1
0
mirror of https://github.com/golang/go synced 2024-11-19 03:54:42 -07:00
go/pointer/reflect.go
Alan Donovan 3371b79a96 go.tools/pointer: reflect, part 2: channels.
(reflect.Value).Send
        (reflect.Value).TrySend
        (reflect.Value).Recv
        (reflect.Value).TryRecv
        (reflect.Type).ChanOf
        (reflect.Type).In
        (reflect.Type).Out
        reflect.Indirect
        reflect.MakeChan

Also:
- specialize genInvoke when the receiver is a reflect.Type under the
  assumption that there's only one possible concrete type.  This
  makes all reflect.Type operations context-sensitive since the calls
  are no longer dynamic.
- Rename all variables to match the actual parameter names used in
  the reflect API.
- Add pointer.Config.Reflection flag
  (exposed in oracle as --reflect, default false) to enable reflection.
  It currently adds about 20% running time.  I'll make it true after
  the presolver is implemented.
- Simplified worklist datatype and solver main loop slightly
  (~10% speed improvement).
- Use addLabel() utility to add a label to a PTS.

(Working on my 3 yr old 2x2GHz+4GB Mac vs 8x4GHz+24GB workstation,
one really notices the cost of pointer analysis.
Note to self: time to implement presolver.)

R=crawshaw
CC=golang-dev
https://golang.org/cl/13242062
2013-09-23 16:13:01 -04:00

886 lines
22 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

package pointer
// This file implements the generation and resolution rules for
// constraints arising from the use of reflection in the target
// program. See doc.go for explanation of the representation.
//
// For consistency, the names of all parameters match those of the
// actual functions in the "reflect" package.
//
// TODO(adonovan): fix: most of the reflect API permits implicit
// conversions due to assignability, e.g. m.MapIndex(k) is ok if T(k)
// is assignable to T(M).key. It's not yet clear how best to model
// that; perhaps a more lenient version of typeAssertConstraint is
// needed.
//
// To avoid proliferation of equivalent labels, instrinsics should
// memoize as much as possible, like TypeOf and Zero do for their
// tagged objects.
//
// TODO(adonovan): all {} functions are TODO.
import (
"fmt"
"go/ast"
"code.google.com/p/go.tools/go/types"
)
// -------------------- (reflect.Value) --------------------
func ext۰reflect۰Value۰Addr(a *analysis, cgn *cgnode) {}
func ext۰reflect۰Value۰Bytes(a *analysis, cgn *cgnode) {}
func ext۰reflect۰Value۰Call(a *analysis, cgn *cgnode) {}
func ext۰reflect۰Value۰CallSlice(a *analysis, cgn *cgnode) {}
func ext۰reflect۰Value۰Convert(a *analysis, cgn *cgnode) {}
func ext۰reflect۰Value۰Elem(a *analysis, cgn *cgnode) {}
func ext۰reflect۰Value۰Field(a *analysis, cgn *cgnode) {}
func ext۰reflect۰Value۰FieldByIndex(a *analysis, cgn *cgnode) {}
func ext۰reflect۰Value۰FieldByName(a *analysis, cgn *cgnode) {}
func ext۰reflect۰Value۰FieldByNameFunc(a *analysis, cgn *cgnode) {}
func ext۰reflect۰Value۰Index(a *analysis, cgn *cgnode) {}
// ---------- func (Value).Interface() Value ----------
// result = v.Interface()
type rVInterfaceConstraint struct {
v nodeid // (ptr)
result nodeid
}
func (c *rVInterfaceConstraint) String() string {
return fmt.Sprintf("n%d = reflect n%d.Interface()", c.result, c.v)
}
func (c *rVInterfaceConstraint) ptr() nodeid {
return c.v
}
func (c *rVInterfaceConstraint) solve(a *analysis, _ *node, delta nodeset) {
resultPts := &a.nodes[c.result].pts
changed := false
for vObj := range delta {
tDyn, _, indirect := a.taggedValue(vObj)
if tDyn == nil {
panic("not a tagged object")
}
if indirect {
// TODO(adonovan): we'll need to implement this
// when we start creating indirect tagged objects.
