1
0
mirror of https://github.com/golang/go synced 2024-11-19 03:54:42 -07:00
go/ssa/func.go
Alan Donovan 33f988691e go.tools/ssa: use correct names for Captures.
Until now, the name of the captured ssa.Value, not
types.Var was used, leading to confusing disassembly
when it was a numbered register.  See:
https://code.google.com/p/go/issues/detail?id=6337

Now the output is:

# Free variables:
#   0:	a *int
#   1:	b *int
func func@6.9() int:
.0.entry:
        t0 = *b
        t1 = *a
        t2 = *b
        etc...

BUG=6337

R=crawshaw
CC=golang-dev
https://golang.org/cl/13249049
2013-09-06 09:19:34 -04:00

657 lines
17 KiB
Go

// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
// This file implements the Function and BasicBlock types.
import (
"fmt"
"go/ast"
"go/token"
"io"
"os"
"strings"
"code.google.com/p/go.tools/go/types"
)
// addEdge adds a control-flow graph edge from from to to.
func addEdge(from, to *BasicBlock) {
from.Succs = append(from.Succs, to)
to.Preds = append(to.Preds, from)
}
// Parent returns the function that contains block b.
func (b *BasicBlock) Parent() *Function { return b.parent }
// String returns a human-readable label of this block.
// It is not guaranteed unique within the function.
//
func (b *BasicBlock) String() string {
return fmt.Sprintf("%d.%s", b.Index, b.Comment)
}
// emit appends an instruction to the current basic block.
// If the instruction defines a Value, it is returned.
//
func (b *BasicBlock) emit(i Instruction) Value {
i.SetBlock(b)
b.Instrs = append(b.Instrs, i)
v, _ := i.(Value)
return v
}
// predIndex returns the i such that b.Preds[i] == c or panics if
// there is none.
func (b *BasicBlock) predIndex(c *BasicBlock) int {
for i, pred := range b.Preds {
if pred == c {
return i
}
}
panic(fmt.Sprintf("no edge %s -> %s", c, b))
}
// hasPhi returns true if b.Instrs contains φ-nodes.
func (b *BasicBlock) hasPhi() bool {
_, ok := b.Instrs[0].(*Phi)
return ok
}
// phis returns the prefix of b.Instrs containing all the block's φ-nodes.
func (b *BasicBlock) phis() []Instruction {
for i, instr := range b.Instrs {
if _, ok := instr.(*Phi); !ok {
return b.Instrs[:i]
}
}
return nil // unreachable in well-formed blocks
}
// replacePred replaces all occurrences of p in b's predecessor list with q.
// Ordinarily there should be at most one.
//
func (b *BasicBlock) replacePred(p, q *BasicBlock) {
for i, pred := range b.Preds {
if pred == p {
b.Preds[i] = q
}
}
}
// replaceSucc replaces all occurrences of p in b's successor list with q.
// Ordinarily there should be at most one.
//
func (b *BasicBlock) replaceSucc(p, q *BasicBlock) {
for i, succ := range b.Succs {
if succ == p {
b.Succs[i] = q
}
}
}
// removePred removes all occurrences of p in b's
// predecessor list and φ-nodes.
// Ordinarily there should be at most one.
//
func (b *BasicBlock) removePred(p *BasicBlock) {
phis := b.phis()
// We must preserve edge order for φ-nodes.
j := 0
for i, pred := range b.Preds {
if pred != p {
b.Preds[j] = b.Preds[i]
// Strike out φ-edge too.
for _, instr := range phis {
phi := instr.(*Phi)
phi.Edges[j] = phi.Edges[i]
}
j++
}
}
// Nil out b.Preds[j:] and φ-edges[j:] to aid GC.
for i := j; i < len(b.Preds); i++ {
b.Preds[i] = nil
for _, instr := range phis {
instr.(*Phi).Edges[i] = nil
}
}
b.Preds = b.Preds[:j]
for _, instr := range phis {
phi := instr.(*Phi)
phi.Edges = phi.Edges[:j]
}
}
// Destinations associated with unlabelled for/switch/select stmts.
