1
0
mirror of https://github.com/golang/go synced 2024-11-23 00:20:12 -07:00
go/src/pkg/reflect/value.go
Russ Cox ca6a0fee1b more "declared and not used".
the last round omitted := range and only
checked 1 out of N vars in a multi-var :=

R=r
OCL=34624
CL=34638
2009-09-15 09:41:59 -07:00

1277 lines
28 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package reflect
import (
"runtime";
"unsafe";
)
const ptrSize = uintptr(unsafe.Sizeof((*byte)(nil)))
const cannotSet = "cannot set value obtained via unexported struct field"
type addr unsafe.Pointer
// TODO: This will have to go away when
// the new gc goes in.
func memmove(adst, asrc addr, n uintptr) {
dst := uintptr(adst);
src := uintptr(asrc);
switch {
case src < dst && src+n > dst:
// byte copy backward
// careful: i is unsigned
for i := n; i > 0; {
i--;
*(*byte)(addr(dst+i)) = *(*byte)(addr(src+i));
}
case (n|src|dst) & (ptrSize-1) != 0:
// byte copy forward
for i := uintptr(0); i < n; i++ {
*(*byte)(addr(dst+i)) = *(*byte)(addr(src+i));
}
default:
// word copy forward
for i := uintptr(0); i < n; i += ptrSize {
*(*uintptr)(addr(dst+i)) = *(*uintptr)(addr(src+i));
}
}
}
// Value is the common interface to reflection values.
// The implementations of Value (e.g., ArrayValue, StructValue)
// have additional type-specific methods.
type Value interface {
// Type returns the value's type.
Type() Type;
// Interface returns the value as an interface{}.
Interface() interface{};
// CanSet returns whether the value can be changed.
// Values obtained by the use of non-exported struct fields
// can be used in Get but not Set.
// If CanSet() returns false, calling the type-specific Set
// will cause a crash.
CanSet() bool;
// Addr returns a pointer to the underlying data.
// It is for advanced clients that also
// import the "unsafe" package.
Addr() uintptr;
// Method returns a FuncValue corresponding to the value's i'th method.
// The arguments to a Call on the returned FuncValue
// should not include a receiver; the FuncValue will use
// the value as the receiver.
Method(i int) *FuncValue;
getAddr() addr;
}
type value struct {
typ Type;
addr addr;
canSet bool;
}
func (v *value) Type() Type {
return v.typ
}
func (v *value) Addr() uintptr {
return uintptr(v.addr);
}
func (v *value) getAddr() addr {
return v.addr;
}
func (v *value) Interface() interface{} {
if typ, ok := v.typ.(*InterfaceType); ok {
// There are two different representations of interface values,
// one if the interface type has methods and one if it doesn't.
// These two representations require different expressions
// to extract correctly.
if typ.NumMethod() == 0 {
// Extract as interface value without methods.
return *(*interface{})(v.addr)
}
// Extract from v.addr as interface value with methods.
return *(*interface{ m() })(v.addr)
}
return unsafe.Unreflect(v.typ, unsafe.Pointer(v.addr));
}
func (v *value) CanSet() bool {
return v.canSet;
}
/*
* basic types
*/
// BoolValue represents a bool value.
type BoolValue struct {
value;
}
// Get returns the underlying bool value.
func (v *BoolValue) Get() bool {
return *(*bool)(v.addr);
}
// Set sets v to the value x.
func (v *BoolValue) Set(x bool) {
if !v.canSet {
panic(cannotSet);
}
*(*bool)(v.addr) = x;
}
// FloatValue represents a float value.
type FloatValue struct {
value;
}
// Get returns the underlying float value.
func (v *FloatValue) Get() float {
return *(*float)(v.addr);
}
// Set sets v to the value x.
func (v *FloatValue) Set(x float) {
if !v.canSet {
panic(cannotSet);
}
*(*float)(v.addr) = x;
}
// Float32Value represents a float32 value.
