte.
|
|
// For example, for type struct { x []byte; y [20]struct{ z int; w *byte }; }
|
|
// the program looks as:
|
|
//
|
|
// insData 3 (typePointer typeScalar typeScalar)
|
|
// insArray 20 insData 2 (typeScalar typePointer) insArrayEnd insEnd
|
|
//
|
|
// Total size of the program is 17 bytes (13 bytes on 32-bits).
|
|
// The corresponding GC mask would take 43 bytes (it would be repeated
|
|
// because the type has odd number of words).
|
|
insData = 1 + iota
|
|
insArray
|
|
insArrayEnd
|
|
insEnd
|
|
|
|
// 64 bytes cover objects of size 1024/512 on 64/32 bits, respectively.
|
|
maxGCMask = 65536 // TODO(rsc): change back to 64
|
|
)
|
|
|
|
// Recursively unrolls GC program in prog.
|
|
// mask is where to store the result.
|
|
// If inplace is true, store the result not in mask but in the heap bitmap for mask.
|
|
// ppos is a pointer to position in mask, in bits.
|
|
// sparse says to generate 4-bits per word mask for heap (2-bits for data/bss otherwise).
|
|
//go:nowritebarrier
|
|
func unrollgcprog1(maskp *byte, prog *byte, ppos *uintptr, inplace, sparse bool) *byte {
|
|
pos := *ppos
|
|
mask := (*[1 << 30]byte)(unsafe.Pointer(maskp))
|
|
for {
|
|
switch *prog {
|
|
default:
|
|
throw("unrollgcprog: unknown instruction")
|
|
|
|
case insData:
|
|
prog = addb(prog, 1)
|
|
siz := int(*prog)
|
|
prog = addb(prog, 1)
|
|
p := (*[1 << 30]byte)(unsafe.Pointer(prog))
|
|
for i := 0; i < siz; i++ {
|
|
const typeBitsPerByte = 8 / typeBitsWidth
|
|
v := p[i/typeBitsPerByte]
|
|
v >>= (uint(i) % typeBitsPerByte) * typeBitsWidth
|
|
v &= typeMask
|
|
if inplace {
|
|
// Store directly into GC bitmap.
|
|
h := heapBitsForAddr(uintptr(unsafe.Pointer(&mask[pos])))
|
|
if h.shift == 0 {
|
|
*h.bitp = v << typeShift
|
|
} else {
|
|
*h.bitp |= v << (4 + typeShift)
|
|
}
|
|
pos += ptrSize
|
|
} else if sparse {
|
|
// 4-bits per word, type bits in high bits
|
|
v <<= (pos % 8) + typeShift
|
|
mask[pos/8] |= v
|
|
pos += heapBitsWidth
|
|
} else {
|
|
// 2-bits per word
|
|
v <<= pos % 8
|
|
mask[pos/8] |= v
|
|
pos += typeBitsWidth
|
|
}
|
|
}
|
|
prog = addb(prog, round(uintptr(siz)*typeBitsWidth, 8)/8)
|
|
|
|
case insArray:
|
|
prog = (*byte)(add(unsafe.Pointer(prog), 1))
|
|
siz := uintptr(0)
|
|
for i := uintptr(0); i < ptrSize; i++ {
|
|
siz = (siz << 8) + uintptr(*(*byte)(add(unsafe.Pointer(prog), ptrSize-i-1)))
|
|
}
|
|
prog = (*byte)(add(unsafe.Pointer(prog), ptrSize))
|
|
var prog1 *byte
|
|
for i := uintptr(0); i < siz; i++ {
|
|
prog1 = unrollgcprog1(&mask[0], prog, &pos, inplace, sparse)
|
|
}
|
|
if *prog1 != insArrayEnd {
|
|
throw("unrollgcprog: array does not end with insArrayEnd")
|
|
}
|
|
prog = (*byte)(add(unsafe.Pointer(prog1), 1))
|
|
|
|
case insArrayEnd, insEnd:
|
|
*ppos = pos
|
|
return prog
|
|
}
|
|
}
|
|
}
|
|
|
|
// Unrolls GC program prog for data/bss, returns dense GC mask.
