mirror of
https://github.com/golang/go
synced 2024-11-08 11:16:19 -07:00
9d4215311b
When there are plugins, there may not be a unique copy of runtime functions like goexit, mcall, etc. So identifying them by entry address is problematic. Instead, keep track of each special function using a field in the symbol table. That way, multiple copies of the same runtime function will be treated identically. Fixes #24351 Fixes #23133 Change-Id: Iea3232df8a6af68509769d9ca618f530cc0f84fd Reviewed-on: https://go-review.googlesource.com/100739 Run-TryBot: Keith Randall <khr@golang.org> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Ian Lance Taylor <iant@golang.org>
932 lines
27 KiB
Go
932 lines
27 KiB
Go
// Copyright 2014 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package runtime
|
|
|
|
import (
|
|
"runtime/internal/atomic"
|
|
"runtime/internal/sys"
|
|
"unsafe"
|
|
)
|
|
|
|
// Frames may be used to get function/file/line information for a
|
|
// slice of PC values returned by Callers.
|
|
type Frames struct {
|
|
// callers is a slice of PCs that have not yet been expanded.
|
|
callers []uintptr
|
|
|
|
// stackExpander expands callers into a sequence of Frames,
|
|
// tracking the necessary state across PCs.
|
|
stackExpander stackExpander
|
|
|
|
// elideWrapper indicates that, if the next frame is an
|
|
// autogenerated wrapper function, it should be elided from
|
|
// the stack.
|
|
elideWrapper bool
|
|
}
|
|
|
|
// Frame is the information returned by Frames for each call frame.
|
|
type Frame struct {
|
|
// PC is the program counter for the location in this frame.
|
|
// For a frame that calls another frame, this will be the
|
|
// program counter of a call instruction. Because of inlining,
|
|
// multiple frames may have the same PC value, but different
|
|
// symbolic information.
|
|
PC uintptr
|
|
|
|
// Func is the Func value of this call frame. This may be nil
|
|
// for non-Go code or fully inlined functions.
|
|
Func *Func
|
|
|
|
// Function is the package path-qualified function name of
|
|
// this call frame. If non-empty, this string uniquely
|
|
// identifies a single function in the program.
|
|
// This may be the empty string if not known.
|
|
// If Func is not nil then Function == Func.Name().
|
|
Function string
|
|
|
|
// File and Line are the file name and line number of the
|
|
// location in this frame. For non-leaf frames, this will be
|
|
// the location of a call. These may be the empty string and
|
|
// zero, respectively, if not known.
|
|
File string
|
|
Line int
|
|
|
|
// Entry point program counter for the function; may be zero
|
|
// if not known. If Func is not nil then Entry ==
|
|
// Func.Entry().
|
|
Entry uintptr
|
|
}
|
|
|
|
// stackExpander expands a call stack of PCs into a sequence of
|
|
// Frames. It tracks state across PCs necessary to perform this
|
|
// expansion.
|
|
//
|
|
// This is the core of the Frames implementation, but is a separate
|
|
// internal API to make it possible to use within the runtime without
|
|
// heap-allocating the PC slice. The only difference with the public
|
|
// Frames API is that the caller is responsible for threading the PC
|
|
// slice between expansion steps in this API. If escape analysis were
|
|
// smarter, we may not need this (though it may have to be a lot
|
|
// smarter).
|
|
type stackExpander struct {
|
|
// pcExpander expands the current PC into a sequence of Frames.
|
|
pcExpander pcExpander
|
|
|
|
// If previous caller in iteration was a panic, then the next
|
|
// PC in the call stack is the address of the faulting
|
|
// instruction instead of the return address of the call.
|
|
wasPanic bool
|
|
|
|
// skip > 0 indicates that skip frames in the expansion of the
|
|
// first PC should be skipped over and callers[1] should also
|
|
// be skipped.
|
|
skip int
|
|
}
|
|
|
|
// CallersFrames takes a slice of PC values returned by Callers and
|
|
// prepares to return function/file/line information.
|
|
// Do not change the slice until you are done with the Frames.
|
|
func CallersFrames(callers []uintptr) *Frames {
|
|
ci := &Frames{}
|
|
ci.callers = ci.stackExpander.init(callers)
|
|
return ci
|
|
}
|
|
|
|
func (se *stackExpander) init(callers []uintptr) []uintptr {
|
|
if len(callers) >= 1 {
|
|
pc := callers[0]
|
|
s := pc - skipPC
|
|
if s >= 0 && s < sizeofSkipFunction {
|
|
// Ignore skip frame callers[0] since this means the caller trimmed the PC slice.
|
|
return callers[1:]
|
|
}
|
|
}
|
|
if len(callers) >= 2 {
|
|
pc := callers[1]
|
|
s := pc - skipPC
|
|
if s > 0 && s < sizeofSkipFunction {
|
|
// Skip the first s inlined frames when we expand the first PC.
