mirror of
https://github.com/golang/go
synced 2024-11-19 02:34:44 -07:00
2196cb7019
Change-Id: I35d883196c7c3b35e14b49c0f5c779a91e72ce42 Reviewed-on: https://go-review.googlesource.com/c/tools/+/177177 Run-TryBot: Rebecca Stambler <rstambler@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Ian Cottrell <iancottrell@google.com>
774 lines
21 KiB
Go
774 lines
21 KiB
Go
// Copyright 2018 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package source
|
|
|
|
import (
|
|
"context"
|
|
"fmt"
|
|
"go/ast"
|
|
"go/token"
|
|
"go/types"
|
|
|
|
"golang.org/x/tools/go/ast/astutil"
|
|
"golang.org/x/tools/internal/lsp/snippet"
|
|
)
|
|
|
|
type CompletionItem struct {
|
|
// Label is the primary text the user sees for this completion item.
|
|
Label string
|
|
|
|
// Detail is supplemental information to present to the user.
|
|
// This often contains the type or return type of the completion item.
|
|
Detail string
|
|
|
|
// InsertText is the text to insert if this item is selected.
|
|
// Any of the prefix that has already been typed is not trimmed.
|
|
// The insert text does not contain snippets.
|
|
InsertText string
|
|
|
|
Kind CompletionItemKind
|
|
|
|
// Score is the internal relevance score.
|
|
// A higher score indicates that this completion item is more relevant.
|
|
Score float64
|
|
|
|
// Snippet is the LSP snippet for the completion item, without placeholders.
|
|
// The LSP specification contains details about LSP snippets.
|
|
// For example, a snippet for a function with the following signature:
|
|
//
|
|
// func foo(a, b, c int)
|
|
//
|
|
// would be:
|
|
//
|
|
// foo(${1:})
|
|
//
|
|
plainSnippet *snippet.Builder
|
|
|
|
// PlaceholderSnippet is the LSP snippet for the completion ite, containing
|
|
// placeholders. The LSP specification contains details about LSP snippets.
|
|
// For example, a placeholder snippet for a function with the following signature:
|
|
//
|
|
// func foo(a, b, c int)
|
|
//
|
|
// would be:
|
|
//
|
|
// foo(${1:a int}, ${2: b int}, ${3: c int})
|
|
//
|
|
placeholderSnippet *snippet.Builder
|
|
}
|
|
|
|
// Snippet is a convenience function that determines the snippet that should be
|
|
// used for an item, depending on if the callee wants placeholders or not.
|
|
func (i *CompletionItem) Snippet(usePlaceholders bool) string {
|
|
if usePlaceholders {
|
|
if i.placeholderSnippet != nil {
|
|
return i.placeholderSnippet.String()
|
|
}
|
|
}
|
|
if i.plainSnippet != nil {
|
|
return i.plainSnippet.String()
|
|
}
|
|
return i.InsertText
|
|
}
|
|
|
|
type CompletionItemKind int
|
|
|
|
const (
|
|
Unknown CompletionItemKind = iota
|
|
InterfaceCompletionItem
|
|
StructCompletionItem
|
|
TypeCompletionItem
|
|
ConstantCompletionItem
|
|
FieldCompletionItem
|
|
ParameterCompletionItem
|
|
VariableCompletionItem
|
|
FunctionCompletionItem
|
|
MethodCompletionItem
|
|
PackageCompletionItem
|
|
)
|
|
|
|
// Scoring constants are used for weighting the relevance of different candidates.
|
|
const (
|
|
// stdScore is the base score for all completion items.
|
|
stdScore float64 = 1.0
|
|
|
|
// highScore indicates a very relevant completion item.
|
|
highScore float64 = 10.0
|
|
|
|
// lowScore indicates an irrelevant or not useful completion item.
|
|
lowScore float64 = 0.01
|
|
)
|
|
|
|
// completer contains the necessary information for a single completion request.
|
|
type completer struct {
|
|
// Package-specific fields.
|
|
types *types.Package
|
|
info *types.Info
|
|
qf types.Qualifier
|
|
|
|
// view is the View associated with this completion request.