|
|
func unrollglobgcprog(prog *byte, size uintptr) bitvector {
|
|
masksize := round(round(size, ptrSize)/ptrSize*typeBitsWidth, 8) / 8
|
|
mask := (*[1 << 30]byte)(persistentalloc(masksize+1, 0, &memstats.gc_sys))
|
|
mask[masksize] = 0xa1
|
|
pos := uintptr(0)
|
|
prog = unrollgcprog1(&mask[0], prog, &pos, false, false)
|
|
if pos != size/ptrSize*typeBitsWidth {
|
|
print("unrollglobgcprog: bad program size, got ", pos, ", expect ", size/ptrSize*typeBitsWidth, "\n")
|
|
throw("unrollglobgcprog: bad program size")
|
|
}
|
|
if *prog != insEnd {
|
|
throw("unrollglobgcprog: program does not end with insEnd")
|
|
}
|
|
if mask[masksize] != 0xa1 {
|
|
throw("unrollglobgcprog: overflow")
|
|
}
|
|
return bitvector{int32(masksize * 8), &mask[0]}
|
|
}
|
|
|
|
func unrollgcproginplace_m(v unsafe.Pointer, typ *_type, size, size0 uintptr) {
|
|
// TODO(rsc): Explain why these non-atomic updates are okay.
|
|
pos := uintptr(0)
|
|
prog := (*byte)(unsafe.Pointer(uintptr(typ.gc[1])))
|
|
for pos != size0 {
|
|
unrollgcprog1((*byte)(v), prog, &pos, true, true)
|
|
}
|
|
|
|
// Mark first word as bitAllocated.
|
|
// Mark word after last as typeDead.
|
|
// TODO(rsc): Explain why we need to set this boundary.
|
|
// Aren't the boundaries always set for the whole span?
|
|
// Did unrollgcproc1 overwrite the boundary bit?
|
|
// Is that okay?
|
|
h := heapBitsForAddr(uintptr(v))
|
|
*h.bitp |= bitBoundary << h.shift
|
|
if size0 < size {
|
|
h := heapBitsForAddr(uintptr(v) + size0)
|
|
*h.bitp &^= typeMask << typeShift
|
|
}
|
|
}
|
|
|
|
var unroll mutex
|
|
|
|
// Unrolls GC program in typ.gc[1] into typ.gc[0]
|
|
//go:nowritebarrier
|
|
func unrollgcprog_m(typ *_type) {
|
|
lock(&unroll)
|
|
mask := (*byte)(unsafe.Pointer(uintptr(typ.gc[0])))
|
|
if *mask == 0 {
|
|
pos := uintptr(8) // skip the unroll flag
|
|
prog := (*byte)(unsafe.Pointer(uintptr(typ.gc[1])))
|
|
prog = unrollgcprog1(mask, prog, &pos, false, true)
|
|
if *prog != insEnd {
|
|
throw("unrollgcprog: program does not end with insEnd")
|
|
}
|
|
if typ.size/ptrSize%2 != 0 {
|
|
// repeat the program
|
|
prog := (*byte)(unsafe.Pointer(uintptr(typ.gc[1])))
|
|
unrollgcprog1(mask, prog, &pos, false, true)
|
|
}
|
|
|
|
// atomic way to say mask[0] = 1
|
|
atomicor8(mask, 1)
|
|
}
|
|
unlock(&unroll)
|
|
}
|
|
|
|
// Testing.
|
|
|
|
func getgcmaskcb(frame *stkframe, ctxt unsafe.Pointer) bool {
|
|
target := (*stkframe)(ctxt)
|
|
if frame.sp <= target.sp && target.sp < frame.varp {
|
|
*target = *frame
|
|
return false
|
|
}
|
|
return true
|
|
}
|
|
|
|
// Returns GC type info for object p for testing.