|
|
se.skip = int(s)
|
|
}
|
|
}
|
|
return callers
|
|
}
|
|
|
|
// Next returns frame information for the next caller.
|
|
// If more is false, there are no more callers (the Frame value is valid).
|
|
func (ci *Frames) Next() (frame Frame, more bool) {
|
|
ci.callers, frame, more = ci.stackExpander.next(ci.callers, ci.elideWrapper)
|
|
ci.elideWrapper = elideWrapperCalling(frame.Function)
|
|
return
|
|
}
|
|
|
|
func (se *stackExpander) next(callers []uintptr, elideWrapper bool) (ncallers []uintptr, frame Frame, more bool) {
|
|
ncallers = callers
|
|
again:
|
|
if !se.pcExpander.more {
|
|
// Expand the next PC.
|
|
if len(ncallers) == 0 {
|
|
se.wasPanic = false
|
|
return ncallers, Frame{}, false
|
|
}
|
|
se.pcExpander.init(ncallers[0], se.wasPanic)
|
|
ncallers = ncallers[1:]
|
|
se.wasPanic = se.pcExpander.funcInfo.valid() && se.pcExpander.funcInfo.funcID == funcID_sigpanic
|
|
if se.skip > 0 {
|
|
for ; se.skip > 0; se.skip-- {
|
|
se.pcExpander.next()
|
|
}
|
|
se.skip = 0
|
|
// Drop skipPleaseUseCallersFrames.
|
|
ncallers = ncallers[1:]
|
|
}
|
|
if !se.pcExpander.more {
|
|
// No symbolic information for this PC.
|
|
// However, we return at least one frame for
|
|
// every PC, so return an invalid frame.
|
|
return ncallers, Frame{}, len(ncallers) > 0
|
|
}
|
|
}
|
|
|
|
frame = se.pcExpander.next()
|
|
if elideWrapper && frame.File == "<autogenerated>" {
|
|
// Ignore autogenerated functions such as pointer
|
|
// method forwarding functions. These are an
|
|
// implementation detail that doesn't reflect the
|
|
// source code.
|
|
goto again
|
|
}
|
|
return ncallers, frame, se.pcExpander.more || len(ncallers) > 0
|
|
}
|
|
|
|
// A pcExpander expands a single PC into a sequence of Frames.
|
|
type pcExpander struct {
|
|
// more indicates that the next call to next will return a
|
|
// valid frame.
|
|
more bool
|
|
|
|
// pc is the pc being expanded.
|
|
pc uintptr
|
|
|
|
// frames is a pre-expanded set of Frames to return from the
|
|
// iterator. If this is set, then this is everything that will
|
|
// be returned from the iterator.
|
|
frames []Frame
|
|
|
|
// funcInfo is the funcInfo of the function containing pc.
|
|
funcInfo funcInfo
|
|
|
|
// inlTree is the inlining tree of the function containing pc.
|
|
inlTree *[1 << 20]inlinedCall
|
|
|
|
// file and line are the file name and line number of the next
|
|
// frame.
|
|
file string
|
|
line int32
|
|
|
|
// inlIndex is the inlining index of the next frame, or -1 if
|
|
// the next frame is an outermost frame.
|
|
inlIndex int32
|
|
}
|
|
|
|
// init initializes this pcExpander to expand pc. It sets ex.more if
|
|
// pc expands to any Frames.
|
|
//
|
|
// A pcExpander can be reused by calling init again.
|
|
//
|
|
// If pc was a "call" to sigpanic, panicCall should be true. In this
|
|
// case, pc is treated as the address of a faulting instruction
|
|
// instead of the return address of a call.
|
|
func (ex *pcExpander) init(pc uintptr, panicCall bool) {
|
|
ex.more = false
|
|
|
|
ex.funcInfo = findfunc(pc)
|
|
if !ex.funcInfo.valid() {
|
|
if cgoSymbolizer != nil {
|
|
// Pre-expand cgo frames. We could do this
|
|
// incrementally, too, but there's no way to
|
|
// avoid allocation in this case anyway.
|
|
ex.frames = expandCgoFrames(pc)
|
|
ex.more = len(ex.frames) > 0
|
|
}
|
|
return
|
|
}
|
|
|
|
ex.more = true
|
|
entry := ex.funcInfo.entry
|
|
ex.pc = pc
|
|
if ex.pc > entry && !panicCall {
|
|
ex.pc--
|
|
}
|
|
|
|
// file and line are the innermost position at pc.
