mirror of
https://github.com/golang/go
synced 2024-11-17 00:54:49 -07:00
80834af206
In the PPC64 ISA, the instruction to do an 'and' operation using an immediate constant is only available in the form that also sets CR0 (i.e. clobbers the condition register.) This means CR0 is being clobbered unnecessarily in many cases. That affects some decisions made during some compiler passes that check for it. In those cases when the constant used by the ANDCC is a right justified consecutive set of bits, a shift instruction can be used which has the same effect if CR0 does not need to be set. The rule to do that has been added to the late rules file after other rules using ANDCCconst have been processed in the main rules file. Some codegen tests had to be updated since ANDCC is no longer generated for some cases. A new test case was added to verify the ANDCC is present if the results for both the AND and CR0 are used. Change-Id: I304f607c039a458e2d67d25351dd00aea72ba542 Reviewed-on: https://go-review.googlesource.com/c/go/+/531435 Run-TryBot: Lynn Boger <laboger@linux.vnet.ibm.com> Reviewed-by: Paul Murphy <murp@ibm.com> LUCI-TryBot-Result: Go LUCI <golang-scoped@luci-project-accounts.iam.gserviceaccount.com> Reviewed-by: Carlos Amedee <carlos@golang.org> Reviewed-by: Jayanth Krishnamurthy <jayanth.krishnamurthy@ibm.com> TryBot-Result: Gopher Robot <gobot@golang.org> Reviewed-by: Dmitri Shuralyov <dmitshur@google.com>
591 lines
14 KiB
Go
591 lines
14 KiB
Go
// asmcheck
|
|
|
|
// Copyright 2018 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package codegen
|
|
|
|
// This file contains codegen tests related to arithmetic
|
|
// simplifications and optimizations on integer types.
|
|
// For codegen tests on float types, see floats.go.
|
|
|
|
// ----------------- //
|
|
// Subtraction //
|
|
// ----------------- //
|
|
|
|
var ef int
|
|
|
|
func SubMem(arr []int, b, c, d int) int {
|
|
// 386:`SUBL\s[A-Z]+,\s8\([A-Z]+\)`
|
|
// amd64:`SUBQ\s[A-Z]+,\s16\([A-Z]+\)`
|
|
arr[2] -= b
|
|
// 386:`SUBL\s[A-Z]+,\s12\([A-Z]+\)`
|
|
// amd64:`SUBQ\s[A-Z]+,\s24\([A-Z]+\)`
|
|
arr[3] -= b
|
|
// 386:`DECL\s16\([A-Z]+\)`
|
|
arr[4]--
|
|
// 386:`ADDL\s[$]-20,\s20\([A-Z]+\)`
|
|
arr[5] -= 20
|
|
// 386:`SUBL\s\([A-Z]+\)\([A-Z]+\*4\),\s[A-Z]+`
|
|
ef -= arr[b]
|
|
// 386:`SUBL\s[A-Z]+,\s\([A-Z]+\)\([A-Z]+\*4\)`
|
|