panic("indirect tagged object")
}
if resultPts.add(vObj) {
changed = true
}
}
if changed {
a.addWork(c.result)
}
}
func ext۰reflect۰Value۰Interface(a *analysis, cgn *cgnode) {
a.addConstraint(&rVInterfaceConstraint{
v: a.funcParams(cgn.obj),
result: a.funcResults(cgn.obj),
})
}
// ---------- func (Value).MapIndex(Value) Value ----------
// result = v.MapIndex(_)
type rVMapIndexConstraint struct {
cgn *cgnode
v nodeid // (ptr)
result nodeid
}
func (c *rVMapIndexConstraint) String() string {
return fmt.Sprintf("n%d = reflect n%d.MapIndex(_)", c.result, c.v)
}
func (c *rVMapIndexConstraint) ptr() nodeid {
return c.v
}
func (c *rVMapIndexConstraint) solve(a *analysis, _ *node, delta nodeset) {
changed := false
for vObj := range delta {
tDyn, m, indirect := a.taggedValue(vObj)
tMap, _ := tDyn.Underlying().(*types.Map)
if tMap == nil {
continue // not a map
}
if indirect {
// TODO(adonovan): we'll need to implement this
// when we start creating indirect tagged objects.
panic("indirect tagged object")
}
obj := a.makeTagged(tMap.Elem(), c.cgn, nil)
a.loadOffset(obj+1, m, a.sizeof(tMap.Key()), a.sizeof(tMap.Elem()))
if a.addLabel(c.result, obj) {
changed = true
}
}
if changed {
a.addWork(c.result)
}
}
func ext۰reflect۰Value۰MapIndex(a *analysis, cgn *cgnode) {
a.addConstraint(&rVMapIndexConstraint{
cgn: cgn,
v: a.funcParams(cgn.obj),
result: a.funcResults(cgn.obj),
})
}
// ---------- func (Value).MapKeys() []Value ----------
// result = v.MapKeys()
type rVMapKeysConstraint struct {
cgn *cgnode
v nodeid // (ptr)
result nodeid
}
func (c *rVMapKeysConstraint) String() string {
return fmt.Sprintf("n%d = reflect n%d.MapKeys()", c.result, c.v)
}
func (c *rVMapKeysConstraint) ptr() nodeid {
return c.v
}
func (c *rVMapKeysConstraint) solve(a *analysis, _ *node, delta nodeset) {
changed := false
for vObj := range delta {
tDyn, m, indirect := a.taggedValue(vObj)
tMap, _ := tDyn.Underlying().(*types.Map)
if tMap == nil {
continue // not a map
}
if indirect {
// TODO(adonovan): we'll need to implement this
// when we start creating indirect tagged objects.
panic("indirect tagged object")
}
kObj := a.makeTagged(tMap.Key(), c.cgn, nil)
a.load(kObj+1, m, a.sizeof(tMap.Key()))
if a.addLabel(c.result, kObj) {
changed = true
}
}
if changed {
a.addWork(c.result)
}
}
func ext۰reflect۰Value۰MapKeys(a *analysis, cgn *cgnode) {
// Allocate an array for the result.
obj := a.nextNode()
a.addNodes(types.NewArray(a.reflectValueObj.Type(), 1), "reflect.MapKeys result")
a.endObject(obj, cgn, nil)
a.addressOf(a.funcResults(cgn.obj), obj)
a.addConstraint(&rVMapKeysConstraint{
cgn: cgn,
v: a.funcParams(cgn.obj),
result: obj + 1, // result is stored in array elems
})
}
func ext۰reflect۰Value۰Method(a *analysis, cgn *cgnode) {}
func ext۰reflect۰Value۰MethodByName(a *analysis, cgn *cgnode) {}
// ---------- func (Value).Recv(Value) ----------
// result, _ = v.Recv()
type rVRecvConstraint struct {
cgn *cgnode
v nodeid // (ptr)
result nodeid
}
func (c *rVRecvConstraint) String() string {
return fmt.Sprintf("n%d = reflect n%d.Recv()", c.result, c.v)
}
func (c *rVRecvConstraint) ptr() nodeid {
return c.v
}
func (c *rVRecvConstraint) solve(a *analysis, _ *node, delta nodeset) {
changed := false
for vObj := range delta {
tDyn, ch, indirect := a.taggedValue(vObj)
tChan, _ := tDyn.Underlying().(*types.Chan)
if tChan == nil {
continue // not a channel
}
if indirect {
// TODO(adonovan): we'll need to implement this
// when we start creating indirect tagged objects.