type Float32Value struct {
value;
}
// Get returns the underlying float32 value.
func (v *Float32Value) Get() float32 {
return *(*float32)(v.addr);
}
// Set sets v to the value x.
func (v *Float32Value) Set(x float32) {
if !v.canSet {
panic(cannotSet);
}
*(*float32)(v.addr) = x;
}
// Float64Value represents a float64 value.
type Float64Value struct {
value;
}
// Get returns the underlying float64 value.
func (v *Float64Value) Get() float64 {
return *(*float64)(v.addr);
}
// Set sets v to the value x.
func (v *Float64Value) Set(x float64) {
if !v.canSet {
panic(cannotSet);
}
*(*float64)(v.addr) = x;
}
// IntValue represents an int value.
type IntValue struct {
value;
}
// Get returns the underlying int value.
func (v *IntValue) Get() int {
return *(*int)(v.addr);
}
// Set sets v to the value x.
func (v *IntValue) Set(x int) {
if !v.canSet {
panic(cannotSet);
}
*(*int)(v.addr) = x;
}
// Int8Value represents an int8 value.
type Int8Value struct {
value;
}
// Get returns the underlying int8 value.
func (v *Int8Value) Get() int8 {
return *(*int8)(v.addr);
}
// Set sets v to the value x.
func (v *Int8Value) Set(x int8) {
if !v.canSet {
panic(cannotSet);
}
*(*int8)(v.addr) = x;
}
// Int16Value represents an int16 value.
type Int16Value struct {
value;
}
// Get returns the underlying int16 value.
func (v *Int16Value) Get() int16 {
return *(*int16)(v.addr);
}
// Set sets v to the value x.
func (v *Int16Value) Set(x int16) {
if !v.canSet {
panic(cannotSet);
}
*(*int16)(v.addr) = x;
}
// Int32Value represents an int32 value.
type Int32Value struct {
value;
}
// Get returns the underlying int32 value.
func (v *Int32Value) Get() int32 {
return *(*int32)(v.addr);
}
// Set sets v to the value x.
func (v *Int32Value) Set(x int32) {
if !v.canSet {
panic(cannotSet);
}
*(*int32)(v.addr) = x;
}
// Int64Value represents an int64 value.
type Int64Value struct {
value;
}
// Get returns the underlying int64 value.
func (v *Int64Value) Get() int64 {
return *(*int64)(v.addr);
}
// Set sets v to the value x.
func (v *Int64Value) Set(x int64) {
if !v.canSet {
panic(cannotSet);
}
*(*int64)(v.addr) = x;
}
// StringValue represents a string value.
type StringValue struct {
value;
}
// Get returns the underlying string value.
func (v *StringValue) Get() string {
return *(*string)(v.addr);
}
// Set sets v to the value x.
func (v *StringValue) Set(x string) {
if !v.canSet {
panic(cannotSet);
}
*(*string)(v.addr) = x;
}
// UintValue represents a uint value.
type UintValue struct {
value;
}
// Get returns the underlying uint value.
func (v *UintValue) Get() uint {
return *(*uint)(v.addr);
}
// Set sets v to the value x.
func (v *UintValue) Set(x uint) {
if !v.canSet {
panic(cannotSet);
}
*(*uint)(v.addr) = x;
}
// Uint8Value represents a uint8 value.
type Uint8Value struct {
value;
}
// Get returns the underlying uint8 value.
func (v *Uint8Value) Get() uint8 {
return *(*uint8)(v.addr);
}
// Set sets v to the value x.
func (v *Uint8Value) Set(x uint8) {
if !v.canSet {
panic(cannotSet);
}
*(*uint8)(v.addr) = x;
}
// Uint16Value represents a uint16 value.
type Uint16Value struct {
value;
}
// Get returns the underlying uint16 value.
func (v *Uint16Value) Get() uint16 {
return *(*uint16)(v.addr);
}
// Set sets v to the value x.