arr[c] -= b
|
|
// 386:`ADDL\s[$]-15,\s\([A-Z]+\)\([A-Z]+\*4\)`
|
|
arr[d] -= 15
|
|
// 386:`DECL\s\([A-Z]+\)\([A-Z]+\*4\)`
|
|
arr[b]--
|
|
// amd64:`DECQ\s64\([A-Z]+\)`
|
|
arr[8]--
|
|
// 386:"SUBL\t4"
|
|
// amd64:"SUBQ\t8"
|
|
return arr[0] - arr[1]
|
|
}
|
|
|
|
func SubFromConst(a int) int {
|
|
// ppc64x: `SUBC\tR[0-9]+,\s[$]40,\sR`
|
|
b := 40 - a
|
|
return b
|
|
}
|
|
|
|
func SubFromConstNeg(a int) int {
|
|
// ppc64x: `ADD\t[$]40,\sR[0-9]+,\sR`
|
|
c := 40 - (-a)
|
|
return c
|
|
}
|
|
|
|
func SubSubFromConst(a int) int {
|
|
// ppc64x: `ADD\t[$]20,\sR[0-9]+,\sR`
|
|
c := 40 - (20 - a)
|
|
return c
|
|
}
|
|
|
|
func AddSubFromConst(a int) int {
|
|
// ppc64x: `SUBC\tR[0-9]+,\s[$]60,\sR`
|
|
c := 40 + (20 - a)
|
|
return c
|
|
}
|
|
|
|
func NegSubFromConst(a int) int {
|
|
// ppc64x: `ADD\t[$]-20,\sR[0-9]+,\sR`
|
|
c := -(20 - a)
|
|
return c
|
|
}
|
|
|
|
func NegAddFromConstNeg(a int) int {
|
|
// ppc64x: `SUBC\tR[0-9]+,\s[$]40,\sR`
|
|
c := -(-40 + a)
|
|
return c
|
|
}
|
|
|
|
func SubSubNegSimplify(a, b int) int {
|
|
// amd64:"NEGQ"
|
|
// ppc64x:"NEG"
|
|
r := (a - b) - a
|
|
return r
|
|
}
|
|
|
|
func SubAddSimplify(a, b int) int {
|
|
// amd64:-"SUBQ",-"ADDQ"
|
|
// ppc64x:-"SUB",-"ADD"
|
|
r := a + (b - a)
|
|
return r
|
|
}
|
|
|
|
func SubAddSimplify2(a, b, c int) (int, int, int, int, int, int) {
|
|
// amd64:-"ADDQ"
|
|
r := (a + b) - (a + c)
|
|
// amd64:-"ADDQ"
|
|
r1 := (a + b) - (c + a)
|
|
// amd64:-"ADDQ"
|
|
r2 := (b + a) - (a + c)
|
|
// amd64:-"ADDQ"
|
|
r3 := (b + a) - (c + a)
|
|
// amd64:-"SUBQ"
|
|
r4 := (a - c) + (c + b)
|
|
// amd64:-"SUBQ"
|
|
r5 := (a - c) + (b + c)
|
|
return r, r1, r2, r3, r4, r5
|
|
}
|
|
|
|
func SubAddNegSimplify(a, b int) int {
|
|
// amd64:"NEGQ",-"ADDQ",-"SUBQ"
|
|
// ppc64x:"NEG",-"ADD",-"SUB"
|
|
r := a - (b + a)
|
|
return r
|
|
}
|
|
|
|
func AddAddSubSimplify(a, b, c int) int {
|
|
// amd64:-"SUBQ"
|
|
// ppc64x:-"SUB"
|
|
r := a + (b + (c - a))
|
|
return r
|
|
}
|
|
|
|
// -------------------- //
|
|
// Multiplication //
|
|
// -------------------- //
|
|
|
|
func Pow2Muls(n1, n2 int) (int, int) {
|
|
// amd64:"SHLQ\t[$]5",-"IMULQ"
|
|
// 386:"SHLL\t[$]5",-"IMULL"
|
|
// arm:"SLL\t[$]5",-"MUL"
|
|
// arm64:"LSL\t[$]5",-"MUL"
|
|
// ppc64x:"SLD\t[$]5",-"MUL"
|
|
a := n1 * 32
|
|
|
|
// amd64:"SHLQ\t[$]6",-"IMULQ"
|
|