panic("indirect tagged object")
}
tElem := tChan.Elem()
elemObj := a.makeTagged(tElem, c.cgn, nil)
a.load(elemObj+1, ch, a.sizeof(tElem))
if a.addLabel(c.result, elemObj) {
changed = true
}
}
if changed {
a.addWork(c.result)
}
}
func ext۰reflect۰Value۰Recv(a *analysis, cgn *cgnode) {
a.addConstraint(&rVRecvConstraint{
cgn: cgn,
v: a.funcParams(cgn.obj),
result: a.funcResults(cgn.obj),
})
}
// ---------- func (Value).Send(Value) ----------
// v.Send(x)
type rVSendConstraint struct {
cgn *cgnode
v nodeid // (ptr)
x nodeid
}
func (c *rVSendConstraint) String() string {
return fmt.Sprintf("reflect n%d.Send(n%d)", c.v, c.x)
}
func (c *rVSendConstraint) ptr() nodeid {
return c.v
}
func (c *rVSendConstraint) solve(a *analysis, _ *node, delta nodeset) {
for vObj := range delta {
tDyn, ch, indirect := a.taggedValue(vObj)
tChan, _ := tDyn.Underlying().(*types.Chan)
if tChan == nil {
continue // not a channel
}
if indirect {
// TODO(adonovan): we'll need to implement this
// when we start creating indirect tagged objects.
panic("indirect tagged object")
}
// Extract x's payload to xtmp, then store to channel.
tElem := tChan.Elem()
xtmp := a.addNodes(tElem, "Send.xtmp")
a.typeAssert(tElem, xtmp, c.x)
a.store(ch, xtmp, a.sizeof(tElem))
}
}
func ext۰reflect۰Value۰Send(a *analysis, cgn *cgnode) {
params := a.funcParams(cgn.obj)
a.addConstraint(&rVSendConstraint{
cgn: cgn,
v: params,
x: params + 1,
})
}
func ext۰reflect۰Value۰Set(a *analysis, cgn *cgnode) {}
func ext۰reflect۰Value۰SetBytes(a *analysis, cgn *cgnode) {}
// ---------- func (Value).SetMapIndex(k Value, v Value) ----------
// v.SetMapIndex(key, val)
type rVSetMapIndexConstraint struct {
cgn *cgnode
v nodeid // (ptr)
key nodeid
val nodeid
}
func (c *rVSetMapIndexConstraint) String() string {
return fmt.Sprintf("reflect n%d.SetMapIndex(n%d, n%d)", c.v, c.key, c.val)
}
func (c *rVSetMapIndexConstraint) ptr() nodeid {
return c.v
}
func (c *rVSetMapIndexConstraint) solve(a *analysis, _ *node, delta nodeset) {
for vObj := range delta {
tDyn, m, indirect := a.taggedValue(vObj)
tMap, _ := tDyn.Underlying().(*types.Map)
if tMap == nil {
continue // not a map
}
if indirect {
// TODO(adonovan): we'll need to implement this
// when we start creating indirect tagged objects.
panic("indirect tagged object")
}
keysize := a.sizeof(tMap.Key())
// Extract key's payload to keytmp, then store to map key.
keytmp := a.addNodes(tMap.Key(), "SetMapIndex.keytmp")
a.typeAssert(tMap.Key(), keytmp, c.key)
a.store(m, keytmp, keysize)
// Extract val's payload to vtmp, then store to map value.