func (v *Uint16Value) Set(x uint16) {
if !v.canSet {
panic(cannotSet);
}
*(*uint16)(v.addr) = x;
}
// Uint32Value represents a uint32 value.
type Uint32Value struct {
value;
}
// Get returns the underlying uint32 value.
func (v *Uint32Value) Get() uint32 {
return *(*uint32)(v.addr);
}
// Set sets v to the value x.
func (v *Uint32Value) Set(x uint32) {
if !v.canSet {
panic(cannotSet);
}
*(*uint32)(v.addr) = x;
}
// Uint64Value represents a uint64 value.
type Uint64Value struct {
value;
}
// Get returns the underlying uint64 value.
func (v *Uint64Value) Get() uint64 {
return *(*uint64)(v.addr);
}
// Set sets v to the value x.
func (v *Uint64Value) Set(x uint64) {
if !v.canSet {
panic(cannotSet);
}
*(*uint64)(v.addr) = x;
}
// UintptrValue represents a uintptr value.
type UintptrValue struct {
value;
}
// Get returns the underlying uintptr value.
func (v *UintptrValue) Get() uintptr {
return *(*uintptr)(v.addr);
}
// Set sets v to the value x.
func (v *UintptrValue) Set(x uintptr) {
if !v.canSet {
panic(cannotSet);
}
*(*uintptr)(v.addr) = x;
}
// UnsafePointerValue represents an unsafe.Pointer value.
type UnsafePointerValue struct {
value;
}
// Get returns the underlying uintptr value.
// Get returns uintptr, not unsafe.Pointer, so that
// programs that do not import "unsafe" cannot
// obtain a value of unsafe.Pointer type from "reflect".
func (v *UnsafePointerValue) Get() uintptr {
return uintptr(*(*unsafe.Pointer)(v.addr));
}
// Set sets v to the value x.
func (v *UnsafePointerValue) Set(x unsafe.Pointer) {
if !v.canSet {
panic(cannotSet);
}
*(*unsafe.Pointer)(v.addr) = x;
}
func typesMustMatch(t1, t2 Type) {
if t1 != t2 {
panicln("type mismatch:", t1.String(), "!=", t2.String());
}
}
/*
* array
*/
// ArrayOrSliceValue is the common interface
// implemented by both ArrayValue and SliceValue.
type ArrayOrSliceValue interface {
Value;
Len() int;
Cap() int;
Elem(i int) Value;
addr() addr;
}
// ArrayCopy copies the contents of src into dst until either
// dst has been filled or src has been exhausted.
// It returns the number of elements copied.
// The arrays dst and src must have the same element type.
func ArrayCopy(dst, src ArrayOrSliceValue) int {
// TODO: This will have to move into the runtime
// once the real gc goes in.
de := dst.Type().(ArrayOrSliceType).Elem();
se := src.Type().(ArrayOrSliceType).Elem();
typesMustMatch(de, se);
n := dst.Len();
if xn := src.Len(); n > xn {
n = xn;
}
memmove(dst.addr(), src.addr(), uintptr(n) * de.Size());
return n;
}
// An ArrayValue represents an array.
type ArrayValue struct {
value
}
// Len returns the length of the array.
func (v *ArrayValue) Len() int {
return v.typ.(*ArrayType).Len();
}
// Cap returns the capacity of the array (equal to Len()).
func (v *ArrayValue) Cap() int {
return v.typ.(*ArrayType).Len();
}
// addr returns the base address of the data in the array.
func (v *ArrayValue) addr() addr {
return v.value.addr;
}
// Set assigns x to v.