// 386:"SHLL\t[$]6",-"IMULL"
|
|
// arm:"SLL\t[$]6",-"MUL"
|
|
// arm64:`NEG\sR[0-9]+<<6,\sR[0-9]+`,-`LSL`,-`MUL`
|
|
// ppc64x:"SLD\t[$]6","NEG\\sR[0-9]+,\\sR[0-9]+",-"MUL"
|
|
b := -64 * n2
|
|
|
|
return a, b
|
|
}
|
|
|
|
func Mul_96(n int) int {
|
|
// amd64:`SHLQ\t[$]5`,`LEAQ\t\(.*\)\(.*\*2\),`,-`IMULQ`
|
|
// 386:`SHLL\t[$]5`,`LEAL\t\(.*\)\(.*\*2\),`,-`IMULL`
|
|
// arm64:`LSL\t[$]5`,`ADD\sR[0-9]+<<1,\sR[0-9]+`,-`MUL`
|
|
// arm:`SLL\t[$]5`,`ADD\sR[0-9]+<<1,\sR[0-9]+`,-`MUL`
|
|
// s390x:`SLD\t[$]5`,`SLD\t[$]6`,-`MULLD`
|
|
return n * 96
|
|
}
|
|
|
|
func Mul_n120(n int) int {
|
|
// s390x:`SLD\t[$]3`,`SLD\t[$]7`,-`MULLD`
|
|
return n * -120
|
|
}
|
|
|
|
func MulMemSrc(a []uint32, b []float32) {
|
|
// 386:`IMULL\s4\([A-Z]+\),\s[A-Z]+`
|
|
a[0] *= a[1]
|
|
// 386/sse2:`MULSS\s4\([A-Z]+\),\sX[0-9]+`
|
|
// amd64:`MULSS\s4\([A-Z]+\),\sX[0-9]+`
|
|
b[0] *= b[1]
|
|
}
|
|
|
|
// Multiplications merging tests
|
|
|
|
func MergeMuls1(n int) int {
|
|
// amd64:"IMUL3Q\t[$]46"
|
|
// 386:"IMUL3L\t[$]46"
|
|
// ppc64x:"MULLD\t[$]46"
|
|
return 15*n + 31*n // 46n
|
|
}
|
|
|
|
func MergeMuls2(n int) int {
|
|
// amd64:"IMUL3Q\t[$]23","(ADDQ\t[$]29)|(LEAQ\t29)"
|
|
// 386:"IMUL3L\t[$]23","ADDL\t[$]29"
|
|
// ppc64x/power9:"MADDLD",-"MULLD\t[$]23",-"ADD\t[$]29"
|
|
// ppc64x/power8:"MULLD\t[$]23","ADD\t[$]29"
|
|
return 5*n + 7*(n+1) + 11*(n+2) // 23n + 29
|
|
}
|
|
|
|
func MergeMuls3(a, n int) int {
|
|
// amd64:"ADDQ\t[$]19",-"IMULQ\t[$]19"
|
|
// 386:"ADDL\t[$]19",-"IMULL\t[$]19"
|
|
// ppc64x:"ADD\t[$]19",-"MULLD\t[$]19"
|
|
return a*n + 19*n // (a+19)n
|
|
}
|
|
|
|
func MergeMuls4(n int) int {
|
|
// amd64:"IMUL3Q\t[$]14"
|
|
// 386:"IMUL3L\t[$]14"
|
|
// ppc64x:"MULLD\t[$]14"
|
|
return 23*n - 9*n // 14n
|
|
}
|
|
|
|
func MergeMuls5(a, n int) int {
|
|
// amd64:"ADDQ\t[$]-19",-"IMULQ\t[$]19"
|
|
// 386:"ADDL\t[$]-19",-"IMULL\t[$]19"
|
|
// ppc64x:"ADD\t[$]-19",-"MULLD\t[$]19"
|
|
return a*n - 19*n // (a-19)n
|
|
}
|
|
|
|
// -------------- //
|
|
// Division //
|
|
// -------------- //
|
|
|
|
func DivMemSrc(a []float64) {
|
|
// 386/sse2:`DIVSD\s8\([A-Z]+\),\sX[0-9]+`
|
|
// amd64:`DIVSD\s8\([A-Z]+\),\sX[0-9]+`
|
|
a[0] /= a[1]
|
|
}
|
|
|
|
func Pow2Divs(n1 uint, n2 int) (uint, int) {
|
|
// 386:"SHRL\t[$]5",-"DIVL"
|
|
// amd64:"SHRQ\t[$]5",-"DIVQ"
|
|
// arm:"SRL\t[$]5",-".*udiv"
|
|