valtmp := a.addNodes(tMap.Elem(), "SetMapIndex.valtmp")
a.typeAssert(tMap.Elem(), valtmp, c.val)
a.storeOffset(m, valtmp, keysize, a.sizeof(tMap.Elem()))
}
}
func ext۰reflect۰Value۰SetMapIndex(a *analysis, cgn *cgnode) {
params := a.funcParams(cgn.obj)
a.addConstraint(&rVSetMapIndexConstraint{
cgn: cgn,
v: params,
key: params + 1,
val: params + 2,
})
}
func ext۰reflect۰Value۰SetPointer(a *analysis, cgn *cgnode) {}
func ext۰reflect۰Value۰Slice(a *analysis, cgn *cgnode) {}
// -------------------- Standalone reflect functions --------------------
func ext۰reflect۰Append(a *analysis, cgn *cgnode) {}
func ext۰reflect۰AppendSlice(a *analysis, cgn *cgnode) {}
func ext۰reflect۰Copy(a *analysis, cgn *cgnode) {}
// ---------- func ChanOf(ChanDir, Type) Type ----------
// result = ChanOf(_, t)
type reflectChanOfConstraint struct {
cgn *cgnode
t nodeid // (ptr)
result nodeid
}
func (c *reflectChanOfConstraint) String() string {
return fmt.Sprintf("n%d = reflect.ChanOf(n%d)", c.result, c.t)
}
func (c *reflectChanOfConstraint) ptr() nodeid {
return c.t
}
func (c *reflectChanOfConstraint) solve(a *analysis, _ *node, delta nodeset) {
changed := false
for tObj := range delta {
T := a.rtypeTaggedValue(tObj)
// TODO(adonovan): use only the channel direction
// provided at the callsite, if constant.
for _, dir := range []ast.ChanDir{1, 2, 3} {
if a.addLabel(c.result, a.makeRtype(types.NewChan(dir, T))) {
changed = true
}
}
}
if changed {
a.addWork(c.result)
}
}
func ext۰reflect۰ChanOf(a *analysis, cgn *cgnode) {
params := a.funcParams(cgn.obj)
a.addConstraint(&reflectChanOfConstraint{
cgn: cgn,
t: params + 1,
result: a.funcResults(cgn.obj),
})
}
// ---------- func Indirect(v Value) Value ----------
// result = Indirect(v)
type reflectIndirectConstraint struct {
cgn *cgnode
v nodeid // (ptr)
result nodeid
}
func (c *reflectIndirectConstraint) String() string {
return fmt.Sprintf("n%d = reflect.Indirect(n%d)", c.result, c.v)
}
func (c *reflectIndirectConstraint) ptr() nodeid {
return c.v
}
func (c *reflectIndirectConstraint) solve(a *analysis, _ *node, delta nodeset) {
changed := false
for vObj := range delta {
tDyn, _, _ := a.taggedValue(vObj)
if tDyn == nil {
panic("not a tagged value")
}
var res nodeid
if tPtr, ok := tDyn.Underlying().(*types.Pointer); ok {
// load the payload of the pointer's tagged object
// into a new tagged object
res = a.makeTagged(tPtr.Elem(), c.cgn, nil)
a.load(res+1, vObj+1, a.sizeof(tPtr.Elem()))
} else {
res = vObj
}
if a.addLabel(c.result, res) {
changed = true
}
}
if changed {
a.addWork(c.result)
}
}
func ext۰reflect۰Indirect(a *analysis, cgn *cgnode) {
a.addConstraint(&reflectIndirectConstraint{
cgn: cgn,
v: a.funcParams(cgn.obj),
result: a.funcResults(cgn.obj),
})
}
// ---------- func MakeChan(Type) Value ----------
// result = MakeChan(typ)
type reflectMakeChanConstraint struct {
cgn *cgnode
typ nodeid // (ptr)
result nodeid
}
func (c *reflectMakeChanConstraint) String() string {
return fmt.Sprintf("n%d = reflect.MakeChan(n%d)", c.result, c.typ)
}
func (c *reflectMakeChanConstraint) ptr() nodeid {
return c.typ