// We push/pop one of these as we enter/leave each construct and for
// each BranchStmt we scan for the innermost target of the right type.
//
type targets struct {
tail *targets // rest of stack
_break *BasicBlock
_continue *BasicBlock
_fallthrough *BasicBlock
}
// Destinations associated with a labelled block.
// We populate these as labels are encountered in forward gotos or
// labelled statements.
//
type lblock struct {
_goto *BasicBlock
_break *BasicBlock
_continue *BasicBlock
}
// funcSyntax holds the syntax tree for the function declaration and body.
type funcSyntax struct {
recvField *ast.FieldList
body *ast.BlockStmt
functype *ast.FuncType
}
// labelledBlock returns the branch target associated with the
// specified label, creating it if needed.
//
func (f *Function) labelledBlock(label *ast.Ident) *lblock {
lb := f.lblocks[label.Obj]
if lb == nil {
lb = &lblock{_goto: f.newBasicBlock(label.Name)}
if f.lblocks == nil {
f.lblocks = make(map[*ast.Object]*lblock)
}
f.lblocks[label.Obj] = lb
}
return lb
}
// addParam adds a (non-escaping) parameter to f.Params of the
// specified name, type and source position.
//
func (f *Function) addParam(name string, typ types.Type, pos token.Pos) *Parameter {
v := &Parameter{
name: name,
typ: typ,
pos: pos,
parent: f,
}
f.Params = append(f.Params, v)
return v
}
func (f *Function) addParamObj(obj types.Object) *Parameter {
name := obj.Name()
if name == "" {
name = fmt.Sprintf("arg%d", len(f.Params))
}
param := f.addParam(name, obj.Type(), obj.Pos())
param.object = obj
return param
}
// addSpilledParam declares a parameter that is pre-spilled to the
// stack; the function body will load/store the spilled location.
// Subsequent lifting will eliminate spills where possible.
//
func (f *Function) addSpilledParam(obj types.Object) {
param := f.addParamObj(obj)
spill := &Alloc{Comment: obj.Name()}
spill.setType(types.NewPointer(obj.Type()))
spill.setPos(obj.Pos())
f.objects[obj] = spill
f.Locals = append(f.Locals, spill)
f.emit(spill)
f.emit(&Store{Addr: spill, Val: param})
}
// startBody initializes the function prior to generating SSA code for its body.
// Precondition: f.Type() already set.
//
func (f *Function) startBody() {
f.currentBlock = f.newBasicBlock("entry")
f.objects = make(map[types.Object]Value) // needed for some synthetics, e.g. init
}
// createSyntacticParams populates f.Params and generates code (spills
// and named result locals) for all the parameters declared in the
// syntax. In addition it populates the f.objects mapping.
//
// Preconditions:
// f.syntax != nil, i.e. this is a Go source function.
// f.startBody() was called.
// Postcondition:
// len(f.Params) == len(f.Signature.Params) + (f.Signature.Recv() ? 1 : 0)
//
func (f *Function) createSyntacticParams() {
// Receiver (at most one inner iteration).
if f.syntax.recvField != nil {
for _, field := range f.syntax.recvField.List {
for _, n := range field.Names {
f.addSpilledParam(f.Pkg.objectOf(n))
}
// Anonymous receiver? No need to spill.
if field.Names == nil {
f.addParamObj(f.Signature.Recv())
}
}
}
// Parameters.
if f.syntax.functype.Params != nil {
n := len(f.Params) // 1 if has recv, 0 otherwise
for _, field := range f.syntax.functype.Params.List {
for _, n := range field.Names {
f.addSpilledParam(f.Pkg.objectOf(n))
}
// Anonymous parameter? No need to spill.
if field.Names == nil {
f.addParamObj(f.Signature.Params().At(len(f.Params) - n))
}
}
}
// Named results.
if f.syntax.functype.Results != nil {
for _, field := range f.syntax.functype.Results.List {
// Implicit "var" decl of locals for named results.
for _, n := range field.Names {
f.namedResults = append(f.namedResults, f.addLocalForIdent(n))
}
}
}
}
// numberRegisters assigns numbers to all SSA registers
// (value-defining Instructions) in f, to aid debugging.