// arm64:"LSR\t[$]5",-"UDIV"
|
|
// ppc64x:"SRD"
|
|
a := n1 / 32 // unsigned
|
|
|
|
// amd64:"SARQ\t[$]6",-"IDIVQ"
|
|
// 386:"SARL\t[$]6",-"IDIVL"
|
|
// arm:"SRA\t[$]6",-".*udiv"
|
|
// arm64:"ASR\t[$]6",-"SDIV"
|
|
// ppc64x:"SRAD"
|
|
b := n2 / 64 // signed
|
|
|
|
return a, b
|
|
}
|
|
|
|
// Check that constant divisions get turned into MULs
|
|
func ConstDivs(n1 uint, n2 int) (uint, int) {
|
|
// amd64:"MOVQ\t[$]-1085102592571150095","MULQ",-"DIVQ"
|
|
// 386:"MOVL\t[$]-252645135","MULL",-"DIVL"
|
|
// arm64:`MOVD`,`UMULH`,-`DIV`
|
|
// arm:`MOVW`,`MUL`,-`.*udiv`
|
|
a := n1 / 17 // unsigned
|
|
|
|
// amd64:"MOVQ\t[$]-1085102592571150095","IMULQ",-"IDIVQ"
|
|
// 386:"MOVL\t[$]-252645135","IMULL",-"IDIVL"
|
|
// arm64:`SMULH`,-`DIV`
|
|
// arm:`MOVW`,`MUL`,-`.*udiv`
|
|
b := n2 / 17 // signed
|
|
|
|
return a, b
|
|
}
|
|
|
|
func FloatDivs(a []float32) float32 {
|
|
// amd64:`DIVSS\s8\([A-Z]+\),\sX[0-9]+`
|
|
// 386/sse2:`DIVSS\s8\([A-Z]+\),\sX[0-9]+`
|
|
return a[1] / a[2]
|
|
}
|
|
|
|
func Pow2Mods(n1 uint, n2 int) (uint, int) {
|
|
// 386:"ANDL\t[$]31",-"DIVL"
|
|
// amd64:"ANDL\t[$]31",-"DIVQ"
|
|
// arm:"AND\t[$]31",-".*udiv"
|
|
// arm64:"AND\t[$]31",-"UDIV"
|
|
// ppc64x:"RLDICL"
|
|
a := n1 % 32 // unsigned
|
|
|
|
// 386:"SHRL",-"IDIVL"
|
|
// amd64:"SHRQ",-"IDIVQ"
|
|
// arm:"SRA",-".*udiv"
|
|
// arm64:"ASR",-"REM"
|
|
// ppc64x:"SRAD"
|
|
b := n2 % 64 // signed
|
|
|
|
return a, b
|
|
}
|
|
|
|
// Check that signed divisibility checks get converted to AND on low bits
|
|
func Pow2DivisibleSigned(n1, n2 int) (bool, bool) {
|
|
// 386:"TESTL\t[$]63",-"DIVL",-"SHRL"
|
|
// amd64:"TESTQ\t[$]63",-"DIVQ",-"SHRQ"
|
|
// arm:"AND\t[$]63",-".*udiv",-"SRA"
|
|
// arm64:"TST\t[$]63",-"UDIV",-"ASR",-"AND"
|
|
// ppc64x:"RLDICL",-"SRAD"
|
|
a := n1%64 == 0 // signed divisible
|
|
|
|
// 386:"TESTL\t[$]63",-"DIVL",-"SHRL"
|
|
// amd64:"TESTQ\t[$]63",-"DIVQ",-"SHRQ"
|
|
// arm:"AND\t[$]63",-".*udiv",-"SRA"
|
|
// arm64:"TST\t[$]63",-"UDIV",-"ASR",-"AND"
|
|
// ppc64x:"RLDICL",-"SRAD"
|
|
b := n2%64 != 0 // signed indivisible
|
|
|
|
return a, b
|
|
}
|
|
|
|
// Check that constant modulo divs get turned into MULs
|
|
func ConstMods(n1 uint, n2 int) (uint, int) {
|
|
// amd64:"MOVQ\t[$]-1085102592571150095","MULQ",-"DIVQ"
|
|
// 386:"MOVL\t[$]-252645135","MULL",-"DIVL"
|
|
// arm64:`MOVD`,`UMULH`,-`DIV`
|