}
func (c *reflectMakeChanConstraint) solve(a *analysis, _ *node, delta nodeset) {
changed := false
for typObj := range delta {
T := a.rtypeTaggedValue(typObj)
tChan, ok := T.Underlying().(*types.Chan)
if !ok || tChan.Dir() != ast.SEND|ast.RECV {
continue // not a bidirectional channel type
}
obj := a.nextNode()
a.addNodes(tChan.Elem(), "reflect.MakeChan.value")
a.endObject(obj, c.cgn, nil)
// put its address in a new T-tagged object
id := a.makeTagged(T, c.cgn, nil)
a.addLabel(id+1, obj)
// flow the T-tagged object to the result
if a.addLabel(c.result, id) {
changed = true
}
}
if changed {
a.addWork(c.result)
}
}
func ext۰reflect۰MakeChan(a *analysis, cgn *cgnode) {
a.addConstraint(&reflectMakeChanConstraint{
cgn: cgn,
typ: a.funcParams(cgn.obj),
result: a.funcResults(cgn.obj),
})
}
func ext۰reflect۰MakeFunc(a *analysis, cgn *cgnode) {}
// ---------- func MakeMap(Type) Value ----------
// result = MakeMap(typ)
type reflectMakeMapConstraint struct {
cgn *cgnode
typ nodeid // (ptr)
result nodeid
}
func (c *reflectMakeMapConstraint) String() string {
return fmt.Sprintf("n%d = reflect.MakeMap(n%d)", c.result, c.typ)
}
func (c *reflectMakeMapConstraint) ptr() nodeid {
return c.typ
}
func (c *reflectMakeMapConstraint) solve(a *analysis, _ *node, delta nodeset) {
changed := false
for typObj := range delta {
T := a.rtypeTaggedValue(typObj)
tMap, ok := T.Underlying().(*types.Map)
if !ok {
continue // not a map type
}
mapObj := a.nextNode()
a.addNodes(tMap.Key(), "reflect.MakeMap.key")
a.addNodes(tMap.Elem(), "reflect.MakeMap.value")
a.endObject(mapObj, c.cgn, nil)
// put its address in a new T-tagged object
id := a.makeTagged(T, c.cgn, nil)
a.addLabel(id+1, mapObj)
// flow the T-tagged object to the result
if a.addLabel(c.result, id) {
changed = true
}
}
if changed {
a.addWork(c.result)
}
}
func ext۰reflect۰MakeMap(a *analysis, cgn *cgnode) {
a.addConstraint(&reflectMakeMapConstraint{
cgn: cgn,
typ: a.funcParams(cgn.obj),
result: a.funcResults(cgn.obj),
})
}
func ext۰reflect۰MakeSlice(a *analysis, cgn *cgnode) {}
func ext۰reflect۰MapOf(a *analysis, cgn *cgnode) {}
// ---------- func New(Type) Value ----------
// result = New(typ)
type reflectNewConstraint struct {
cgn *cgnode
typ nodeid // (ptr)
result nodeid
}
func (c *reflectNewConstraint) String() string {
return fmt.Sprintf("n%d = reflect.New(n%d)", c.result, c.typ)
}
func (c *reflectNewConstraint) ptr() nodeid {
return c.typ
}
func (c *reflectNewConstraint) solve(a *analysis, _ *node, delta nodeset) {
changed := false
for typObj := range delta {
T := a.rtypeTaggedValue(typObj)
// allocate new T object
newObj := a.nextNode()
a.addNodes(T, "reflect.New")
a.endObject(newObj, c.cgn, nil)
// put its address in a new *T-tagged object
id := a.makeTagged(types.NewPointer(T), c.cgn, nil)
a.addLabel(id+1, newObj)
// flow the pointer to the result
if a.addLabel(c.result, id) {
changed = true
}
}
if changed {
a.addWork(c.result)
}
}
func ext۰reflect۰New(a *analysis, cgn *cgnode) {
a.addConstraint(&reflectNewConstraint{
cgn: cgn,
typ: a.funcParams(cgn.obj),
result: a.funcResults(cgn.obj),
