mirror of
https://github.com/golang/go
synced 2024-11-25 08:47:56 -07:00
a40065ac68
doc: convert to use godoc built-in templates tmpltohtml is gone, to avoid having a second copy of the code. Instead, godoc -url /doc/go1.html will print the actual HTML served for that URL. "make" will generate files named go1.rawhtml etc, which can be fed through tidy. It can be hard to tell from the codereview diffs, but all the tmpl files have been renamed to be html files and then have "Template": true added. R=golang-dev, adg, r, gri CC=golang-dev https://golang.org/cl/5782046
655 lines
18 KiB
HTML
655 lines
18 KiB
HTML
<!--{
|
|
"Title": "The Laws of Reflection",
|
|
"Template": true
|
|
}-->
|
|
|
|
<p>
|
|
Reflection in computing is the
|
|
ability of a program to examine its own structure, particularly
|
|
through types; it's a form of metaprogramming. It's also a great
|
|
source of confusion.
|
|
</p>
|
|
|
|
<p>
|
|
In this article we attempt to clarify things by explaining how
|
|
reflection works in Go. Each language's reflection model is
|
|
different (and many languages don't support it at all), but
|
|
this article is about Go, so for the rest of this article the word
|
|
"reflection" should be taken to mean "reflection in Go".
|
|
</p>
|
|
|
|
<p><b>Types and interfaces</b></p>
|
|
|
|
<p>
|
|
Because reflection builds on the type system, let's start with a
|
|
refresher about types in Go.
|
|
</p>
|
|
|
|
<p>
|
|
Go is statically typed. Every variable has a static type, that is,
|
|
exactly one type known and fixed at compile time: <code>int</code>,
|
|
<code>float32</code>, <code>*MyType</code>, <code>[]byte</code>,
|
|
and so on. If we declare
|
|
</p>
|
|
|
|
{{code "/doc/progs/interface.go" `/type MyInt/` `/STOP/`}}
|
|
|
|
<p>
|
|
then <code>i</code> has type <code>int</code> and <code>j</code>
|
|
has type <code>MyInt</code>. The variables <code>i</code> and
|
|
<code>j</code> have distinct static types and, although they have
|
|
the same underlying type, they cannot be assigned to one another
|
|
without a conversion.
|
|
</p>
|
|
|
|
<p>
|
|
One important category of type is interface types, which represent
|
|
fixed sets of methods. An interface variable can store any concrete
|
|
(non-interface) value as long as that value implements the
|
|
interface's methods. A well-known pair of examples is
|
|
<code>io.Reader</code> and <code>io.Writer</code>, the types
|
|
<code>Reader</code> and <code>Writer</code> from the <a href=
|
|
"http://golang.org/pkg/io/">io package</a>:
|
|
</p>
|
|
|
|
{{code "/doc/progs/interface.go" `/// Reader/` `/STOP/`}}
|
|
|
|
<p>
|
|
Any type that implements a <code>Read</code> (or
|
|
<code>Write</code>) method with this signature is said to implement
|
|
<code>io.Reader</code> (or <code>io.Writer</code>). For the
|
|
purposes of this discussion, that means that a variable of type
|
|
<code>io.Reader</code> can hold any value whose type has a
|
|
<code>Read</code> method:
|
|
</p>
|
|
|
|
{{code "/doc/progs/interface.go" `/func readers/` `/STOP/`}}
|
|
|
|
<p>
|
|
It's important to be clear that whatever concrete value
|
|
<code>r</code> may hold, <code>r</code>'s type is always
|
|
<code>io.Reader</code>: Go is statically typed and the static type
|
|
of <code>r</code> is <code>io.Reader</code>.</p>
|
|
|
|
<p>
|
|
An extremely important example of an interface type is the empty
|
|
interface:
|
|
</p>
|
|
|
|
<pre>
|
|
interface{}
|
|
</pre>
|
|
|
|
<p>
|
|
It represents the empty set of methods and is satisfied by any
|
|
value at all, since any value has zero or more methods.
|
|
</p>
|
|
|
|
<p>
|
|
Some people say that Go's interfaces are dynamically typed, but
|
|
that is misleading. They are statically typed: a variable of
|
|
interface type always has the same static type, and even though at
|
|
run time the value stored in the interface variable may change
|
|
type, that value will always satisfy the interface.
