1
0
mirror of https://github.com/golang/go synced 2024-11-19 02:14:43 -07:00
go/refactor/eg/rewrite.go
Colin 2226533658 refactor/eg: Add support for multi line after statements to eg.
The semantics of this change are that the last line will be subsituted
in place of the expression, where as the lines before that will undergo
variable substitution and be prepended before the lowest (in the AST
tree sense) statement which included the expression.

Change-Id: Ie2571934dcc1b0a30b5cec157e690924a4ac2c5a
Reviewed-on: https://go-review.googlesource.com/77730
Reviewed-by: Alan Donovan <adonovan@google.com>
2018-03-19 17:51:41 +00:00

402 lines
11 KiB
Go

// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package eg
// This file defines the AST rewriting pass.
// Most of it was plundered directly from
// $GOROOT/src/cmd/gofmt/rewrite.go (after convergent evolution).
import (
"fmt"
"go/ast"
"go/token"
"go/types"
"os"
"reflect"
"sort"
"strconv"
"strings"
"golang.org/x/tools/go/ast/astutil"
)
// transformItem takes a reflect.Value representing a variable of type ast.Node
// transforms its child elements recursively with apply, and then transforms the
// actual element if it contains an expression.
func (tr *Transformer) transformItem(rv reflect.Value) (reflect.Value, bool, map[string]ast.Expr) {
// don't bother if val is invalid to start with
if !rv.IsValid() {
return reflect.Value{}, false, nil
}
rv, changed, newEnv := tr.apply(tr.transformItem, rv)
e := rvToExpr(rv)
if e == nil {
return rv, changed, newEnv
}
savedEnv := tr.env
tr.env = make(map[string]ast.Expr) // inefficient! Use a slice of k/v pairs
if tr.matchExpr(tr.before, e) {
if tr.verbose {
fmt.Fprintf(os.Stderr, "%s matches %s",
astString(tr.fset, tr.before), astString(tr.fset, e))
if len(tr.env) > 0 {
fmt.Fprintf(os.Stderr, " with:")
for name, ast := range tr.env {
fmt.Fprintf(os.Stderr, " %s->%s",
name, astString(tr.fset, ast))
}
}
fmt.Fprintf(os.Stderr, "\n")
}
tr.nsubsts++
// Clone the replacement tree, performing parameter substitution.
// We update all positions to n.Pos() to aid comment placement.
rv = tr.subst(tr.env, reflect.ValueOf(tr.after),
reflect.ValueOf(e.Pos()))
changed = true
newEnv = tr.env
}
tr.env = savedEnv
return rv, changed, newEnv
}
// Transform applies the transformation to the specified parsed file,
// whose type information is supplied in info, and returns the number
// of replacements that were made.
//
// It mutates the AST in place (the identity of the root node is
// unchanged), and may add nodes for which no type information is
// available in info.
//
// Derived from rewriteFile in $GOROOT/src/cmd/gofmt/rewrite.go.
//
func (tr *Transformer) Transform(info *types.Info, pkg *types.Package, file *ast.File) int {
if !tr.seenInfos[info] {
tr.seenInfos[info] = true
mergeTypeInfo(tr.info, info)
}
tr.currentPkg = pkg
tr.nsubsts = 0
if tr.verbose {
fmt.Fprintf(os.Stderr, "before: %s\n", astString(tr.fset, tr.before))
fmt.Fprintf(os.Stderr, "after: %s\n", astString(tr.fset, tr.after))
fmt.Fprintf(os.Stderr, "afterStmts: %s\n", tr.afterStmts)
}
o, changed, _ := tr.apply(tr.transformItem, reflect.ValueOf(file))
if changed {
panic("BUG")
}
file2 := o.Interface().(*ast.File)
// By construction, the root node is unchanged.
if file != file2 {
panic("BUG")
}
// Add any necessary imports.
// TODO(adonovan): remove no-longer needed imports too.
if tr.nsubsts > 0 {
pkgs := make(map[string]*types.Package)
for obj := range tr.importedObjs {
pkgs[obj.Pkg().Path()] = obj.Pkg()
}
for _, imp := range file.Imports {
path, _ := strconv.Unquote(imp.Path.Value)
delete(pkgs, path)
}
delete(pkgs, pkg.Path()) // don't import self
// NB: AddImport may completely replace the AST!