})
}
func ext۰reflect۰NewAt(a *analysis, cgn *cgnode) {
ext۰reflect۰New(a, cgn)
// TODO(adonovan): make it easier to report errors of this form,
// which includes the callsite:
// a.warnf("unsound: main.reflectNewAt contains a reflect.NewAt() call")
a.warnf(cgn.Func().Pos(), "unsound: reflect.NewAt() call")
}
func ext۰reflect۰PtrTo(a *analysis, cgn *cgnode) {}
func ext۰reflect۰Select(a *analysis, cgn *cgnode) {}
func ext۰reflect۰SliceOf(a *analysis, cgn *cgnode) {}
// ---------- func TypeOf(v Value) Type ----------
// result = TypeOf(i)
type reflectTypeOfConstraint struct {
cgn *cgnode
i nodeid // (ptr)
result nodeid
}
func (c *reflectTypeOfConstraint) String() string {
return fmt.Sprintf("n%d = reflect.TypeOf(n%d)", c.result, c.i)
}
func (c *reflectTypeOfConstraint) ptr() nodeid {
return c.i
}
func (c *reflectTypeOfConstraint) solve(a *analysis, _ *node, delta nodeset) {
changed := false
for iObj := range delta {
tDyn, _, _ := a.taggedValue(iObj)
if tDyn == nil {
panic("not a tagged value")
}
if a.addLabel(c.result, a.makeRtype(tDyn)) {
changed = true
}
}
if changed {
a.addWork(c.result)
}
}
func ext۰reflect۰TypeOf(a *analysis, cgn *cgnode) {
a.addConstraint(&reflectTypeOfConstraint{
cgn: cgn,
i: a.funcParams(cgn.obj),
result: a.funcResults(cgn.obj),
})
}
// ---------- func ValueOf(interface{}) Value ----------
func ext۰reflect۰ValueOf(a *analysis, cgn *cgnode) {
// TODO(adonovan): when we start creating indirect tagged
// objects, we'll need to handle them specially here since
// they must never appear in the PTS of an interface{}.
a.copy(a.funcResults(cgn.obj), a.funcParams(cgn.obj), 1)
}
// ---------- func Zero(Type) Value ----------
// result = Zero(typ)
type reflectZeroConstraint struct {
cgn *cgnode
typ nodeid // (ptr)
result nodeid
}
func (c *reflectZeroConstraint) String() string {
return fmt.Sprintf("n%d = reflect.Zero(n%d)", c.result, c.typ)
}
func (c *reflectZeroConstraint) ptr() nodeid {
return c.typ
}
func (c *reflectZeroConstraint) solve(a *analysis, _ *node, delta nodeset) {
changed := false
for typObj := range delta {
T := a.rtypeTaggedValue(typObj)
// memoize using a.reflectZeros[T]
var id nodeid
if z := a.reflectZeros.At(T); false && z != nil {
id = z.(nodeid)
} else {
id = a.makeTagged(T, c.cgn, nil)
a.reflectZeros.Set(T, id)
}
if a.addLabel(c.result, id) {
changed = true
}
}
if changed {
a.addWork(c.result)
}
}
func ext۰reflect۰Zero(a *analysis, cgn *cgnode) {
a.addConstraint(&reflectZeroConstraint{
cgn: cgn,
typ: a.funcParams(cgn.obj),
result: a.funcResults(cgn.obj),
})
}
// -------------------- (*reflect.rtype) methods --------------------
// ---------- func (*rtype) Elem() Type ----------
// result = Elem(t)
type rtypeElemConstraint struct {
cgn *cgnode
t nodeid // (ptr)
result nodeid
}
func (c *rtypeElemConstraint) String() string {
return fmt.Sprintf("n%d = (*reflect.rtype).Elem(n%d)", c.result, c.t)
}
func (c *rtypeElemConstraint) ptr() nodeid {
return c.t
}
func (c *rtypeElemConstraint) solve(a *analysis, _ *node, delta nodeset) {
// Implemented by *types.{Map,Chan,Array,Slice,Pointer}.