|
|
view View
|
|
|
|
// ctx is the context associated with this completion request.
|
|
ctx context.Context
|
|
|
|
// pos is the position at which the request was triggered.
|
|
pos token.Pos
|
|
|
|
// path is the path of AST nodes enclosing the position.
|
|
path []ast.Node
|
|
|
|
// seen is the map that ensures we do not return duplicate results.
|
|
seen map[types.Object]bool
|
|
|
|
// items is the list of completion items returned.
|
|
items []CompletionItem
|
|
|
|
// prefix is the already-typed portion of the completion candidates.
|
|
prefix Prefix
|
|
|
|
// expectedType is the type we expect the completion candidate to be.
|
|
// It may not be set.
|
|
expectedType types.Type
|
|
|
|
// enclosingFunction is the function declaration enclosing the position.
|
|
enclosingFunction *types.Signature
|
|
|
|
// preferTypeNames is true if we are completing at a position that expects a type,
|
|
// not a value.
|
|
preferTypeNames bool
|
|
|
|
// enclosingCompositeLiteral contains information about the composite literal
|
|
// enclosing the position.
|
|
enclosingCompositeLiteral *compLitInfo
|
|
}
|
|
|
|
type compLitInfo struct {
|
|
// cl is the *ast.CompositeLit enclosing the position.
|
|
cl *ast.CompositeLit
|
|
|
|
// clType is the type of cl.
|
|
clType types.Type
|
|
|
|
// kv is the *ast.KeyValueExpr enclosing the position, if any.
|
|
kv *ast.KeyValueExpr
|
|
|
|
// inKey is true if we are certain the position is in the key side
|
|
// of a key-value pair.
|
|
inKey bool
|
|
|
|
// maybeInFieldName is true if inKey is false and it is possible
|
|
// we are completing a struct field name. For example,
|
|
// "SomeStruct{<>}" will be inKey=false, but maybeInFieldName=true
|
|
// because we _could_ be completing a field name.
|
|
maybeInFieldName bool
|
|
}
|
|
|
|
type Prefix struct {
|
|
content string
|
|
pos token.Pos
|
|
}
|
|
|
|
func (p Prefix) Content() string { return p.content }
|
|
func (p Prefix) Pos() token.Pos { return p.pos }
|
|
|
|
// found adds a candidate completion.
|
|
//
|
|
// Only the first candidate of a given name is considered.
|
|
func (c *completer) found(obj types.Object, weight float64) {
|
|
if obj.Pkg() != nil && obj.Pkg() != c.types && !obj.Exported() {
|
|
return // inaccessible
|
|
}
|
|
if c.seen[obj] {
|
|
return
|
|
}
|
|
c.seen[obj] = true
|
|
if c.matchingType(obj.Type()) {
|
|
weight *= highScore
|
|
}
|
|
if _, ok := obj.(*types.TypeName); !ok && c.preferTypeNames {
|
|
weight *= lowScore
|
|
}
|
|
c.items = append(c.items, c.item(obj, weight))
|
|
}
|
|
|
|
// Completion returns a list of possible candidates for completion, given a
|
|
// a file and a position.
|
|
//
|
|
// The prefix is computed based on the preceding identifier and can be used by
|
|
// the client to score the quality of the completion. For instance, some clients
|
|
// may tolerate imperfect matches as valid completion results, since users may make typos.
|
|
func Completion(ctx context.Context, f File, pos token.Pos) ([]CompletionItem, Prefix, error) {
|
|
file := f.GetAST(ctx)
|
|
pkg := f.GetPackage(ctx)
|
|
if pkg == nil || pkg.IsIllTyped() {
|
|
return nil, Prefix{}, fmt.Errorf("package for %s is ill typed", f.URI())
|
|
}
|
|
|
|
// Completion is based on what precedes the cursor.
|
|
// Find the path to the position before pos.
|
|
path, _ := astutil.PathEnclosingInterval(file, pos-1, pos-1)
|
|
if path == nil {
|
|
return nil, Prefix{}, fmt.Errorf("cannot find node enclosing position")
|
|
}
|
|
// Skip completion inside comments.