|
|
</p>
|
|
|
|
<p>
|
|
We need to be precise about all this because reflection and
|
|
interfaces are closely related.
|
|
</p>
|
|
|
|
<p><b>The representation of an interface</b></p>
|
|
|
|
<p>
|
|
Russ Cox has written a <a href=
|
|
"http://research.swtch.com/2009/12/go-data-structures-interfaces.html">
|
|
detailed blog post</a> about the representation of interface values
|
|
in Go. It's not necessary to repeat the full story here, but a
|
|
simplified summary is in order.
|
|
</p>
|
|
|
|
<p>
|
|
A variable of interface type stores a pair: the concrete value
|
|
assigned to the variable, and that value's type descriptor.
|
|
To be more precise, the value is the underlying concrete data item
|
|
that implements the interface and the type describes the full type
|
|
of that item. For instance, after
|
|
</p>
|
|
|
|
{{code "/doc/progs/interface.go" `/func typeAssertions/` `/STOP/`}}
|
|
|
|
<p>
|
|
<code>r</code> contains, schematically, the (value, type) pair,
|
|
(<code>tty</code>, <code>*os.File</code>). Notice that the type
|
|
<code>*os.File</code> implements methods other than
|
|
<code>Read</code>; even though the interface value provides access
|
|
only to the <code>Read</code> method, the value inside carries all
|
|
the type information about that value. That's why we can do things
|
|
like this:
|
|
</p>
|
|
|
|
{{code "/doc/progs/interface.go" `/var w io.Writer/` `/STOP/`}}
|
|
|
|
<p>
|
|
The expression in this assignment is a type assertion; what it
|
|
asserts is that the item inside <code>r</code> also implements
|
|
<code>io.Writer</code>, and so we can assign it to <code>w</code>.
|
|
After the assignment, <code>w</code> will contain the pair
|
|
(<code>tty</code>, <code>*os.File</code>). That's the same pair as
|
|
was held in <code>r</code>. The static type of the interface
|
|
determines what methods may be invoked with an interface variable,
|
|
even though the concrete value inside may have a larger set of
|
|
methods.
|
|
</p>
|
|
|
|
<p>
|
|
Continuing, we can do this:
|
|
</p>
|
|
|
|
{{code "/doc/progs/interface.go" `/var empty interface{}/` `/STOP/`}}
|
|
|
|
<p>
|
|
and our empty interface value <code>e</code> will again contain
|
|
that same pair, (<code>tty</code>, <code>*os.File</code>). That's
|
|
handy: an empty interface can hold any value and contains all the
|
|
information we could ever need about that value.
|
|
</p>
|
|
|
|
<p>
|
|
(We don't need a type assertion here because it's known statically
|
|
that <code>w</code> satisfies the empty interface. In the example
|
|
where we moved a value from a <code>Reader</code> to a
|
|
<code>Writer</code>, we needed to be explicit and use a type
|
|
assertion because <code>Writer</code>'s methods are not a
|
|
subset of <code>Reader</code>'s.)
|
|
</p>
|
|
|
|
<p>
|
|
One important detail is that the pair inside an interface always
|
|
has the form (value, concrete type) and cannot have the form
|
|
(value, interface type). Interfaces do not hold interface
|
|
values.
|
|
</p>
|
|
|
|
<p>
|
|
Now we're ready to reflect.
|
|
</p>
|
|
|
|
<p><b>The first law of reflection</b></p>
|
|
|
|
<p><b>1. Reflection goes from interface value to reflection object.</b></p>
|
|
|
|
<p>
|
|
At the basic level, reflection is just a mechanism to examine the
|
|
type and value pair stored inside an interface variable. To get
|
|
started, there are two types we need to know about in
|
|
<a href="http://golang.org/pkg/reflect">package reflect</a>:
|
|
<a href="http://golang.org/pkg/reflect/#Type">Type</a> and
|
|
<a href="http://golang.org/pkg/reflect/#Value">Value</a>. Those two types
|
|
give access to the contents of an interface variable, and two
|
|
simple functions, called <code>reflect.TypeOf</code> and
|
|
<code>reflect.ValueOf</code>, retrieve <code>reflect.Type</code>
|
|
and <code>reflect.Value</code> pieces out of an interface value.