|
|
func getgcmask(p unsafe.Pointer, t *_type, mask **byte, len *uintptr) {
|
|
*mask = nil
|
|
*len = 0
|
|
|
|
const typeBitsPerByte = 8 / typeBitsWidth
|
|
|
|
// data
|
|
if uintptr(unsafe.Pointer(&data)) <= uintptr(p) && uintptr(p) < uintptr(unsafe.Pointer(&edata)) {
|
|
n := (*ptrtype)(unsafe.Pointer(t)).elem.size
|
|
*len = n / ptrSize
|
|
*mask = &make([]byte, *len)[0]
|
|
for i := uintptr(0); i < n; i += ptrSize {
|
|
off := (uintptr(p) + i - uintptr(unsafe.Pointer(&data))) / ptrSize
|
|
bits := (*(*byte)(add(unsafe.Pointer(gcdatamask.bytedata), off/typeBitsPerByte)) >> ((off % typeBitsPerByte) * typeBitsWidth)) & typeMask
|
|
*(*byte)(add(unsafe.Pointer(*mask), i/ptrSize)) = bits
|
|
}
|
|
return
|
|
}
|
|
|
|
// bss
|
|
if uintptr(unsafe.Pointer(&bss)) <= uintptr(p) && uintptr(p) < uintptr(unsafe.Pointer(&ebss)) {
|
|
n := (*ptrtype)(unsafe.Pointer(t)).elem.size
|
|
*len = n / ptrSize
|
|
*mask = &make([]byte, *len)[0]
|
|
for i := uintptr(0); i < n; i += ptrSize {
|
|
off := (uintptr(p) + i - uintptr(unsafe.Pointer(&bss))) / ptrSize
|
|
bits := (*(*byte)(add(unsafe.Pointer(gcbssmask.bytedata), off/typeBitsPerByte)) >> ((off % typeBitsPerByte) * typeBitsWidth)) & typeMask
|
|
*(*byte)(add(unsafe.Pointer(*mask), i/ptrSize)) = bits
|
|
}
|
|
return
|
|
}
|
|
|
|
// heap
|
|
var n uintptr
|
|
var base uintptr
|
|
if mlookup(uintptr(p), &base, &n, nil) != 0 {
|
|
*len = n / ptrSize
|
|
*mask = &make([]byte, *len)[0]
|
|
for i := uintptr(0); i < n; i += ptrSize {
|
|
bits := heapBitsForAddr(base + i).typeBits()
|
|
*(*byte)(add(unsafe.Pointer(*mask), i/ptrSize)) = bits
|
|
}
|
|
return
|
|
}
|
|
|
|
// stack
|
|
var frame stkframe
|
|
frame.sp = uintptr(p)
|
|
_g_ := getg()
|
|
gentraceback(_g_.m.curg.sched.pc, _g_.m.curg.sched.sp, 0, _g_.m.curg, 0, nil, 1000, getgcmaskcb, noescape(unsafe.Pointer(&frame)), 0)
|
|
if frame.fn != nil {
|
|
f := frame.fn
|
|
targetpc := frame.continpc
|
|
if targetpc == 0 {
|
|
return
|
|
}
|
|
if targetpc != f.entry {
|
|
targetpc--
|
|
}
|
|
pcdata := pcdatavalue(f, _PCDATA_StackMapIndex, targetpc)
|
|
if pcdata == -1 {
|
|
return
|
|
}
|
|
stkmap := (*stackmap)(funcdata(f, _FUNCDATA_LocalsPointerMaps))
|
|
if stkmap == nil || stkmap.n <= 0 {
|
|
return
|
|
}
|
|
bv := stackmapdata(stkmap, pcdata)
|
|
size := uintptr(bv.n) / typeBitsWidth * ptrSize
|
|
n := (*ptrtype)(unsafe.Pointer(t)).elem.size
|
|
*len = n / ptrSize
|
|
*mask = &make([]byte, *len)[0]
|
|
for i := uintptr(0); i < n; i += ptrSize {
|
|
off := (uintptr(p) + i - frame.varp + size) / ptrSize
|
|
bits := ((*(*byte)(add(unsafe.Pointer(bv.bytedata), off*typeBitsWidth/8))) >> ((off * typeBitsWidth) % 8)) & typeMask
|
|
*(*byte)(add(unsafe.Pointer(*mask), i/ptrSize)) = bits
|
|
}
|
|
}
|
|
}
|