|
|
for _, g := range file.Comments {
|
|
if g.Pos() <= pos && pos <= g.End() {
|
|
return nil, Prefix{}, nil
|
|
}
|
|
}
|
|
// Skip completion inside any kind of literal.
|
|
if _, ok := path[0].(*ast.BasicLit); ok {
|
|
return nil, Prefix{}, nil
|
|
}
|
|
|
|
clInfo := enclosingCompositeLiteral(path, pos, pkg.GetTypesInfo())
|
|
c := &completer{
|
|
types: pkg.GetTypes(),
|
|
info: pkg.GetTypesInfo(),
|
|
qf: qualifier(file, pkg.GetTypes(), pkg.GetTypesInfo()),
|
|
view: f.View(),
|
|
ctx: ctx,
|
|
path: path,
|
|
pos: pos,
|
|
seen: make(map[types.Object]bool),
|
|
enclosingFunction: enclosingFunction(path, pos, pkg.GetTypesInfo()),
|
|
preferTypeNames: preferTypeNames(path, pos),
|
|
enclosingCompositeLiteral: clInfo,
|
|
}
|
|
|
|
// Set the filter prefix.
|
|
if ident, ok := path[0].(*ast.Ident); ok {
|
|
c.prefix = Prefix{
|
|
content: ident.Name[:pos-ident.Pos()],
|
|
pos: ident.Pos(),
|
|
}
|
|
}
|
|
|
|
c.expectedType = expectedType(c)
|
|
|
|
// Struct literals are handled entirely separately.
|
|
if c.wantStructFieldCompletions() {
|
|
if err := c.structLiteralFieldName(); err != nil {
|
|
return nil, Prefix{}, err
|
|
}
|
|
return c.items, c.prefix, nil
|
|
}
|
|
|
|
switch n := path[0].(type) {
|
|
case *ast.Ident:
|
|
// Is this the Sel part of a selector?
|
|
if sel, ok := path[1].(*ast.SelectorExpr); ok && sel.Sel == n {
|
|
if err := c.selector(sel); err != nil {
|
|
return nil, Prefix{}, err
|
|
}
|
|
return c.items, c.prefix, nil
|
|
}
|
|
// reject defining identifiers
|
|
if obj, ok := pkg.GetTypesInfo().Defs[n]; ok {
|
|
if v, ok := obj.(*types.Var); ok && v.IsField() {
|
|
// An anonymous field is also a reference to a type.
|
|
} else {
|
|
of := ""
|
|
if obj != nil {
|
|
qual := types.RelativeTo(pkg.GetTypes())
|
|
of += ", of " + types.ObjectString(obj, qual)
|
|
}
|
|
return nil, Prefix{}, fmt.Errorf("this is a definition%s", of)
|
|
}
|
|
}
|
|
if err := c.lexical(); err != nil {
|
|
return nil, Prefix{}, err
|
|
}
|
|
|
|
// The function name hasn't been typed yet, but the parens are there:
|
|
// recv.‸(arg)
|
|
case *ast.TypeAssertExpr:
|
|
// Create a fake selector expression.
|
|
if err := c.selector(&ast.SelectorExpr{X: n.X}); err != nil {
|
|
return nil, Prefix{}, err
|
|
}
|
|
|
|
case *ast.SelectorExpr:
|
|
if err := c.selector(n); err != nil {
|
|
return nil, Prefix{}, err
|
|
}
|
|
|
|
default:
|
|
// fallback to lexical completions
|
|
if err := c.lexical(); err != nil {
|
|
return nil, Prefix{}, err
|
|
}
|
|
}
|
|
|
|
return c.items, c.prefix, nil
|
|
}
|
|
|
|
func (c *completer) wantStructFieldCompletions() bool {
|
|
clInfo := c.enclosingCompositeLiteral
|
|
if clInfo == nil {
|
|
return false
|
|
}
|
|
|
|
return clInfo.isStruct() && (clInfo.inKey || clInfo.maybeInFieldName)
|
|
}
|
|
|
|
// selector finds completions for the specified selector expression.
|
|
func (c *completer) selector(sel *ast.SelectorExpr) error {
|
|
// Is sel a qualified identifier?