|
// arm:`MOVW`,`MUL`,-`.*udiv`
|
|
a := n1 % 17 // unsigned
|
|
|
|
// amd64:"MOVQ\t[$]-1085102592571150095","IMULQ",-"IDIVQ"
|
|
// 386:"MOVL\t[$]-252645135","IMULL",-"IDIVL"
|
|
// arm64:`SMULH`,-`DIV`
|
|
// arm:`MOVW`,`MUL`,-`.*udiv`
|
|
b := n2 % 17 // signed
|
|
|
|
return a, b
|
|
}
|
|
|
|
// Check that divisibility checks x%c==0 are converted to MULs and rotates
|
|
func DivisibleU(n uint) (bool, bool) {
|
|
// amd64:"MOVQ\t[$]-6148914691236517205","IMULQ","ROLQ\t[$]63",-"DIVQ"
|
|
// 386:"IMUL3L\t[$]-1431655765","ROLL\t[$]31",-"DIVQ"
|
|
// arm64:"MOVD\t[$]-6148914691236517205","MOVD\t[$]3074457345618258602","MUL","ROR",-"DIV"
|
|
// arm:"MUL","CMP\t[$]715827882",-".*udiv"
|
|
// ppc64x:"MULLD","ROTL\t[$]63"
|
|
even := n%6 == 0
|
|
|
|
// amd64:"MOVQ\t[$]-8737931403336103397","IMULQ",-"ROLQ",-"DIVQ"
|
|
// 386:"IMUL3L\t[$]678152731",-"ROLL",-"DIVQ"
|
|
// arm64:"MOVD\t[$]-8737931403336103397","MUL",-"ROR",-"DIV"
|
|
// arm:"MUL","CMP\t[$]226050910",-".*udiv"
|
|
// ppc64x:"MULLD",-"ROTL"
|
|
odd := n%19 == 0
|
|
|
|
return even, odd
|
|
}
|
|
|
|
func Divisible(n int) (bool, bool) {
|
|
// amd64:"IMULQ","ADD","ROLQ\t[$]63",-"DIVQ"
|
|
// 386:"IMUL3L\t[$]-1431655765","ADDL\t[$]715827882","ROLL\t[$]31",-"DIVQ"
|
|
// arm64:"MOVD\t[$]-6148914691236517205","MOVD\t[$]3074457345618258602","MUL","ADD\tR","ROR",-"DIV"
|
|
// arm:"MUL","ADD\t[$]715827882",-".*udiv"
|
|
// ppc64x/power8:"MULLD","ADD","ROTL\t[$]63"
|
|
// ppc64x/power9:"MADDLD","ROTL\t[$]63"
|
|
even := n%6 == 0
|
|
|
|
// amd64:"IMULQ","ADD",-"ROLQ",-"DIVQ"
|
|
// 386:"IMUL3L\t[$]678152731","ADDL\t[$]113025455",-"ROLL",-"DIVQ"
|
|
// arm64:"MUL","MOVD\t[$]485440633518672410","ADD",-"ROR",-"DIV"
|
|
// arm:"MUL","ADD\t[$]113025455",-".*udiv"
|
|
// ppc64x/power8:"MULLD","ADD",-"ROTL"
|
|
// ppc64x/power9:"MADDLD",-"ROTL"
|
|
odd := n%19 == 0
|
|
|
|
return even, odd
|
|
}
|
|
|
|
// Check that fix-up code is not generated for divisions where it has been proven that
|
|
// that the divisor is not -1 or that the dividend is > MinIntNN.
|
|
func NoFix64A(divr int64) (int64, int64) {
|
|
var d int64 = 42
|
|
var e int64 = 84
|
|
if divr > 5 {
|
|
d /= divr // amd64:-"JMP"
|
|
e %= divr // amd64:-"JMP"
|
|
// The following statement is to avoid conflict between the above check
|
|
// and the normal JMP generated at the end of the block.