|
|
ex.file, ex.line = funcline1(ex.funcInfo, ex.pc, false)
|
|
|
|
// Get inlining tree at pc
|
|
inldata := funcdata(ex.funcInfo, _FUNCDATA_InlTree)
|
|
if inldata != nil {
|
|
ex.inlTree = (*[1 << 20]inlinedCall)(inldata)
|
|
ex.inlIndex = pcdatavalue(ex.funcInfo, _PCDATA_InlTreeIndex, ex.pc, nil)
|
|
} else {
|
|
ex.inlTree = nil
|
|
ex.inlIndex = -1
|
|
}
|
|
}
|
|
|
|
// next returns the next Frame in the expansion of pc and sets ex.more
|
|
// if there are more Frames to follow.
|
|
func (ex *pcExpander) next() Frame {
|
|
if !ex.more {
|
|
return Frame{}
|
|
}
|
|
|
|
if len(ex.frames) > 0 {
|
|
// Return pre-expended frame.
|
|
frame := ex.frames[0]
|
|
ex.frames = ex.frames[1:]
|
|
ex.more = len(ex.frames) > 0
|
|
return frame
|
|
}
|
|
|
|
if ex.inlIndex >= 0 {
|
|
// Return inner inlined frame.
|
|
call := ex.inlTree[ex.inlIndex]
|
|
frame := Frame{
|
|
PC: ex.pc,
|
|
Func: nil, // nil for inlined functions
|
|
Function: funcnameFromNameoff(ex.funcInfo, call.func_),
|
|
File: ex.file,
|
|
Line: int(ex.line),
|
|
Entry: ex.funcInfo.entry,
|
|
}
|
|
ex.file = funcfile(ex.funcInfo, call.file)
|
|
ex.line = call.line
|
|
ex.inlIndex = call.parent
|
|
return frame
|
|
}
|
|
|
|
// No inlining or pre-expanded frames.
|
|
ex.more = false
|
|
return Frame{
|
|
PC: ex.pc,
|
|
Func: ex.funcInfo._Func(),
|
|
Function: funcname(ex.funcInfo),
|
|
File: ex.file,
|
|
Line: int(ex.line),
|
|
Entry: ex.funcInfo.entry,
|
|
}
|
|
}
|
|
|
|
// expandCgoFrames expands frame information for pc, known to be
|
|
// a non-Go function, using the cgoSymbolizer hook. expandCgoFrames
|
|
// returns nil if pc could not be expanded.
|
|
func expandCgoFrames(pc uintptr) []Frame {
|
|
arg := cgoSymbolizerArg{pc: pc}
|
|
callCgoSymbolizer(&arg)
|
|
|
|
if arg.file == nil && arg.funcName == nil {
|
|
// No useful information from symbolizer.
|
|
return nil
|
|
}
|
|
|
|
var frames []Frame
|
|
for {
|
|
frames = append(frames, Frame{
|
|
PC: pc,
|
|
Func: nil,
|
|
Function: gostring(arg.funcName),
|
|
File: gostring(arg.file),
|
|
Line: int(arg.lineno),
|
|
Entry: arg.entry,
|
|
})
|
|
if arg.more == 0 {
|
|
break
|
|
}
|
|
callCgoSymbolizer(&arg)
|
|
}
|
|
|
|
// No more frames for this PC. Tell the symbolizer we are done.
|
|
// We don't try to maintain a single cgoSymbolizerArg for the
|
|
// whole use of Frames, because there would be no good way to tell
|
|
// the symbolizer when we are done.
|
|
arg.pc = 0
|
|
callCgoSymbolizer(&arg)
|
|
|
|
return frames
|
|
}
|
|
|
|
// NOTE: Func does not expose the actual unexported fields, because we return *Func
|
|
// values to users, and we want to keep them from being able to overwrite the data
|
|
// with (say) *f = Func{}.
|
|
// All code operating on a *Func must call raw() to get the *_func
|
|
// or funcInfo() to get the funcInfo instead.
|
|
|
|
// A Func represents a Go function in the running binary.
|
|
type Func struct {
|
|
opaque struct{} // unexported field to disallow conversions
|
|
}
|
|
|
|
func (f *Func) raw() *_func {
|
|
return (*_func)(unsafe.Pointer(f))
|
|
}
|
|
|
|
func (f *Func) funcInfo() funcInfo {
|
|
fn := f.raw()
|
|
return funcInfo{fn, findmoduledatap(fn.entry)}
|
|
}
|
|
|
|
// PCDATA and FUNCDATA table indexes.
|
|
//
|
|
// See funcdata.h and ../cmd/internal/objabi/funcdata.go.
|
|
const (
|
|
_PCDATA_StackMapIndex = 0
|
|
_PCDATA_InlTreeIndex = 1
|
|
_FUNCDATA_ArgsPointerMaps = 0
|
|
_FUNCDATA_LocalsPointerMaps = 1
|
|
_FUNCDATA_InlTree = 2
|
|
_ArgsSizeUnknown = -0x80000000
|
|
)
|
|
|
|
// A FuncID identifies particular functions that need to be treated
|
|
// specially by the runtime.