|
|
if id, ok := sel.X.(*ast.Ident); ok {
|
|
if pkgname, ok := c.info.Uses[id].(*types.PkgName); ok {
|
|
// Enumerate package members.
|
|
scope := pkgname.Imported().Scope()
|
|
for _, name := range scope.Names() {
|
|
c.found(scope.Lookup(name), stdScore)
|
|
}
|
|
return nil
|
|
}
|
|
}
|
|
|
|
// Invariant: sel is a true selector.
|
|
tv, ok := c.info.Types[sel.X]
|
|
if !ok {
|
|
return fmt.Errorf("cannot resolve %s", sel.X)
|
|
}
|
|
|
|
// Add methods of T.
|
|
mset := types.NewMethodSet(tv.Type)
|
|
for i := 0; i < mset.Len(); i++ {
|
|
c.found(mset.At(i).Obj(), stdScore)
|
|
}
|
|
|
|
// Add methods of *T.
|
|
if tv.Addressable() && !types.IsInterface(tv.Type) && !isPointer(tv.Type) {
|
|
mset := types.NewMethodSet(types.NewPointer(tv.Type))
|
|
for i := 0; i < mset.Len(); i++ {
|
|
c.found(mset.At(i).Obj(), stdScore)
|
|
}
|
|
}
|
|
|
|
// Add fields of T.
|
|
for _, f := range fieldSelections(tv.Type) {
|
|
c.found(f, stdScore)
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// lexical finds completions in the lexical environment.
|
|
func (c *completer) lexical() error {
|
|
var scopes []*types.Scope // scopes[i], where i<len(path), is the possibly nil Scope of path[i].
|
|
for _, n := range c.path {
|
|
switch node := n.(type) {
|
|
case *ast.FuncDecl:
|
|
n = node.Type
|
|
case *ast.FuncLit:
|
|
n = node.Type
|
|
}
|
|
scopes = append(scopes, c.info.Scopes[n])
|
|
}
|
|
scopes = append(scopes, c.types.Scope(), types.Universe)
|
|
|
|
// Track seen variables to avoid showing completions for shadowed variables.
|
|
// This works since we look at scopes from innermost to outermost.
|
|
seen := make(map[string]struct{})
|
|
|
|
// Process scopes innermost first.
|
|
for i, scope := range scopes {
|
|
if scope == nil {
|
|
continue
|
|
}
|
|
for _, name := range scope.Names() {
|
|
declScope, obj := scope.LookupParent(name, c.pos)
|
|
if declScope != scope {
|
|
continue // Name was declared in some enclosing scope, or not at all.
|
|
}
|
|
// If obj's type is invalid, find the AST node that defines the lexical block
|
|
// containing the declaration of obj. Don't resolve types for packages.
|
|
if _, ok := obj.(*types.PkgName); !ok && obj.Type() == types.Typ[types.Invalid] {
|
|
// Match the scope to its ast.Node. If the scope is the package scope,
|
|
// use the *ast.File as the starting node.
|
|
var node ast.Node
|
|
if i < len(c.path) {
|
|
node = c.path[i]
|
|
} else if i == len(c.path) { // use the *ast.File for package scope
|
|
node = c.path[i-1]
|
|
}
|
|
if node != nil {
|
|
if resolved := resolveInvalid(obj, node, c.info); resolved != nil {
|
|
obj = resolved
|
|
}
|
|
}
|
|
}
|
|
|
|
score := stdScore
|
|
// Rank builtins significantly lower than other results.
|
|
if scope == types.Universe {
|
|
score *= 0.1
|
|
}
|
|
// If we haven't already added a candidate for an object with this name.
|
|
if _, ok := seen[obj.Name()]; !ok {
|
|
seen[obj.Name()] = struct{}{}
|
|
c.found(obj, score)
|
|
}
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// structLiteralFieldName finds completions for struct field names inside a struct literal.
|
|
func (c *completer) structLiteralFieldName() error {
|
|
clInfo := c.enclosingCompositeLiteral
|
|
|
|
// Mark fields of the composite literal that have already been set,
|
|
// except for the current field.