// It thus renders info and tr.info no longer relevant to file.
var paths []string
for path := range pkgs {
paths = append(paths, path)
}
sort.Strings(paths)
for _, path := range paths {
astutil.AddImport(tr.fset, file, path)
}
}
tr.currentPkg = nil
return tr.nsubsts
}
// setValue is a wrapper for x.SetValue(y); it protects
// the caller from panics if x cannot be changed to y.
func setValue(x, y reflect.Value) {
// don't bother if y is invalid to start with
if !y.IsValid() {
return
}
defer func() {
if x := recover(); x != nil {
if s, ok := x.(string); ok &&
(strings.Contains(s, "type mismatch") || strings.Contains(s, "not assignable")) {
// x cannot be set to y - ignore this rewrite
return
}
panic(x)
}
}()
x.Set(y)
}
// Values/types for special cases.
var (
objectPtrNil = reflect.ValueOf((*ast.Object)(nil))
scopePtrNil = reflect.ValueOf((*ast.Scope)(nil))
identType = reflect.TypeOf((*ast.Ident)(nil))
selectorExprType = reflect.TypeOf((*ast.SelectorExpr)(nil))
objectPtrType = reflect.TypeOf((*ast.Object)(nil))
statementType = reflect.TypeOf((*ast.Stmt)(nil)).Elem()
positionType = reflect.TypeOf(token.NoPos)
scopePtrType = reflect.TypeOf((*ast.Scope)(nil))
)
// apply replaces each AST field x in val with f(x), returning val.
// To avoid extra conversions, f operates on the reflect.Value form.
// f takes a reflect.Value representing the variable to modify of type ast.Node.
// It returns a reflect.Value containing the transformed value of type ast.Node,
// whether any change was made, and a map of identifiers to ast.Expr (so we can
// do contextually correct substitutions in the parent statements).
func (tr *Transformer) apply(f func(reflect.Value) (reflect.Value, bool, map[string]ast.Expr), val reflect.Value) (reflect.Value, bool, map[string]ast.Expr) {
if !val.IsValid() {
return reflect.Value{}, false, nil
}
// *ast.Objects introduce cycles and are likely incorrect after
// rewrite; don't follow them but replace with nil instead
if val.Type() == objectPtrType {
return objectPtrNil, false, nil
}
// similarly for scopes: they are likely incorrect after a rewrite;
// replace them with nil
if val.Type() == scopePtrType {
return scopePtrNil, false, nil
}
switch v := reflect.Indirect(val); v.Kind() {
case reflect.Slice:
// no possible rewriting of statements.
if v.Type().Elem() != statementType {
changed := false
var envp map[string]ast.Expr
for i := 0; i < v.Len(); i++ {
e := v.Index(i)
o, localchanged, env := f(e)
if localchanged {
changed = true
// we clobber envp here,
// which means if we have two sucessive
// replacements inside the same statement
// we will only generate the setup for one of them.
envp = env
}
setValue(e, o)
}
return val, changed, envp
}
// statements are rewritten.
var out []ast.Stmt
for i := 0; i < v.Len(); i++ {
e := v.Index(i)
o, changed, env := f(e)
if changed {
for _, s := range tr.afterStmts {
t := tr.subst(env, reflect.ValueOf(s), reflect.Value{}).Interface()
out = append(out, t.(ast.Stmt))
}
}
setValue(e, o)
out = append(out, e.Interface().(ast.Stmt))
}
return reflect.ValueOf(out), false, nil
case reflect.Struct:
changed := false
var envp map[string]ast.Expr
for i := 0; i < v.NumField(); i++ {
e := v.Field(i)
o, localchanged, env := f(e)
if localchanged {
changed = true
envp = env
}
setValue(e, o)
}
return val, changed, envp
case reflect.Interface:
e := v.Elem()
o, changed, env := f(e)
setValue(v, o)
return val, changed, env
}
return val, false, nil
}
// subst returns a copy of (replacement) pattern with values from env
// substituted in place of wildcards and pos used as the position of
// tokens from the pattern. if env == nil, subst returns a copy of
// pattern and doesn't change the line number information.