|
|
// Note that in some situations involving plugins, there may be multiple
|
|
// copies of a particular special runtime function.
|
|
// Note: this list must match the list in cmd/internal/objabi/funcid.go.
|
|
type funcID uint32
|
|
|
|
const (
|
|
funcID_normal funcID = iota // not a special function
|
|
funcID_goexit
|
|
funcID_jmpdefer
|
|
funcID_mcall
|
|
funcID_morestack
|
|
funcID_mstart
|
|
funcID_rt0_go
|
|
funcID_asmcgocall
|
|
funcID_sigpanic
|
|
funcID_runfinq
|
|
funcID_bgsweep
|
|
funcID_forcegchelper
|
|
funcID_timerproc
|
|
funcID_gcBgMarkWorker
|
|
funcID_systemstack_switch
|
|
funcID_systemstack
|
|
funcID_cgocallback_gofunc
|
|
funcID_gogo
|
|
funcID_externalthreadhandler
|
|
)
|
|
|
|
// moduledata records information about the layout of the executable
|
|
// image. It is written by the linker. Any changes here must be
|
|
// matched changes to the code in cmd/internal/ld/symtab.go:symtab.
|
|
// moduledata is stored in statically allocated non-pointer memory;
|
|
// none of the pointers here are visible to the garbage collector.
|
|
type moduledata struct {
|
|
pclntable []byte
|
|
ftab []functab
|
|
filetab []uint32
|
|
findfunctab uintptr
|
|
minpc, maxpc uintptr
|
|
|
|
text, etext uintptr
|
|
noptrdata, enoptrdata uintptr
|
|
data, edata uintptr
|
|
bss, ebss uintptr
|
|
noptrbss, enoptrbss uintptr
|
|
end, gcdata, gcbss uintptr
|
|
types, etypes uintptr
|
|
|
|
textsectmap []textsect
|
|
typelinks []int32 // offsets from types
|
|
itablinks []*itab
|
|
|
|
ptab []ptabEntry
|
|
|
|
pluginpath string
|
|
pkghashes []modulehash
|
|
|
|
modulename string
|
|
modulehashes []modulehash
|
|
|
|
hasmain uint8 // 1 if module contains the main function, 0 otherwise
|
|
|
|
gcdatamask, gcbssmask bitvector
|
|
|
|
typemap map[typeOff]*_type // offset to *_rtype in previous module
|
|
|
|
bad bool // module failed to load and should be ignored
|
|
|
|
next *moduledata
|
|
}
|
|
|
|
// A modulehash is used to compare the ABI of a new module or a
|
|
// package in a new module with the loaded program.
|
|
//
|
|
// For each shared library a module links against, the linker creates an entry in the
|
|
// moduledata.modulehashes slice containing the name of the module, the abi hash seen
|
|
// at link time and a pointer to the runtime abi hash. These are checked in
|
|
// moduledataverify1 below.
|
|
//
|
|
// For each loaded plugin, the pkghashes slice has a modulehash of the
|
|
// newly loaded package that can be used to check the plugin's version of
|
|
// a package against any previously loaded version of the package.
|
|
// This is done in plugin.lastmoduleinit.
|
|
type modulehash struct {
|
|
modulename string
|
|
linktimehash string
|
|
runtimehash *string
|
|
}
|
|
|
|
// pinnedTypemaps are the map[typeOff]*_type from the moduledata objects.
|
|
//
|
|
// These typemap objects are allocated at run time on the heap, but the
|
|
// only direct reference to them is in the moduledata, created by the
|
|
// linker and marked SNOPTRDATA so it is ignored by the GC.
|
|
//
|
|
// To make sure the map isn't collected, we keep a second reference here.
|
|
var pinnedTypemaps []map[typeOff]*_type
|
|
|
|
var firstmoduledata moduledata // linker symbol
|
|
var lastmoduledatap *moduledata // linker symbol
|
|
var modulesSlice *[]*moduledata // see activeModules
|
|
|
|
// activeModules returns a slice of active modules.
|
|
//
|
|
// A module is active once its gcdatamask and gcbssmask have been
|
|
// assembled and it is usable by the GC.
|
|
//
|
|
// This is nosplit/nowritebarrier because it is called by the
|
|
// cgo pointer checking code.
|
|
//go:nosplit
|
|
//go:nowritebarrier
|
|
func activeModules() []*moduledata {
|
|
p := (*[]*moduledata)(atomic.Loadp(unsafe.Pointer(&modulesSlice)))
|
|
if p == nil {
|
|
return nil
|
|
}
|
|
return *p
|
|
}
|
|
|
|
// modulesinit creates the active modules slice out of all loaded modules.
|
|
//
|
|
// When a module is first loaded by the dynamic linker, an .init_array
|
|
// function (written by cmd/link) is invoked to call addmoduledata,
|
|
// appending to the module to the linked list that starts with
|
|
// firstmoduledata.