|
|
addedFields := make(map[*types.Var]bool)
|
|
for _, el := range clInfo.cl.Elts {
|
|
if kvExpr, ok := el.(*ast.KeyValueExpr); ok {
|
|
if clInfo.kv == kvExpr {
|
|
continue
|
|
}
|
|
|
|
if key, ok := kvExpr.Key.(*ast.Ident); ok {
|
|
if used, ok := c.info.Uses[key]; ok {
|
|
if usedVar, ok := used.(*types.Var); ok {
|
|
addedFields[usedVar] = true
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
switch t := clInfo.clType.(type) {
|
|
case *types.Struct:
|
|
for i := 0; i < t.NumFields(); i++ {
|
|
field := t.Field(i)
|
|
if !addedFields[field] {
|
|
c.found(field, highScore)
|
|
}
|
|
}
|
|
|
|
// Add lexical completions if we aren't certain we are in the key part of a
|
|
// key-value pair.
|
|
if clInfo.maybeInFieldName {
|
|
return c.lexical()
|
|
}
|
|
default:
|
|
return c.lexical()
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
func (cl *compLitInfo) isStruct() bool {
|
|
_, ok := cl.clType.(*types.Struct)
|
|
return ok
|
|
}
|
|
|
|
// enclosingCompositeLiteral returns information about the composite literal enclosing the
|
|
// position.
|
|
func enclosingCompositeLiteral(path []ast.Node, pos token.Pos, info *types.Info) *compLitInfo {
|
|
for _, n := range path {
|
|
switch n := n.(type) {
|
|
case *ast.CompositeLit:
|
|
// The enclosing node will be a composite literal if the user has just
|
|
// opened the curly brace (e.g. &x{<>) or the completion request is triggered
|
|
// from an already completed composite literal expression (e.g. &x{foo: 1, <>})
|
|
//
|
|
// The position is not part of the composite literal unless it falls within the
|
|
// curly braces (e.g. "foo.Foo<>Struct{}").
|
|
if !(n.Lbrace <= pos && pos <= n.Rbrace) {
|
|
return nil
|
|
}
|
|
|
|
tv, ok := info.Types[n]
|
|
if !ok {
|
|
return nil
|
|
}
|
|
|
|
clInfo := compLitInfo{
|
|
cl: n,
|
|
clType: tv.Type.Underlying(),
|
|
}
|
|
|
|
var (
|
|
expr ast.Expr
|
|
hasKeys bool
|
|
)
|
|
for _, el := range n.Elts {
|
|
// Remember the expression that the position falls in, if any.
|
|
if el.Pos() <= pos && pos <= el.End() {
|
|
expr = el
|
|
}
|
|
|
|
if kv, ok := el.(*ast.KeyValueExpr); ok {
|
|
hasKeys = true
|
|
// If expr == el then we know the position falls in this expression,
|
|
// so also record kv as the enclosing *ast.KeyValueExpr.
|
|
if expr == el {
|
|
clInfo.kv = kv
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
if clInfo.kv != nil {
|
|
// If in a *ast.KeyValueExpr, we know we are in the key if the position
|
|
// is to the left of the colon (e.g. "Foo{F<>: V}".
|
|
clInfo.inKey = pos <= clInfo.kv.Colon
|
|
} else if hasKeys {
|
|
// If we aren't in a *ast.KeyValueExpr but the composite literal has
|
|
// other *ast.KeyValueExprs, we must be on the key side of a new
|
|
// *ast.KeyValueExpr (e.g. "Foo{F: V, <>}").
|
|
clInfo.inKey = true
|
|
} else {
|
|
switch clInfo.clType.(type) {
|
|
case *types.Struct:
|
|
if len(n.Elts) == 0 {
|
|
// If the struct literal is empty, next could be a struct field
|
|
// name or an expression (e.g. "Foo{<>}" could become "Foo{F:}"
|
|
// or "Foo{someVar}").
|
|
clInfo.maybeInFieldName = true
|
|
} else if len(n.Elts) == 1 {
|
|
// If there is one expression and the position is in that expression
|
|
// and the expression is an identifier, we may be writing a field
|
|
// name or an expression (e.g. "Foo{F<>}").