type hasElem interface {
Elem() types.Type
}
changed := false
for tObj := range delta {
T := a.nodes[tObj].obj.rtype
if tHasElem, ok := T.Underlying().(hasElem); ok {
if a.addLabel(c.result, a.makeRtype(tHasElem.Elem())) {
changed = true
}
}
}
if changed {
a.addWork(c.result)
}
}
func ext۰reflect۰rtype۰Elem(a *analysis, cgn *cgnode) {
a.addConstraint(&rtypeElemConstraint{
cgn: cgn,
t: a.funcParams(cgn.obj),
result: a.funcResults(cgn.obj),
})
}
func ext۰reflect۰rtype۰Field(a *analysis, cgn *cgnode) {}
func ext۰reflect۰rtype۰FieldByIndex(a *analysis, cgn *cgnode) {}
func ext۰reflect۰rtype۰FieldByName(a *analysis, cgn *cgnode) {}
func ext۰reflect۰rtype۰FieldByNameFunc(a *analysis, cgn *cgnode) {}
// ---------- func (*rtype) In/Out() Type ----------
// result = In/Out(t)
type rtypeInOutConstraint struct {
cgn *cgnode
t nodeid // (ptr)
result nodeid
out bool
}
func (c *rtypeInOutConstraint) String() string {
return fmt.Sprintf("n%d = (*reflect.rtype).InOut(n%d)", c.result, c.t)
}
func (c *rtypeInOutConstraint) ptr() nodeid {
return c.t
}
func (c *rtypeInOutConstraint) solve(a *analysis, _ *node, delta nodeset) {
changed := false
for tObj := range delta {
T := a.nodes[tObj].obj.rtype
sig, ok := T.Underlying().(*types.Signature)
if !ok {
continue // not a func type
}
tuple := sig.Params()
if c.out {
tuple = sig.Results()
}
// TODO(adonovan): when a function is analyzed
// context-sensitively, we should be able to see its
// caller's actual parameter's ssa.Values. Refactor
// the intrinsic mechanism to allow this. Then if the
// value is an int const K, skip the loop and use
// tuple.At(K).
for i, n := 0, tuple.Len(); i < n; i++ {
if a.addLabel(c.result, a.makeRtype(tuple.At(i).Type())) {
changed = true
}
}
}
if changed {
a.addWork(c.result)
}
}
func ext۰reflect۰rtype۰InOut(a *analysis, cgn *cgnode, out bool) {
a.addConstraint(&rtypeInOutConstraint{
cgn: cgn,
t: a.funcParams(cgn.obj),
result: a.funcResults(cgn.obj),
out: out,
})
}
func ext۰reflect۰rtype۰In(a *analysis, cgn *cgnode) {
ext۰reflect۰rtype۰InOut(a, cgn, false)
}
func ext۰reflect۰rtype۰Out(a *analysis, cgn *cgnode) {
ext۰reflect۰rtype۰InOut(a, cgn, true)
}
// ---------- func (*rtype) Key() Type ----------
// result = Key(t)
type rtypeKeyConstraint struct {
cgn *cgnode
t nodeid // (ptr)
result nodeid
}
func (c *rtypeKeyConstraint) String() string {
return fmt.Sprintf("n%d = (*reflect.rtype).Key(n%d)", c.result, c.t)
}
func (c *rtypeKeyConstraint) ptr() nodeid {
return c.t
}
func (c *rtypeKeyConstraint) solve(a *analysis, _ *node, delta nodeset) {
changed := false
for tObj := range delta {
T := a.nodes[tObj].obj.rtype
if tMap, ok := T.Underlying().(*types.Map); ok {
if a.addLabel(c.result, a.makeRtype(tMap.Key())) {
changed = true
}
}
}
if changed {
a.addWork(c.result)
}
}
func ext۰reflect۰rtype۰Key(a *analysis, cgn *cgnode) {
a.addConstraint(&rtypeKeyConstraint{
cgn: cgn,
t: a.funcParams(cgn.obj),
result: a.funcResults(cgn.obj),
})
}
func ext۰reflect۰rtype۰Method(a *analysis, cgn *cgnode) {}
func ext۰reflect۰rtype۰MethodByName(a *analysis, cgn *cgnode) {}