// The new value x must have the same type as v.
func (v *ArrayValue) Set(x *ArrayValue) {
if !v.canSet {
panic(cannotSet);
}
typesMustMatch(v.typ, x.typ);
ArrayCopy(v, x);
}
// Elem returns the i'th element of v.
func (v *ArrayValue) Elem(i int) Value {
typ := v.typ.(*ArrayType).Elem();
n := v.Len();
if i < 0 || i >= n {
panic("index", i, "in array len", n);
}
p := addr(uintptr(v.addr()) + uintptr(i)*typ.Size());
return newValue(typ, p, v.canSet);
}
/*
* slice
*/
// runtime representation of slice
type SliceHeader struct {
Data uintptr;
Len int;
Cap int;
}
// A SliceValue represents a slice.
type SliceValue struct {
value
}
func (v *SliceValue) slice() *SliceHeader {
return (*SliceHeader)(v.value.addr);
}
// IsNil returns whether v is a nil slice.
func (v *SliceValue) IsNil() bool {
return v.slice().Data == 0;
}
// Len returns the length of the slice.
func (v *SliceValue) Len() int {
return int(v.slice().Len);
}
// Cap returns the capacity of the slice.
func (v *SliceValue) Cap() int {
return int(v.slice().Cap);
}
// addr returns the base address of the data in the slice.
func (v *SliceValue) addr() addr {
return addr(v.slice().Data);
}
// SetLen changes the length of v.
// The new length n must be between 0 and the capacity, inclusive.
func (v *SliceValue) SetLen(n int) {
s := v.slice();
if n < 0 || n > int(s.Cap) {
panicln("SetLen", n, "with capacity", s.Cap);
}
s.Len = n;
}
// Set assigns x to v.
// The new value x must have the same type as v.
func (v *SliceValue) Set(x *SliceValue) {
if !v.canSet {
panic(cannotSet);
}
typesMustMatch(v.typ, x.typ);
*v.slice() = *x.slice();
}
// Slice returns a sub-slice of the slice v.
func (v *SliceValue) Slice(beg, end int) *SliceValue {
cap := v.Cap();
if beg < 0 || end < beg || end > cap {
panic("slice bounds [", beg, ":", end, "] with capacity ", cap);
}
typ := v.typ.(*SliceType);
s := new(SliceHeader);
s.Data = uintptr(v.addr()) + uintptr(beg) * typ.Elem().Size();
s.Len = end - beg;
s.Cap = cap - beg;
return newValue(typ, addr(s), v.canSet).(*SliceValue);
}
// Elem returns the i'th element of v.
func (v *SliceValue) Elem(i int) Value {
typ := v.typ.(*SliceType).Elem();
n := v.Len();
if i < 0 || i >= n {
panicln("index", i, "in array of length", n);
}
p := addr(uintptr(v.addr()) + uintptr(i)*typ.Size());
return newValue(typ, p, v.canSet);
}
// MakeSlice creates a new zero-initialized slice value
// for the specified slice type, length, and capacity.
func MakeSlice(typ *SliceType, len, cap int) *SliceValue {
s := new(SliceHeader);
size := typ.Elem().Size() * uintptr(cap);
if size == 0 {
size = 1;
}
data := make([]uint8, size);
s.Data = uintptr(addr(&data[0]));
s.Len = len;
s.Cap = cap;
return newValue(typ, addr(s), true).(*SliceValue);
}
/*
* chan
*/
// A ChanValue represents a chan.
type ChanValue struct {
value
}
// IsNil returns whether v is a nil channel.
func (v *ChanValue) IsNil() bool {
return *(*uintptr)(v.addr) == 0;
}
// Set assigns x to v.
// The new value x must have the same type as v.
func (v *ChanValue) Set(x *ChanValue) {
if !v.canSet {
panic(cannotSet);
}
typesMustMatch(v.typ, x.typ);
*(*uintptr)(v.addr) = *(*uintptr)(x.addr);
}
// Get returns the uintptr value of v.