// (Non-Instruction Values are named at construction.)
//
func numberRegisters(f *Function) {
v := 0
for _, b := range f.Blocks {
for _, instr := range b.Instrs {
switch instr.(type) {
case Value:
instr.(interface {
setNum(int)
}).setNum(v)
v++
}
}
}
}
// buildReferrers populates the def/use information in all non-nil
// Value.Referrers slice.
// Precondition: all such slices are initially empty.
func buildReferrers(f *Function) {
var rands []*Value
for _, b := range f.Blocks {
for _, instr := range b.Instrs {
rands = instr.Operands(rands[:0]) // recycle storage
for _, rand := range rands {
if r := *rand; r != nil {
if ref := r.Referrers(); ref != nil {
*ref = append(*ref, instr)
}
}
}
}
}
}
// finishBody() finalizes the function after SSA code generation of its body.
func (f *Function) finishBody() {
f.objects = nil
f.namedResults = nil
f.currentBlock = nil
f.lblocks = nil
f.syntax = nil
// Remove any f.Locals that are now heap-allocated.
j := 0
for _, l := range f.Locals {
if !l.Heap {
f.Locals[j] = l
j++
}
}
// Nil out f.Locals[j:] to aid GC.
for i := j; i < len(f.Locals); i++ {
f.Locals[i] = nil
}
f.Locals = f.Locals[:j]
optimizeBlocks(f)
buildReferrers(f)
if f.Prog.mode&NaiveForm == 0 {
// For debugging pre-state of lifting pass:
// numberRegisters(f)
// f.DumpTo(os.Stderr)
lift(f)
}
numberRegisters(f)
if f.Prog.mode&LogFunctions != 0 {
f.DumpTo(os.Stderr)
}
if f.Prog.mode&SanityCheckFunctions != 0 {
mustSanityCheck(f, nil)
}
}
// removeNilBlocks eliminates nils from f.Blocks and updates each
// BasicBlock.Index. Use this after any pass that may delete blocks.
//
func (f *Function) removeNilBlocks() {
j := 0
for _, b := range f.Blocks {
if b != nil {
b.Index = j
f.Blocks[j] = b
j++
}
}
// Nil out f.Blocks[j:] to aid GC.
for i := j; i < len(f.Blocks); i++ {
f.Blocks[i] = nil
}
f.Blocks = f.Blocks[:j]
}
// SetDebugMode sets the debug mode for package pkg. If true, all its
// functions will include full debug info. This greatly increases
// the size of the instruction stream.
//
func (pkg *Package) SetDebugMode(debug bool) {
// TODO(adonovan): do we want ast.File granularity?
pkg.debug = debug
}
// debugInfo reports whether debug info is wanted for this function.
func (f *Function) debugInfo() bool {
return f.Pkg.debug
}
// addNamedLocal creates a local variable, adds it to function f and
// returns it. Its name and type are taken from obj. Subsequent
// calls to f.lookup(obj) will return the same local.
//
// Precondition: f.syntax != nil (i.e. a Go source function).
//
func (f *Function) addNamedLocal(obj types.Object) *Alloc {
l := f.addLocal(obj.Type(), obj.Pos())
l.Comment = obj.Name()
f.objects[obj] = l
return l
}
func (f *Function) addLocalForIdent(id *ast.Ident) *Alloc {
return f.addNamedLocal(f.Pkg.objectOf(id))
}
// addLocal creates an anonymous local variable of type typ, adds it
// to function f and returns it. pos is the optional source location.