|
|
(Also, from the <code>reflect.Value</code> it's easy to get
|
|
to the <code>reflect.Type</code>, but let's keep the
|
|
<code>Value</code> and <code>Type</code> concepts separate for
|
|
now.)
|
|
</p>
|
|
|
|
<p>
|
|
Let's start with <code>TypeOf</code>:
|
|
</p>
|
|
|
|
{{code "/doc/progs/interface2.go" `/package main/` `/STOP main/`}}
|
|
|
|
<p>
|
|
This program prints
|
|
</p>
|
|
|
|
<pre>
|
|
type: float64
|
|
</pre>
|
|
|
|
<p>
|
|
You might be wondering where the interface is here, since the
|
|
program looks like it's passing the <code>float64</code>
|
|
variable <code>x</code>, not an interface value, to
|
|
<code>reflect.TypeOf</code>. But it's there; as <a href=
|
|
"http://golang.org/pkg/reflect/#Type.TypeOf">godoc reports</a>, the
|
|
signature of <code>reflect.TypeOf</code> includes an empty
|
|
interface:
|
|
</p>
|
|
|
|
<pre>
|
|
// TypeOf returns the reflection Type of the value in the interface{}.
|
|
func TypeOf(i interface{}) Type
|
|
</pre>
|
|
|
|
<p>
|
|
When we call <code>reflect.TypeOf(x)</code>, <code>x</code> is
|
|
first stored in an empty interface, which is then passed as the
|
|
argument; <code>reflect.TypeOf</code> unpacks that empty interface
|
|
to recover the type information.
|
|
</p>
|
|
|
|
<p>
|
|
The <code>reflect.ValueOf</code> function, of course, recovers the
|
|
value (from here on we'll elide the boilerplate and focus just on
|
|
the executable code):
|
|
</p>
|
|
|
|
{{code "/doc/progs/interface2.go" `/var x/` `/STOP/`}}
|
|
|
|
<p>
|
|
prints
|
|
</p>
|
|
|
|
<pre>
|
|
value: <float64 Value>
|
|
</pre>
|
|
|
|
<p>
|
|
Both <code>reflect.Type</code> and <code>reflect.Value</code> have
|
|
lots of methods to let us examine and manipulate them. One
|
|
important example is that <code>Value</code> has a
|
|
<code>Type</code> method that returns the <code>Type</code> of a
|
|
<code>reflect.Value</code>. Another is that both <code>Type</code>
|
|
and <code>Value</code> have a <code>Kind</code> method that returns
|
|
a constant indicating what sort of item is stored:
|
|
<code>Uint</code>, <code>Float64</code>, <code>Slice</code>, and so
|
|
on. Also methods on <code>Value</code> with names like
|
|
<code>Int</code> and <code>Float</code> let us grab values (as
|
|
<code>int64</code> and <code>float64</code>) stored inside:
|
|
</p>
|
|
|
|
{{code "/doc/progs/interface2.go" `/START f1/` `/STOP/`}}
|
|
|
|
<p>
|
|
prints
|
|
</p>
|
|
|
|
<pre>
|
|
type: float64
|
|
kind is float64: true
|
|
value: 3.4
|
|
</pre>
|
|
|
|
<p>
|
|
There are also methods like <code>SetInt</code> and
|
|
<code>SetFloat</code> but to use them we need to understand
|
|
settability, the subject of the third law of reflection, discussed
|
|
below.
|
|
</p>
|
|
|
|
<p>
|
|
The reflection library has a couple of properties worth singling
|
|
out. First, to keep the API simple, the "getter" and "setter"
|
|
methods of <code>Value</code> operate on the largest type that can
|
|
hold the value: <code>int64</code> for all the signed integers, for
|
|
instance. That is, the <code>Int</code> method of
|
|
<code>Value</code> returns an <code>int64</code> and the
|
|
<code>SetInt</code> value takes an <code>int64</code>; it may be
|
|
necessary to convert to the actual type involved:
|
|
</p>
|
|
|
|
{{code "/doc/progs/interface2.go" `/START f2/` `/STOP/`}}
|
|
|
|
<p>
|
|
The second property is that the <code>Kind</code> of a reflection
|
|
object describes the underlying type, not the static type. If a
|
|
reflection object contains a value of a user-defined integer type,
|
|
as in
|
|
</p>
|
|
|
|
{{code "/doc/progs/interface2.go" `/START f3/` `/STOP/`}}
|
|
|
|
<p>
|
|
the <code>Kind</code> of <code>v</code> is still
|
|
<code>reflect.Int</code>, even though the static type of
|
|
<code>x</code> is <code>MyInt</code>, not <code>int</code>. In
|
|
other words, the <code>Kind</code> cannot discriminate an int from
|
|
a <code>MyInt</code> even though the <code>Type</code> can.