|
|
//
|
|
// There are two times this can happen in the lifecycle of a Go
|
|
// program. First, if compiled with -linkshared, a number of modules
|
|
// built with -buildmode=shared can be loaded at program initialization.
|
|
// Second, a Go program can load a module while running that was built
|
|
// with -buildmode=plugin.
|
|
//
|
|
// After loading, this function is called which initializes the
|
|
// moduledata so it is usable by the GC and creates a new activeModules
|
|
// list.
|
|
//
|
|
// Only one goroutine may call modulesinit at a time.
|
|
func modulesinit() {
|
|
modules := new([]*moduledata)
|
|
for md := &firstmoduledata; md != nil; md = md.next {
|
|
if md.bad {
|
|
continue
|
|
}
|
|
*modules = append(*modules, md)
|
|
if md.gcdatamask == (bitvector{}) {
|
|
md.gcdatamask = progToPointerMask((*byte)(unsafe.Pointer(md.gcdata)), md.edata-md.data)
|
|
md.gcbssmask = progToPointerMask((*byte)(unsafe.Pointer(md.gcbss)), md.ebss-md.bss)
|
|
}
|
|
}
|
|
|
|
// Modules appear in the moduledata linked list in the order they are
|
|
// loaded by the dynamic loader, with one exception: the
|
|
// firstmoduledata itself the module that contains the runtime. This
|
|
// is not always the first module (when using -buildmode=shared, it
|
|
// is typically libstd.so, the second module). The order matters for
|
|
// typelinksinit, so we swap the first module with whatever module
|
|
// contains the main function.
|
|
//
|
|
// See Issue #18729.
|
|
for i, md := range *modules {
|
|
if md.hasmain != 0 {
|
|
(*modules)[0] = md
|
|
(*modules)[i] = &firstmoduledata
|
|
break
|
|
}
|
|
}
|
|
|
|
atomicstorep(unsafe.Pointer(&modulesSlice), unsafe.Pointer(modules))
|
|
}
|
|
|
|
type functab struct {
|
|
entry uintptr
|
|
funcoff uintptr
|
|
}
|
|
|
|
// Mapping information for secondary text sections
|
|
|
|
type textsect struct {
|
|
vaddr uintptr // prelinked section vaddr
|
|
length uintptr // section length
|
|
baseaddr uintptr // relocated section address
|
|
}
|
|
|
|
const minfunc = 16 // minimum function size
|
|
const pcbucketsize = 256 * minfunc // size of bucket in the pc->func lookup table
|
|
|
|
// findfunctab is an array of these structures.
|
|
// Each bucket represents 4096 bytes of the text segment.
|
|
// Each subbucket represents 256 bytes of the text segment.
|
|
// To find a function given a pc, locate the bucket and subbucket for
|
|
// that pc. Add together the idx and subbucket value to obtain a
|
|
// function index. Then scan the functab array starting at that
|
|
// index to find the target function.
|
|
// This table uses 20 bytes for every 4096 bytes of code, or ~0.5% overhead.
|
|
type findfuncbucket struct {
|
|
idx uint32
|
|
subbuckets [16]byte
|
|
}
|
|
|
|
func moduledataverify() {
|
|
for datap := &firstmoduledata; datap != nil; datap = datap.next {
|
|
moduledataverify1(datap)
|
|
}
|
|
}
|
|
|
|
const debugPcln = false
|
|
|
|
func moduledataverify1(datap *moduledata) {
|
|
// See golang.org/s/go12symtab for header: 0xfffffffb,
|
|
// two zero bytes, a byte giving the PC quantum,
|
|
// and a byte giving the pointer width in bytes.
|
|
pcln := *(**[8]byte)(unsafe.Pointer(&datap.pclntable))
|
|
pcln32 := *(**[2]uint32)(unsafe.Pointer(&datap.pclntable))
|
|
if pcln32[0] != 0xfffffffb || pcln[4] != 0 || pcln[5] != 0 || pcln[6] != sys.PCQuantum || pcln[7] != sys.PtrSize {
|
|
println("runtime: function symbol table header:", hex(pcln32[0]), hex(pcln[4]), hex(pcln[5]), hex(pcln[6]), hex(pcln[7]))
|
|
throw("invalid function symbol table\n")
|
|
}
|
|
|
|
// ftab is lookup table for function by program counter.
|
|
nftab := len(datap.ftab) - 1
|
|
for i := 0; i < nftab; i++ {
|
|
// NOTE: ftab[nftab].entry is legal; it is the address beyond the final function.