//
func (f *Function) addLocal(typ types.Type, pos token.Pos) *Alloc {
v := &Alloc{}
v.setType(types.NewPointer(typ))
v.setPos(pos)
f.Locals = append(f.Locals, v)
f.emit(v)
return v
}
// lookup returns the address of the named variable identified by obj
// that is local to function f or one of its enclosing functions.
// If escaping, the reference comes from a potentially escaping pointer
// expression and the referent must be heap-allocated.
//
func (f *Function) lookup(obj types.Object, escaping bool) Value {
if v, ok := f.objects[obj]; ok {
if alloc, ok := v.(*Alloc); ok && escaping {
alloc.Heap = true
}
return v // function-local var (address)
}
// Definition must be in an enclosing function;
// plumb it through intervening closures.
if f.Enclosing == nil {
panic("no Value for type.Object " + obj.Name())
}
outer := f.Enclosing.lookup(obj, true) // escaping
v := &Capture{
name: obj.Name(),
typ: outer.Type(),
pos: outer.Pos(),
outer: outer,
parent: f,
}
f.objects[obj] = v
f.FreeVars = append(f.FreeVars, v)
return v
}
// emit emits the specified instruction to function f, updating the
// control-flow graph if required.
//
func (f *Function) emit(instr Instruction) Value {
return f.currentBlock.emit(instr)
}
// FullName returns the full name of this function, qualified by
// package name, receiver type, etc.
//
// The specific formatting rules are not guaranteed and may change.
//
// Examples:
// "math.IsNaN" // a package-level function
// "IsNaN" // intra-package reference to same
// "(*sync.WaitGroup).Add" // a declared method
// "(*exp/ssa.Ret).Block" // a promotion wrapper method
// "(ssa.Instruction).Block" // an interface method wrapper
// "func@5.32" // an anonymous function
// "bound$(*T).f" // a bound method wrapper
//
// If from==f.Pkg, suppress package qualification.
func (f *Function) fullName(from *Package) string {
// TODO(adonovan): expose less fragile case discrimination
// using f.method.
// Anonymous?
if f.Enclosing != nil {
return f.name
}
// Declared method, or promotion/indirection wrapper?
if recv := f.Signature.Recv(); recv != nil {
return fmt.Sprintf("(%s).%s", relType(recv.Type(), from), f.name)
}
// Other synthetic wrapper?
if f.Synthetic != "" {
// Bound method wrapper?
if strings.HasPrefix(f.name, "bound$") {
return f.name
}
// Interface method wrapper?
if strings.HasPrefix(f.Synthetic, "interface ") {
return fmt.Sprintf("(%s).%s", relType(f.Params[0].Type(), from), f.name)
}
// "package initializer" or "loaded from GC object file": fall through.
}
// Package-level function.
// Prefix with package name for cross-package references only.
if from != f.Pkg {
return fmt.Sprintf("%s.%s", f.Pkg.Object.Path(), f.name)
}
return f.name
}
// writeSignature writes to w the signature sig in declaration syntax.
// Derived from types.Signature.String().
//
func writeSignature(w io.Writer, name string, sig *types.Signature, params []*Parameter) {
io.WriteString(w, "func ")
if recv := sig.Recv(); recv != nil {
io.WriteString(w, "(")
if n := params[0].Name(); n != "" {
io.WriteString(w, n)
io.WriteString(w, " ")
}
io.WriteString(w, params[0].Type().String())
io.WriteString(w, ") ")
params = params[1:]
}
io.WriteString(w, name)
io.WriteString(w, "(")
for i, v := range params {
if i > 0 {
io.WriteString(w, ", ")
}
io.WriteString(w, v.Name())
io.WriteString(w, " ")
if sig.IsVariadic() && i == len(params)-1 {
io.WriteString(w, "...")
io.WriteString(w, v.Type().Underlying().(*types.Slice).Elem().String())
} else {
io.WriteString(w, v.Type().String())
}
}
io.WriteString(w, ")")
if n := sig.Results().Len(); n > 0 {
io.WriteString(w, " ")
r := sig.Results()
if n == 1 && r.At(0).Name() == "" {
io.WriteString(w, r.At(0).Type().String())
} else {
io.WriteString(w, r.String())
}
}
}
// DumpTo prints to w a human readable "disassembly" of the SSA code of
// all basic blocks of function f.