|
|
</p>
|
|
|
|
<p><b>The second law of reflection</b></p>
|
|
|
|
<p><b>2. Reflection goes from reflection object to interface
|
|
value.</b></p>
|
|
|
|
<p>
|
|
Like physical reflection, reflection in Go generates its own
|
|
inverse.
|
|
</p>
|
|
|
|
<p>
|
|
Given a <code>reflect.Value</code> we can recover an interface
|
|
value using the <code>Interface</code> method; in effect the method
|
|
packs the type and value information back into an interface
|
|
representation and returns the result:
|
|
</p>
|
|
|
|
<pre>
|
|
// Interface returns v's value as an interface{}.
|
|
func (v Value) Interface() interface{}
|
|
</pre>
|
|
|
|
<p>
|
|
As a consequence we can say
|
|
</p>
|
|
|
|
{{code "/doc/progs/interface2.go" `/START f3b/` `/STOP/`}}
|
|
|
|
<p>
|
|
to print the <code>float64</code> value represented by the
|
|
reflection object <code>v</code>.
|
|
</p>
|
|
|
|
<p>
|
|
We can do even better, though. The arguments to
|
|
<code>fmt.Println</code>, <code>fmt.Printf</code> and so on are all
|
|
passed as empty interface values, which are then unpacked by the
|
|
<code>fmt</code> package internally just as we have been doing in
|
|
the previous examples. Therefore all it takes to print the contents
|
|
of a <code>reflect.Value</code> correctly is to pass the result of
|
|
the <code>Interface</code> method to the formatted print
|
|
routine:
|
|
</p>
|
|
|
|
{{code "/doc/progs/interface2.go" `/START f3c/` `/STOP/`}}
|
|
|
|
<p>
|
|
(Why not <code>fmt.Println(v)</code>? Because <code>v</code> is a
|
|
<code>reflect.Value</code>; we want the concrete value it holds.)
|
|
Since our value is a <code>float64</code>, we can even use a
|
|
floating-point format if we want:
|
|
</p>
|
|
|
|
{{code "/doc/progs/interface2.go" `/START f3d/` `/STOP/`}}
|
|
|
|
<p>
|
|
and get in this case
|
|
</p>
|
|
|
|
<pre>
|
|
3.4e+00
|
|
</pre>
|
|
|
|
<p>
|
|
Again, there's no need to type-assert the result of
|
|
<code>v.Interface()</code> to <code>float64</code>; the empty
|
|
interface value has the concrete value's type information inside
|
|
and <code>Printf</code> will recover it.
|
|
</p>
|
|
|
|
<p>
|
|
In short, the <code>Interface</code> method is the inverse of the
|
|
<code>ValueOf</code> function, except that its result is always of
|
|
static type <code>interface{}</code>.
|
|
</p>
|
|
|
|
<p>
|
|
Reiterating: Reflection goes from interface values to reflection
|
|
objects and back again.
|
|
</p>
|
|
|
|
<p><b>The third law of reflection</b></p>
|
|
|
|
<p><b>3. To modify a reflection object, the value must be settable.</b></p>
|
|
|
|
<p>
|
|
The third law is the most subtle and confusing, but it's easy
|
|
enough to understand if we start from first principles.
|
|
</p>
|
|
|
|
<p>
|
|
Here is some code that does not work, but is worth studying.
|
|
</p>
|
|
|
|
{{code "/doc/progs/interface2.go" `/START f4/` `/STOP/`}}
|
|
|
|
<p>
|
|
If you run this code, it will panic with the cryptic message
|
|
</p>
|
|
|
|
<pre>
|
|
panic: reflect.Value.SetFloat using unaddressable value
|
|
</pre>
|
|
|
|
<p>
|
|
The problem is not that the value <code>7.1</code> is not
|
|
addressable; it's that <code>v</code> is not settable. Settability
|
|
is a property of a reflection <code>Value</code>, and not all
|
|
reflection <code>Values</code> have it.