|
|
_, clInfo.maybeInFieldName = expr.(*ast.Ident)
|
|
}
|
|
case *types.Map:
|
|
// If we aren't in a *ast.KeyValueExpr we must be adding a new key
|
|
// to the map.
|
|
clInfo.inKey = true
|
|
}
|
|
}
|
|
|
|
return &clInfo
|
|
default:
|
|
if breaksExpectedTypeInference(n) {
|
|
return nil
|
|
}
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
// enclosingFunction returns the signature of the function enclosing the given position.
|
|
func enclosingFunction(path []ast.Node, pos token.Pos, info *types.Info) *types.Signature {
|
|
for _, node := range path {
|
|
switch t := node.(type) {
|
|
case *ast.FuncDecl:
|
|
if obj, ok := info.Defs[t.Name]; ok {
|
|
return obj.Type().(*types.Signature)
|
|
}
|
|
case *ast.FuncLit:
|
|
if typ, ok := info.Types[t]; ok {
|
|
return typ.Type.(*types.Signature)
|
|
}
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
func (c *completer) expectedCompositeLiteralType() types.Type {
|
|
clInfo := c.enclosingCompositeLiteral
|
|
switch t := clInfo.clType.(type) {
|
|
case *types.Slice:
|
|
if clInfo.inKey {
|
|
return types.Typ[types.Int]
|
|
}
|
|
return t.Elem()
|
|
case *types.Array:
|
|
if clInfo.inKey {
|
|
return types.Typ[types.Int]
|
|
}
|
|
return t.Elem()
|
|
case *types.Map:
|
|
if clInfo.inKey {
|
|
return t.Key()
|
|
}
|
|
return t.Elem()
|
|
case *types.Struct:
|
|
// If we are completing a key (i.e. field name), there is no expected type.
|
|
if clInfo.inKey {
|
|
return nil
|
|
}
|
|
|
|
// If we are in a key-value pair, but not in the key, then we must be on the
|
|
// value side. The expected type of the value will be determined from the key.
|
|
if clInfo.kv != nil {
|
|
if key, ok := clInfo.kv.Key.(*ast.Ident); ok {
|
|
for i := 0; i < t.NumFields(); i++ {
|
|
if field := t.Field(i); field.Name() == key.Name {
|
|
return field.Type()
|
|
}
|
|
}
|
|
}
|
|
} else {
|
|
// If we aren't in a key-value pair and aren't in the key, we must be using
|
|
// implicit field names.
|
|
|
|
// The order of the literal fields must match the order in the struct definition.
|
|
// Find the element that the position belongs to and suggest that field's type.
|
|
if i := indexExprAtPos(c.pos, clInfo.cl.Elts); i < t.NumFields() {
|
|
return t.Field(i).Type()
|
|
}
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// expectedType returns the expected type for an expression at the query position.
|
|
func expectedType(c *completer) types.Type {
|
|
if c.enclosingCompositeLiteral != nil {
|
|
return c.expectedCompositeLiteralType()
|
|
}
|
|
|
|
var (
|
|
derefCount int // count of deref "*" operators
|
|
refCount int // count of reference "&" operators
|
|
typ types.Type
|
|
)
|
|
|
|
Nodes:
|
|
for _, node := range c.path {
|
|
switch expr := node.(type) {
|
|
case *ast.BinaryExpr:
|
|
// Determine if query position comes from left or right of op.
|
|
e := expr.X
|
|
if c.pos < expr.OpPos {
|
|
e = expr.Y
|
|
}
|
|
if tv, ok := c.info.Types[e]; ok {
|
|
typ = tv.Type
|
|
break Nodes
|
|
}
|
|
case *ast.AssignStmt:
|
|
// Only rank completions if you are on the right side of the token.
|
|
if c.pos > expr.TokPos {
|
|
i := indexExprAtPos(c.pos, expr.Rhs)
|
|
if i >= len(expr.Lhs) {
|
|
i = len(expr.Lhs) - 1
|
|
}
|
|
if tv, ok := c.info.Types[expr.Lhs[i]]; ok {
|
|
typ = tv.Type
|
|
break Nodes
|
|
}
|
|
}
|
|
return nil
|
|
case *ast.CallExpr:
|
|
// Only consider CallExpr args if position falls between parens.