|
|
if datap.ftab[i].entry > datap.ftab[i+1].entry {
|
|
f1 := funcInfo{(*_func)(unsafe.Pointer(&datap.pclntable[datap.ftab[i].funcoff])), datap}
|
|
f2 := funcInfo{(*_func)(unsafe.Pointer(&datap.pclntable[datap.ftab[i+1].funcoff])), datap}
|
|
f2name := "end"
|
|
if i+1 < nftab {
|
|
f2name = funcname(f2)
|
|
}
|
|
println("function symbol table not sorted by program counter:", hex(datap.ftab[i].entry), funcname(f1), ">", hex(datap.ftab[i+1].entry), f2name)
|
|
for j := 0; j <= i; j++ {
|
|
print("\t", hex(datap.ftab[j].entry), " ", funcname(funcInfo{(*_func)(unsafe.Pointer(&datap.pclntable[datap.ftab[j].funcoff])), datap}), "\n")
|
|
}
|
|
throw("invalid runtime symbol table")
|
|
}
|
|
}
|
|
|
|
if datap.minpc != datap.ftab[0].entry ||
|
|
datap.maxpc != datap.ftab[nftab].entry {
|
|
throw("minpc or maxpc invalid")
|
|
}
|
|
|
|
for _, modulehash := range datap.modulehashes {
|
|
if modulehash.linktimehash != *modulehash.runtimehash {
|
|
println("abi mismatch detected between", datap.modulename, "and", modulehash.modulename)
|
|
throw("abi mismatch")
|
|
}
|
|
}
|
|
}
|
|
|
|
// FuncForPC returns a *Func describing the function that contains the
|
|
// given program counter address, or else nil.
|
|
//
|
|
// If pc represents multiple functions because of inlining, it returns
|
|
// the *Func describing the outermost function.
|
|
func FuncForPC(pc uintptr) *Func {
|
|
return findfunc(pc)._Func()
|
|
}
|
|
|
|
// Name returns the name of the function.
|
|
func (f *Func) Name() string {
|
|
if f == nil {
|
|
return ""
|
|
}
|
|
return funcname(f.funcInfo())
|
|
}
|
|
|
|
// Entry returns the entry address of the function.
|
|
func (f *Func) Entry() uintptr {
|
|
return f.raw().entry
|
|
}
|
|
|
|
// FileLine returns the file name and line number of the
|
|
// source code corresponding to the program counter pc.
|
|
// The result will not be accurate if pc is not a program
|
|
// counter within f.
|
|
func (f *Func) FileLine(pc uintptr) (file string, line int) {
|
|
// Pass strict=false here, because anyone can call this function,
|
|
// and they might just be wrong about targetpc belonging to f.
|
|
file, line32 := funcline1(f.funcInfo(), pc, false)
|
|
return file, int(line32)
|
|
}
|
|
|
|
func findmoduledatap(pc uintptr) *moduledata {
|
|
for datap := &firstmoduledata; datap != nil; datap = datap.next {
|
|
if datap.minpc <= pc && pc < datap.maxpc {
|
|
return datap
|
|
}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
type funcInfo struct {
|
|
*_func
|
|
datap *moduledata
|
|
}
|
|
|
|
func (f funcInfo) valid() bool {
|
|
return f._func != nil
|
|
}
|
|
|
|
func (f funcInfo) _Func() *Func {
|
|
return (*Func)(unsafe.Pointer(f._func))
|
|
}
|
|
|
|
func findfunc(pc uintptr) funcInfo {
|
|
datap := findmoduledatap(pc)
|
|
if datap == nil {
|
|
return funcInfo{}
|
|
}
|
|
const nsub = uintptr(len(findfuncbucket{}.subbuckets))
|
|
|
|
x := pc - datap.minpc
|
|
b := x / pcbucketsize
|
|
i := x % pcbucketsize / (pcbucketsize / nsub)
|
|
|
|
ffb := (*findfuncbucket)(add(unsafe.Pointer(datap.findfunctab), b*unsafe.Sizeof(findfuncbucket{})))
|
|
idx := ffb.idx + uint32(ffb.subbuckets[i])
|
|
|
|
// If the idx is beyond the end of the ftab, set it to the end of the table and search backward.
|
|
// This situation can occur if multiple text sections are generated to handle large text sections
|
|
// and the linker has inserted jump tables between them.
|
|
|
|
if idx >= uint32(len(datap.ftab)) {
|
|
idx = uint32(len(datap.ftab) - 1)
|
|
}
|
|
if pc < datap.ftab[idx].entry {
|
|
// With multiple text sections, the idx might reference a function address that
|
|
// is higher than the pc being searched, so search backward until the matching address is found.
|
|
|
|
for datap.ftab[idx].entry > pc && idx > 0 {
|
|
idx--
|
|
}
|
|
if idx == 0 {
|
|
throw("findfunc: bad findfunctab entry idx")
|
|
}
|
|
} else {
|
|
// linear search to find func with pc >= entry.