|
|
</p>
|
|
|
|
<p>
|
|
The <code>CanSet</code> method of <code>Value</code> reports the
|
|
settability of a <code>Value</code>; in our case,
|
|
</p>
|
|
|
|
{{code "/doc/progs/interface2.go" `/START f5/` `/STOP/`}}
|
|
|
|
<p>
|
|
prints
|
|
</p>
|
|
|
|
<pre>
|
|
settability of v: false
|
|
</pre>
|
|
|
|
<p>
|
|
It is an error to call a <code>Set</code> method on an non-settable
|
|
<code>Value</code>. But what is settability?
|
|
</p>
|
|
|
|
<p>
|
|
Settability is a bit like addressability, but stricter. It's the
|
|
property that a reflection object can modify the actual storage
|
|
that was used to create the reflection object. Settability is
|
|
determined by whether the reflection object holds the original
|
|
item. When we say
|
|
</p>
|
|
|
|
{{code "/doc/progs/interface2.go" `/START f6/` `/STOP/`}}
|
|
|
|
<p>
|
|
we pass a <em>copy</em> of <code>x</code> to
|
|
<code>reflect.ValueOf</code>, so the interface value created as the
|
|
argument to <code>reflect.ValueOf</code> is a <em>copy</em> of
|
|
<code>x</code>, not <code>x</code> itself. Thus, if the
|
|
statement
|
|
</p>
|
|
|
|
{{code "/doc/progs/interface2.go" `/START f6b/` `/STOP/`}}
|
|
|
|
<p>
|
|
were allowed to succeed, it would not update <code>x</code>, even
|
|
though <code>v</code> looks like it was created from
|
|
<code>x</code>. Instead, it would update the copy of <code>x</code>
|
|
stored inside the reflection value and <code>x</code> itself would
|
|
be unaffected. That would be confusing and useless, so it is
|
|
illegal, and settability is the property used to avoid this
|
|
issue.
|
|
</p>
|
|
|
|
<p>
|
|
If this seems bizarre, it's not. It's actually a familiar situation
|
|
in unusual garb. Think of passing <code>x</code> to a
|
|
function:
|
|
</p>
|
|
|
|
<pre>
|
|
f(x)
|
|
</pre>
|
|
|
|
<p>
|
|
We would not expect <code>f</code> to be able to modify
|
|
<code>x</code> because we passed a copy of <code>x</code>'s value,
|
|
not <code>x</code> itself. If we want <code>f</code> to modify
|
|
<code>x</code> directly we must pass our function the address of
|
|
<code>x</code> (that is, a pointer to <code>x</code>):</p>
|
|
|
|
<p>
|
|
<code>f(&x)</code>
|
|
</p>
|
|
|
|
<p>
|
|
This is straightforward and familiar, and reflection works the same
|
|
way. If we want to modify <code>x</code> by reflection, we must
|
|
give the reflection library a pointer to the value we want to
|
|
modify.
|
|
</p>
|
|
|
|
<p>
|
|
Let's do that. First we initialize <code>x</code> as usual
|
|
and then create a reflection value that points to it, called
|
|
<code>p</code>.