func (tr *Transformer) subst(env map[string]ast.Expr, pattern, pos reflect.Value) reflect.Value {
if !pattern.IsValid() {
return reflect.Value{}
}
// *ast.Objects introduce cycles and are likely incorrect after
// rewrite; don't follow them but replace with nil instead
if pattern.Type() == objectPtrType {
return objectPtrNil
}
// similarly for scopes: they are likely incorrect after a rewrite;
// replace them with nil
if pattern.Type() == scopePtrType {
return scopePtrNil
}
// Wildcard gets replaced with map value.
if env != nil && pattern.Type() == identType {
id := pattern.Interface().(*ast.Ident)
if old, ok := env[id.Name]; ok {
return tr.subst(nil, reflect.ValueOf(old), reflect.Value{})
}
}
// Emit qualified identifiers in the pattern by appropriate
// (possibly qualified) identifier in the input.
//
// The template cannot contain dot imports, so all identifiers
// for imported objects are explicitly qualified.
//
// We assume (unsoundly) that there are no dot or named
// imports in the input code, nor are any imported package
// names shadowed, so the usual normal qualified identifier
// syntax may be used.
// TODO(adonovan): fix: avoid this assumption.
//
// A refactoring may be applied to a package referenced by the
// template. Objects belonging to the current package are
// denoted by unqualified identifiers.
//
if tr.importedObjs != nil && pattern.Type() == selectorExprType {
obj := isRef(pattern.Interface().(*ast.SelectorExpr), tr.info)
if obj != nil {
if sel, ok := tr.importedObjs[obj]; ok {
var id ast.Expr
if obj.Pkg() == tr.currentPkg {
id = sel.Sel // unqualified
} else {
id = sel // pkg-qualified
}
// Return a clone of id.
saved := tr.importedObjs
tr.importedObjs = nil // break cycle
r := tr.subst(nil, reflect.ValueOf(id), pos)
tr.importedObjs = saved
return r
}
}
}
if pos.IsValid() && pattern.Type() == positionType {
// use new position only if old position was valid in the first place
if old := pattern.Interface().(token.Pos); !old.IsValid() {
return pattern
}
return pos
}
// Otherwise copy.
switch p := pattern; p.Kind() {
case reflect.Slice:
v := reflect.MakeSlice(p.Type(), p.Len(), p.Len())
for i := 0; i < p.Len(); i++ {
v.Index(i).Set(tr.subst(env, p.Index(i), pos))
}
return v
case reflect.Struct:
v := reflect.New(p.Type()).Elem()
for i := 0; i < p.NumField(); i++ {
v.Field(i).Set(tr.subst(env, p.Field(i), pos))
}
return v
case reflect.Ptr:
v := reflect.New(p.Type()).Elem()
if elem := p.Elem(); elem.IsValid() {
v.Set(tr.subst(env, elem, pos).Addr())
}
// Duplicate type information for duplicated ast.Expr.
// All ast.Node implementations are *structs,
// so this case catches them all.
if e := rvToExpr(v); e != nil {
updateTypeInfo(tr.info, e, p.Interface().(ast.Expr))
}
return v
case reflect.Interface:
v := reflect.New(p.Type()).Elem()
if elem := p.Elem(); elem.IsValid() {
v.Set(tr.subst(env, elem, pos))
}
return v
}
return pattern
}
// -- utilities -------------------------------------------------------
func rvToExpr(rv reflect.Value) ast.Expr {
if rv.CanInterface() {
if e, ok := rv.Interface().(ast.Expr); ok {
return e
}
}
return nil
}
// updateTypeInfo duplicates type information for the existing AST old
// so that it also applies to duplicated AST new.
func updateTypeInfo(info *types.Info, new, old ast.Expr) {
switch new := new.(type) {
case *ast.Ident:
orig := old.(*ast.Ident)
if obj, ok := info.Defs[orig]; ok {
info.Defs[new] = obj
}
if obj, ok := info.Uses[orig]; ok {
info.Uses[new] = obj
}
case *ast.SelectorExpr:
orig := old.(*ast.SelectorExpr)
if sel, ok := info.Selections[orig]; ok {
info.Selections[new] = sel
}
}
if tv, ok := info.Types[old]; ok {
info.Types[new] = tv
}
}