|
|
d += e
|
|
}
|
|
return d, e
|
|
}
|
|
|
|
func NoFix64B(divd int64) (int64, int64) {
|
|
var d int64
|
|
var e int64
|
|
var divr int64 = -1
|
|
if divd > -9223372036854775808 {
|
|
d = divd / divr // amd64:-"JMP"
|
|
e = divd % divr // amd64:-"JMP"
|
|
d += e
|
|
}
|
|
return d, e
|
|
}
|
|
|
|
func NoFix32A(divr int32) (int32, int32) {
|
|
var d int32 = 42
|
|
var e int32 = 84
|
|
if divr > 5 {
|
|
// amd64:-"JMP"
|
|
// 386:-"JMP"
|
|
d /= divr
|
|
// amd64:-"JMP"
|
|
// 386:-"JMP"
|
|
e %= divr
|
|
d += e
|
|
}
|
|
return d, e
|
|
}
|
|
|
|
func NoFix32B(divd int32) (int32, int32) {
|
|
var d int32
|
|
var e int32
|
|
var divr int32 = -1
|
|
if divd > -2147483648 {
|
|
// amd64:-"JMP"
|
|
// 386:-"JMP"
|
|
d = divd / divr
|
|
// amd64:-"JMP"
|
|
// 386:-"JMP"
|
|
e = divd % divr
|
|
d += e
|
|
}
|
|
return d, e
|
|
}
|
|
|
|
func NoFix16A(divr int16) (int16, int16) {
|
|
var d int16 = 42
|
|
var e int16 = 84
|
|
if divr > 5 {
|
|
// amd64:-"JMP"
|
|
// 386:-"JMP"
|
|
d /= divr
|
|
// amd64:-"JMP"
|
|
// 386:-"JMP"
|
|
e %= divr
|
|
d += e
|
|
}
|
|
return d, e
|
|
}
|
|
|
|
func NoFix16B(divd int16) (int16, int16) {
|
|
var d int16
|
|
var e int16
|
|
var divr int16 = -1
|
|
if divd > -32768 {
|
|
// amd64:-"JMP"
|
|
// 386:-"JMP"
|
|
d = divd / divr
|
|
// amd64:-"JMP"
|
|
// 386:-"JMP"
|
|
e = divd % divr
|
|
d += e
|
|
}
|
|
return d, e
|
|
}
|
|
|
|
// Check that len() and cap() calls divided by powers of two are
|
|
// optimized into shifts and ands
|
|
|
|
func LenDiv1(a []int) int {
|
|
// 386:"SHRL\t[$]10"
|
|
// amd64:"SHRQ\t[$]10"
|
|
// arm64:"LSR\t[$]10",-"SDIV"
|
|
// arm:"SRL\t[$]10",-".*udiv"
|
|
// ppc64x:"SRD"\t[$]10"
|
|
return len(a) / 1024
|
|
}
|
|
|
|
func LenDiv2(s string) int {
|
|
// 386:"SHRL\t[$]11"
|
|
// amd64:"SHRQ\t[$]11"
|
|
// arm64:"LSR\t[$]11",-"SDIV"
|
|
// arm:"SRL\t[$]11",-".*udiv"
|
|
// ppc64x:"SRD\t[$]11"
|
|
return len(s) / (4097 >> 1)
|
|
}
|
|
|
|
func LenMod1(a []int) int {
|
|
// 386:"ANDL\t[$]1023"
|
|
// amd64:"ANDL\t[$]1023"
|
|
// arm64:"AND\t[$]1023",-"SDIV"
|
|
// arm/6:"AND",-".*udiv"
|
|
// arm/7:"BFC",-".*udiv",-"AND"
|
|
// ppc64x:"RLDICL"
|
|
return len(a) % 1024
|
|
}
|
|
|
|
func LenMod2(s string) int {
|
|
// 386:"ANDL\t[$]2047"
|
|
// amd64:"ANDL\t[$]2047"
|
|
// arm64:"AND\t[$]2047",-"SDIV"
|
|
// arm/6:"AND",-".*udiv"
|
|
// arm/7:"BFC",-".*udiv",-"AND"
|
|
// ppc64x:"RLDICL"
|
|
return len(s) % (4097 >> 1)
|
|
}
|
|
|
|
func CapDiv(a []int) int {
|
|
// 386:"SHRL\t[$]12"
|
|
// amd64:"SHRQ\t[$]12"
|
|
// arm64:"LSR\t[$]12",-"SDIV"
|
|
// arm:"SRL\t[$]12",-".*udiv"
|
|
// ppc64x:"SRD\t[$]12"
|
|
return cap(a) / ((1 << 11) + 2048)
|
|
}
|
|
|
|
func CapMod(a []int) int {
|
|
// 386:"ANDL\t[$]4095"
|
|
// amd64:"ANDL\t[$]4095"
|
|