|
|
</p>
|
|
|
|
{{code "/doc/progs/interface2.go" `/START f7/` `/STOP/`}}
|
|
|
|
<p>
|
|
The output so far is
|
|
</p>
|
|
|
|
<pre>
|
|
type of p: *float64
|
|
settability of p: false
|
|
</pre>
|
|
|
|
<p>
|
|
The reflection object <code>p</code> isn't settable, but it's not
|
|
<code>p</code> we want to set, it's (in effect) <code>*p</code>. To
|
|
get to what <code>p</code> points to, we call the <code>Elem</code>
|
|
method of <code>Value</code>, which indirects through the pointer,
|
|
and save the result in a reflection <code>Value</code> called
|
|
<code>v</code>:
|
|
</p>
|
|
|
|
{{code "/doc/progs/interface2.go" `/START f7b/` `/STOP/`}}
|
|
|
|
<p>
|
|
Now <code>v</code> is a settable reflection object, as the output
|
|
demonstrates,
|
|
</p>
|
|
|
|
<pre>
|
|
settability of v: true
|
|
</pre>
|
|
|
|
<p>
|
|
and since it represents <code>x</code>, we are finally able to use
|
|
<code>v.SetFloat</code> to modify the value of
|
|
<code>x</code>:
|
|
</p>
|
|
|
|
{{code "/doc/progs/interface2.go" `/START f7c/` `/STOP/`}}
|
|
|
|
<p>
|
|
The output, as expected, is
|
|
</p>
|
|
|
|
<pre>
|
|
7.1
|
|
7.1
|
|
</pre>
|
|
|
|
<p>
|
|
Reflection can be hard to understand but it's doing exactly what
|
|
the language does, albeit through reflection <code>Types</code> and
|
|
<code>Values</code> that can disguise what's going on. Just keep in
|
|
mind that reflection Values need the address of something in order
|
|
to modify what they represent.
|
|
</p>
|
|
|
|
<p><b>Structs</b></p>
|
|
|
|
<p>
|
|
In our previous example <code>v</code> wasn't a pointer itself, it
|
|
was just derived from one. A common way for this situation to arise
|
|
is when using reflection to modify the fields of a structure. As
|
|
long as we have the address of the structure, we can modify its
|
|
fields.
|
|
</p>
|
|
|
|
<p>
|
|
Here's a simple example that analyzes a struct value,
|
|
<code>t</code>. We create the reflection object with the address of
|
|
the struct because we'll want to modify it later. Then we set
|
|
<code>typeOfT</code> to its type and iterate over the fields using
|
|
straightforward method calls (see
|
|
<a href="http://golang.org/pkg/reflect/">package reflect</a> for details).
|
|
Note that we extract the names of the fields from the struct type,
|
|
but the fields themselves are regular <code>reflect.Value</code>
|
|
objects.
|
|
</p>
|
|
|
|
{{code "/doc/progs/interface2.go" `/START f8/` `/STOP/`}}
|
|
|
|
<p>
|
|
The output of this program is
|
|
</p>
|
|
|
|
<pre>
|
|
0: A int = 23
|
|
1: B string = skidoo
|
|
</pre>
|
|
|
|
<p>
|
|
There's one more point about settability introduced in
|
|
passing here: the field names of <code>T</code> are upper case
|
|
(exported) because only exported fields of a struct are
|
|
settable.
|
|
</p>
|
|
|
|
<p>
|
|
Because <code>s</code> contains a settable reflection object, we
|
|
can modify the fields of the structure.
|
|
</p>
|
|
|
|
{{code "/doc/progs/interface2.go" `/START f8b/` `/STOP/`}}
|
|
|
|
<p>
|
|
And here's the result:
|
|
</p>
|
|
|
|
<pre>
|
|
t is now {77 Sunset Strip}
|
|
</pre>
|
|
|
|
<p>
|
|
If we modified the program so that <code>s</code> was created from
|
|
<code>t</code>, not <code>&t</code>, the calls to
|
|
<code>SetInt</code> and <code>SetString</code> would fail as the
|
|
fields of <code>t</code> would not be settable.
|
|
</p>
|
|
|
|
<p><b>Conclusion</b></p>
|
|
|
|
<p>
|
|
Here again are the laws of reflection:
|
|
</p>
|
|
|
|
<ol>
|
|
<li>Reflection goes from interface value to reflection
|
|
object.</li>
|
|
<li>Reflection goes from reflection object to interface
|
|
value.</li>
|
|
<li>To modify a reflection object, the value must be settable.</li>
|
|
</ol>
|
|
|
|
<p>
|
|
Once you understand these laws reflection in Go becomes much easier
|
|
to use, although it remains subtle. It's a powerful tool that
|
|
should be used with care and avoided unless strictly
|
|
necessary.
|
|
</p>
|
|
|
|
<p>
|
|
There's plenty more to reflection that we haven't covered —
|
|
sending and receiving on channels, allocating memory, using slices
|
|
and maps, calling methods and functions — but this post is
|
|
long enough. We'll cover some of those topics in a later
|
|
article.
|
|
</p>
|