|
|
if expr.Lparen <= c.pos && c.pos <= expr.Rparen {
|
|
if tv, ok := c.info.Types[expr.Fun]; ok {
|
|
if sig, ok := tv.Type.(*types.Signature); ok {
|
|
if sig.Params().Len() == 0 {
|
|
return nil
|
|
}
|
|
i := indexExprAtPos(c.pos, expr.Args)
|
|
// Make sure not to run past the end of expected parameters.
|
|
if i >= sig.Params().Len() {
|
|
i = sig.Params().Len() - 1
|
|
}
|
|
typ = sig.Params().At(i).Type()
|
|
break Nodes
|
|
}
|
|
}
|
|
}
|
|
return nil
|
|
case *ast.ReturnStmt:
|
|
if sig := c.enclosingFunction; sig != nil {
|
|
// Find signature result that corresponds to our return expression.
|
|
if resultIdx := indexExprAtPos(c.pos, expr.Results); resultIdx < len(expr.Results) {
|
|
if resultIdx < sig.Results().Len() {
|
|
typ = sig.Results().At(resultIdx).Type()
|
|
break Nodes
|
|
}
|
|
}
|
|
}
|
|
|
|
return nil
|
|
case *ast.StarExpr:
|
|
derefCount++
|
|
case *ast.UnaryExpr:
|
|
if expr.Op == token.AND {
|
|
refCount++
|
|
}
|
|
default:
|
|
if breaksExpectedTypeInference(node) {
|
|
return nil
|
|
}
|
|
}
|
|
}
|
|
|
|
if typ != nil {
|
|
// For every "*" deref operator, add another pointer layer to expected type.
|
|
for i := 0; i < derefCount; i++ {
|
|
typ = types.NewPointer(typ)
|
|
}
|
|
// For every "&" ref operator, remove a pointer layer from expected type.
|
|
for i := 0; i < refCount; i++ {
|
|
if ptr, ok := typ.(*types.Pointer); ok {
|
|
typ = ptr.Elem()
|
|
} else {
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
return typ
|
|
}
|
|
|
|
// breaksExpectedTypeInference reports if an expression node's type is unrelated
|
|
// to its child expression node types. For example, "Foo{Bar: x.Baz(<>)}" should
|
|
// expect a function argument, not a composite literal value.
|
|
func breaksExpectedTypeInference(n ast.Node) bool {
|
|
switch n.(type) {
|
|
case *ast.FuncLit, *ast.CallExpr, *ast.TypeAssertExpr, *ast.IndexExpr, *ast.SliceExpr, *ast.CompositeLit:
|
|
return true
|
|
default:
|
|
return false
|
|
}
|
|
}
|
|
|
|
// preferTypeNames checks if given token position is inside func receiver,
|
|
// type params, or type results. For example:
|
|
//
|
|
// func (<>) foo(<>) (<>) {}
|
|
//
|
|
func preferTypeNames(path []ast.Node, pos token.Pos) bool {
|
|
for _, p := range path {
|
|
switch n := p.(type) {
|
|
case *ast.FuncDecl:
|
|
if r := n.Recv; r != nil && r.Pos() <= pos && pos <= r.End() {
|
|
return true
|
|
}
|
|
if t := n.Type; t != nil {
|
|
if p := t.Params; p != nil && p.Pos() <= pos && pos <= p.End() {
|
|
return true
|
|
}
|
|
if r := t.Results; r != nil && r.Pos() <= pos && pos <= r.End() {
|
|
return true
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// matchingTypes reports whether actual is a good candidate type
|
|
// for a completion in a context of the expected type.
|
|
func (c *completer) matchingType(actual types.Type) bool {
|
|
if c.expectedType == nil {
|
|
return false
|
|
}
|
|
// Use a function's return type as its type.
|
|
if sig, ok := actual.(*types.Signature); ok {
|
|
if sig.Results().Len() == 1 {
|
|
actual = sig.Results().At(0).Type()
|
|
}
|
|
}
|
|
return types.Identical(types.Default(c.expectedType), types.Default(actual))
|
|
}
|