// arm64:"AND\t[$]4095",-"SDIV"
|
|
// arm/6:"AND",-".*udiv"
|
|
// arm/7:"BFC",-".*udiv",-"AND"
|
|
// ppc64x:"RLDICL"
|
|
return cap(a) % ((1 << 11) + 2048)
|
|
}
|
|
|
|
func AddMul(x int) int {
|
|
// amd64:"LEAQ\t1"
|
|
return 2*x + 1
|
|
}
|
|
|
|
func MULA(a, b, c uint32) (uint32, uint32, uint32) {
|
|
// arm:`MULA`,-`MUL\s`
|
|
// arm64:`MADDW`,-`MULW`
|
|
r0 := a*b + c
|
|
// arm:`MULA`,-`MUL\s`
|
|
// arm64:`MADDW`,-`MULW`
|
|
r1 := c*79 + a
|
|
// arm:`ADD`,-`MULA`,-`MUL\s`
|
|
// arm64:`ADD`,-`MADD`,-`MULW`
|
|
// ppc64x:`ADD`,-`MULLD`
|
|
r2 := b*64 + c
|
|
return r0, r1, r2
|
|
}
|
|
|
|
func MULS(a, b, c uint32) (uint32, uint32, uint32) {
|
|
// arm/7:`MULS`,-`MUL\s`
|
|
// arm/6:`SUB`,`MUL\s`,-`MULS`
|
|
// arm64:`MSUBW`,-`MULW`
|
|
r0 := c - a*b
|
|
// arm/7:`MULS`,-`MUL\s`
|
|
// arm/6:`SUB`,`MUL\s`,-`MULS`
|
|
// arm64:`MSUBW`,-`MULW`
|
|
r1 := a - c*79
|
|
// arm/7:`SUB`,-`MULS`,-`MUL\s`
|
|
// arm64:`SUB`,-`MSUBW`,-`MULW`
|
|
// ppc64x:`SUB`,-`MULLD`
|
|
r2 := c - b*64
|
|
return r0, r1, r2
|
|
}
|
|
|
|
func addSpecial(a, b, c uint32) (uint32, uint32, uint32) {
|
|
// amd64:`INCL`
|
|
a++
|
|
// amd64:`DECL`
|
|
b--
|
|
// amd64:`SUBL.*-128`
|
|
c += 128
|
|
return a, b, c
|
|
}
|
|
|
|
// Divide -> shift rules usually require fixup for negative inputs.
|
|
// If the input is non-negative, make sure the fixup is eliminated.
|
|
func divInt(v int64) int64 {
|
|
if v < 0 {
|
|
return 0
|
|
}
|
|
// amd64:-`.*SARQ.*63,`, -".*SHRQ", ".*SARQ.*[$]9,"
|
|
return v / 512
|
|
}
|
|
|
|
// The reassociate rules "x - (z + C) -> (x - z) - C" and
|
|
// "(z + C) -x -> C + (z - x)" can optimize the following cases.
|
|
func constantFold1(i0, j0, i1, j1, i2, j2, i3, j3 int) (int, int, int, int) {
|
|
// arm64:"SUB","ADD\t[$]2"
|
|
// ppc64x:"SUB","ADD\t[$]2"
|
|
r0 := (i0 + 3) - (j0 + 1)
|
|
// arm64:"SUB","SUB\t[$]4"
|
|
// ppc64x:"SUB","ADD\t[$]-4"
|
|
r1 := (i1 - 3) - (j1 + 1)
|
|
// arm64:"SUB","ADD\t[$]4"
|
|
// ppc64x:"SUB","ADD\t[$]4"
|
|
r2 := (i2 + 3) - (j2 - 1)
|
|
// arm64:"SUB","SUB\t[$]2"
|
|
// ppc64x:"SUB","ADD\t[$]-2"
|
|
r3 := (i3 - 3) - (j3 - 1)
|
|
return r0, r1, r2, r3
|
|
}
|
|
|
|
// The reassociate rules "x - (z + C) -> (x - z) - C" and
|
|
// "(C - z) - x -> C - (z + x)" can optimize the following cases.
|
|
func constantFold2(i0, j0, i1, j1 int) (int, int) {
|
|
// arm64:"ADD","MOVD\t[$]2","SUB"
|
|
// ppc64x: `SUBC\tR[0-9]+,\s[$]2,\sR`
|
|
r0 := (3 - i0) - (j0 + 1)
|
|
// arm64:"ADD","MOVD\t[$]4","SUB"
|
|
// ppc64x: `SUBC\tR[0-9]+,\s[$]4,\sR`
|
|
r1 := (3 - i1) - (j1 - 1)
|
|
return r0, r1
|
|
}
|
|
|
|
func constantFold3(i, j int) int {
|
|
// arm64: "MOVD\t[$]30","MUL",-"ADD",-"LSL"
|
|
// ppc64x:"MULLD\t[$]30","MULLD"
|
|
r := (5 * i) * (6 * j)
|
|
return r
|
|
}
|