|
|
for datap.ftab[idx+1].entry <= pc {
|
|
idx++
|
|
}
|
|
}
|
|
return funcInfo{(*_func)(unsafe.Pointer(&datap.pclntable[datap.ftab[idx].funcoff])), datap}
|
|
}
|
|
|
|
type pcvalueCache struct {
|
|
entries [16]pcvalueCacheEnt
|
|
}
|
|
|
|
type pcvalueCacheEnt struct {
|
|
// targetpc and off together are the key of this cache entry.
|
|
targetpc uintptr
|
|
off int32
|
|
// val is the value of this cached pcvalue entry.
|
|
val int32
|
|
}
|
|
|
|
func pcvalue(f funcInfo, off int32, targetpc uintptr, cache *pcvalueCache, strict bool) int32 {
|
|
if off == 0 {
|
|
return -1
|
|
}
|
|
|
|
// Check the cache. This speeds up walks of deep stacks, which
|
|
// tend to have the same recursive functions over and over.
|
|
//
|
|
// This cache is small enough that full associativity is
|
|
// cheaper than doing the hashing for a less associative
|
|
// cache.
|
|
if cache != nil {
|
|
for i := range cache.entries {
|
|
// We check off first because we're more
|
|
// likely to have multiple entries with
|
|
// different offsets for the same targetpc
|
|
// than the other way around, so we'll usually
|
|
// fail in the first clause.
|
|
ent := &cache.entries[i]
|
|
if ent.off == off && ent.targetpc == targetpc {
|
|
return ent.val
|
|
}
|
|
}
|
|
}
|
|
|
|
if !f.valid() {
|
|
if strict && panicking == 0 {
|
|
print("runtime: no module data for ", hex(f.entry), "\n")
|
|
throw("no module data")
|
|
}
|
|
return -1
|
|
}
|
|
datap := f.datap
|
|
p := datap.pclntable[off:]
|
|
pc := f.entry
|
|
val := int32(-1)
|
|
for {
|
|
var ok bool
|
|
p, ok = step(p, &pc, &val, pc == f.entry)
|
|
if !ok {
|
|
break
|
|
}
|
|
if targetpc < pc {
|
|
// Replace a random entry in the cache. Random
|
|
// replacement prevents a performance cliff if
|
|
// a recursive stack's cycle is slightly
|
|
// larger than the cache.
|
|
if cache != nil {
|
|
ci := fastrandn(uint32(len(cache.entries)))
|
|
cache.entries[ci] = pcvalueCacheEnt{
|
|
targetpc: targetpc,
|
|
off: off,
|
|
val: val,
|
|
}
|
|
}
|
|
|
|
return val
|
|
}
|
|
}
|
|
|
|
// If there was a table, it should have covered all program counters.
|
|
// If not, something is wrong.
|
|
if panicking != 0 || !strict {
|
|
return -1
|
|
}
|
|
|
|
print("runtime: invalid pc-encoded table f=", funcname(f), " pc=", hex(pc), " targetpc=", hex(targetpc), " tab=", p, "\n")
|
|
|
|
p = datap.pclntable[off:]
|
|
pc = f.entry
|
|
val = -1
|
|
for {
|
|
var ok bool
|
|
p, ok = step(p, &pc, &val, pc == f.entry)
|
|
if !ok {
|
|
break
|
|
}
|
|
print("\tvalue=", val, " until pc=", hex(pc), "\n")
|
|
}
|
|
|
|
throw("invalid runtime symbol table")
|
|
return -1
|
|
}
|
|
|
|
func cfuncname(f funcInfo) *byte {
|
|
if !f.valid() || f.nameoff == 0 {
|
|
return nil
|
|
}
|
|
return &f.datap.pclntable[f.nameoff]
|
|
}
|
|
|
|
func funcname(f funcInfo) string {
|
|
return gostringnocopy(cfuncname(f))
|
|
}
|
|
|
|
func funcnameFromNameoff(f funcInfo, nameoff int32) string {
|
|
datap := f.datap
|
|
if !f.valid() {
|
|
return ""
|
|
}
|
|
cstr := &datap.pclntable[nameoff]
|
|
return gostringnocopy(cstr)
|
|
}
|
|
|
|
func funcfile(f funcInfo, fileno int32) string {
|
|
datap := f.datap
|
|
if !f.valid() {
|
|
return "?"