//
func (f *Function) DumpTo(w io.Writer) {
fmt.Fprintf(w, "# Name: %s\n", f.String())
if syn := f.Synthetic; syn != "" {
fmt.Fprintln(w, "# Synthetic:", syn)
}
if pos := f.Pos(); pos.IsValid() {
fmt.Fprintf(w, "# Location: %s\n", f.Prog.Fset.Position(pos))
}
if f.Enclosing != nil {
fmt.Fprintf(w, "# Parent: %s\n", f.Enclosing.Name())
}
if f.FreeVars != nil {
io.WriteString(w, "# Free variables:\n")
for i, fv := range f.FreeVars {
fmt.Fprintf(w, "# % 3d:\t%s %s\n", i, fv.Name(), fv.Type())
}
}
if len(f.Locals) > 0 {
io.WriteString(w, "# Locals:\n")
for i, l := range f.Locals {
fmt.Fprintf(w, "# % 3d:\t%s %s\n", i, l.Name(), deref(l.Type()))
}
}
writeSignature(w, f.Name(), f.Signature, f.Params)
io.WriteString(w, ":\n")
if f.Blocks == nil {
io.WriteString(w, "\t(external)\n")
}
// NB. column calculations are confused by non-ASCII characters.
const punchcard = 80 // for old time's sake.
for _, b := range f.Blocks {
if b == nil {
// Corrupt CFG.
fmt.Fprintf(w, ".nil:\n")
continue
}
n, _ := fmt.Fprintf(w, ".%s:", b)
fmt.Fprintf(w, "%*sP:%d S:%d\n", punchcard-1-n-len("P:n S:n"), "", len(b.Preds), len(b.Succs))
if false { // CFG debugging
fmt.Fprintf(w, "\t# CFG: %s --> %s --> %s\n", b.Preds, b, b.Succs)
}
for _, instr := range b.Instrs {
io.WriteString(w, "\t")
switch v := instr.(type) {
case Value:
l := punchcard
// Left-align the instruction.
if name := v.Name(); name != "" {
n, _ := fmt.Fprintf(w, "%s = ", name)
l -= n
}
n, _ := io.WriteString(w, instr.String())
l -= n
// Right-align the type.
if t := v.Type(); t != nil {
fmt.Fprintf(w, " %*s", l-10, t)
}
case nil:
// Be robust against bad transforms.
io.WriteString(w, "<deleted>")
default:
io.WriteString(w, instr.String())
}
io.WriteString(w, "\n")
}
}
fmt.Fprintf(w, "\n")
}
// newBasicBlock adds to f a new basic block and returns it. It does
// not automatically become the current block for subsequent calls to emit.
// comment is an optional string for more readable debugging output.
//
func (f *Function) newBasicBlock(comment string) *BasicBlock {
b := &BasicBlock{
Index: len(f.Blocks),
Comment: comment,
parent: f,
}
b.Succs = b.succs2[:0]
f.Blocks = append(f.Blocks, b)
return b
}
// NewFunction returns a new synthetic Function instance with its name
// and signature fields set as specified.
//
// The caller is responsible for initializing the remaining fields of
// the function object, e.g. Pkg, Prog, Params, Blocks.
//
// It is practically impossible for clients to construct well-formed
// SSA functions/packages/programs directly, so we assume this is the
// job of the Builder alone. NewFunction exists to provide clients a
// little flexibility. For example, analysis tools may wish to
// construct fake Functions for the root of the callgraph, a fake
// "reflect" package, etc.
//
// TODO(adonovan): think harder about the API here.
//
func NewFunction(name string, sig *types.Signature, provenance string) *Function {
return &Function{name: name, Signature: sig, Synthetic: provenance}
}