|
|
}
|
|
return gostringnocopy(&datap.pclntable[datap.filetab[fileno]])
|
|
}
|
|
|
|
func funcline1(f funcInfo, targetpc uintptr, strict bool) (file string, line int32) {
|
|
datap := f.datap
|
|
if !f.valid() {
|
|
return "?", 0
|
|
}
|
|
fileno := int(pcvalue(f, f.pcfile, targetpc, nil, strict))
|
|
line = pcvalue(f, f.pcln, targetpc, nil, strict)
|
|
if fileno == -1 || line == -1 || fileno >= len(datap.filetab) {
|
|
// print("looking for ", hex(targetpc), " in ", funcname(f), " got file=", fileno, " line=", lineno, "\n")
|
|
return "?", 0
|
|
}
|
|
file = gostringnocopy(&datap.pclntable[datap.filetab[fileno]])
|
|
return
|
|
}
|
|
|
|
func funcline(f funcInfo, targetpc uintptr) (file string, line int32) {
|
|
return funcline1(f, targetpc, true)
|
|
}
|
|
|
|
func funcspdelta(f funcInfo, targetpc uintptr, cache *pcvalueCache) int32 {
|
|
x := pcvalue(f, f.pcsp, targetpc, cache, true)
|
|
if x&(sys.PtrSize-1) != 0 {
|
|
print("invalid spdelta ", funcname(f), " ", hex(f.entry), " ", hex(targetpc), " ", hex(f.pcsp), " ", x, "\n")
|
|
}
|
|
return x
|
|
}
|
|
|
|
func pcdatavalue(f funcInfo, table int32, targetpc uintptr, cache *pcvalueCache) int32 {
|
|
if table < 0 || table >= f.npcdata {
|
|
return -1
|
|
}
|
|
off := *(*int32)(add(unsafe.Pointer(&f.nfuncdata), unsafe.Sizeof(f.nfuncdata)+uintptr(table)*4))
|
|
return pcvalue(f, off, targetpc, cache, true)
|
|
}
|
|
|
|
func funcdata(f funcInfo, i int32) unsafe.Pointer {
|
|
if i < 0 || i >= f.nfuncdata {
|
|
return nil
|
|
}
|
|
p := add(unsafe.Pointer(&f.nfuncdata), unsafe.Sizeof(f.nfuncdata)+uintptr(f.npcdata)*4)
|
|
if sys.PtrSize == 8 && uintptr(p)&4 != 0 {
|
|
if uintptr(unsafe.Pointer(f._func))&4 != 0 {
|
|
println("runtime: misaligned func", f._func)
|
|
}
|
|
p = add(p, 4)
|
|
}
|
|
return *(*unsafe.Pointer)(add(p, uintptr(i)*sys.PtrSize))
|
|
}
|
|
|
|
// step advances to the next pc, value pair in the encoded table.
|
|
func step(p []byte, pc *uintptr, val *int32, first bool) (newp []byte, ok bool) {
|
|
// For both uvdelta and pcdelta, the common case (~70%)
|
|
// is that they are a single byte. If so, avoid calling readvarint.
|
|
uvdelta := uint32(p[0])
|
|
if uvdelta == 0 && !first {
|
|
return nil, false
|
|
}
|
|
n := uint32(1)
|
|
if uvdelta&0x80 != 0 {
|
|
n, uvdelta = readvarint(p)
|
|
}
|
|
*val += int32(-(uvdelta & 1) ^ (uvdelta >> 1))
|
|
p = p[n:]
|
|
|
|
pcdelta := uint32(p[0])
|
|
n = 1
|
|
if pcdelta&0x80 != 0 {
|
|
n, pcdelta = readvarint(p)
|
|
}
|
|
p = p[n:]
|
|
*pc += uintptr(pcdelta * sys.PCQuantum)
|
|
return p, true
|
|
}
|
|
|
|
// readvarint reads a varint from p.
|
|
func readvarint(p []byte) (read uint32, val uint32) {
|
|
var v, shift, n uint32
|
|
for {
|
|
b := p[n]
|
|
n++
|
|
v |= uint32(b&0x7F) << (shift & 31)
|
|
if b&0x80 == 0 {
|
|
break
|
|
}
|
|
shift += 7
|
|
}
|
|
return n, v
|
|
}
|
|
|
|
type stackmap struct {
|
|
n int32 // number of bitmaps
|
|
nbit int32 // number of bits in each bitmap
|
|
bytedata [1]byte // bitmaps, each starting on a byte boundary
|
|
}
|
|
|
|
//go:nowritebarrier
|
|
func stackmapdata(stkmap *stackmap, n int32) bitvector {
|
|
if n < 0 || n >= stkmap.n {
|
|
throw("stackmapdata: index out of range")
|
|
}
|
|
return bitvector{stkmap.nbit, (*byte)(add(unsafe.Pointer(&stkmap.bytedata), uintptr(n*((stkmap.nbit+7)>>3))))}
|
|
}
|
|
|
|
// inlinedCall is the encoding of entries in the FUNCDATA_InlTree table.
|
|
type inlinedCall struct {
|
|
parent int32 // index of parent in the inltree, or < 0
|
|
file int32 // fileno index into filetab
|
|
line int32 // line number of the call site
|
|
func_ int32 // offset into pclntab for name of called function
|
|
}
|