// It is mainly useful for printing.
func (v *ChanValue) Get() uintptr {
return *(*uintptr)(v.addr);
}
// implemented in ../pkg/runtime/reflect.cgo
func makechan(typ *runtime.ChanType, size uint32) (ch *byte)
func chansend(ch, val *byte, pres *bool)
func chanrecv(ch, val *byte, pres *bool)
func chanclosed(ch *byte) bool
func chanclose(ch *byte)
func chanlen(ch *byte) int32
func chancap(ch *byte) int32
// Closed returns the result of closed(c) on the underlying channel.
func (v *ChanValue) Closed() bool {
ch := *(**byte)(v.addr);
return chanclosed(ch);
}
// Close closes the channel.
func (v *ChanValue) Close() {
ch := *(**byte)(v.addr);
chanclose(ch);
}
func (v *ChanValue) Len() int {
ch := *(**byte)(v.addr);
return int(chanlen(ch));
}
func (v *ChanValue) Cap() int {
ch := *(**byte)(v.addr);
return int(chancap(ch));
}
// internal send; non-blocking if b != nil
func (v *ChanValue) send(x Value, b *bool) {
t := v.Type().(*ChanType);
if t.Dir() & SendDir == 0{
panic("send on recv-only channel");
}
typesMustMatch(t.Elem(), x.Type());
ch := *(**byte)(v.addr);
chansend(ch, (*byte)(x.getAddr()), b);
}
// internal recv; non-blocking if b != nil
func (v *ChanValue) recv(b *bool) Value {
t := v.Type().(*ChanType);
if t.Dir() & RecvDir == 0 {
panic("recv on send-only channel");
}
ch := *(**byte)(v.addr);
x := MakeZero(t.Elem());
chanrecv(ch, (*byte)(x.getAddr()), b);
return x;
}
// Send sends x on the channel v.
func (v *ChanValue) Send(x Value) {
v.send(x, nil);
}
// Recv receives and returns a value from the channel v.
func (v *ChanValue) Recv() Value {
return v.recv(nil);
}
// TrySend attempts to sends x on the channel v but will not block.
// It returns true if the value was sent, false otherwise.
func (v *ChanValue) TrySend(x Value) bool {
var ok bool;
v.send(x, &ok);
return ok;
}
// TryRecv attempts to receive a value from the channel v but will not block.
// It returns the value if one is received, nil otherwise.
func (v *ChanValue) TryRecv() Value {
var ok bool;
x := v.recv(&ok);
if !ok {
return nil;
}
return x;
}
// MakeChan creates a new channel with the specified type and buffer size.
func MakeChan(typ *ChanType, buffer int) *ChanValue {
if buffer < 0 {
panic("MakeChan: negative buffer size");
}
if typ.Dir() != BothDir {
panic("MakeChan: unidirectional channel type");
}
v := MakeZero(typ).(*ChanValue);
*(**byte)(v.addr) = makechan((*runtime.ChanType)(unsafe.Pointer(typ)), uint32(buffer));
return v;
}
/*
* func
*/
// A FuncValue represents a function value.
type FuncValue struct {
value;
first Value;
isInterface bool;
}
// IsNil returns whether v is a nil function.
func (v *FuncValue) IsNil() bool {
return *(*uintptr)(v.addr) == 0;
}
// Get returns the uintptr value of v.
// It is mainly useful for printing.
func (v *FuncValue) Get() uintptr {
return *(*uintptr)(v.addr);
}
// Set assigns x to v.
// The new value x must have the same type as v.
func (v *FuncValue) Set(x *FuncValue) {
if !v.canSet {
panic(cannotSet);
}
typesMustMatch(v.typ, x.typ);
*(*uintptr)(v.addr) = *(*uintptr)(x.addr);
}
// Method returns a FuncValue corresponding to v's i'th method.
// The arguments to a Call on the returned FuncValue
// should not include a receiver; the FuncValue will use v
// as the receiver.
func (v *value) Method(i int) *FuncValue {
t := v.Type().uncommon();
if t == nil || i < 0 || i >= len(t.methods) {
return nil;
}
p := &t.methods[i];
fn := p.tfn;
fv := &FuncValue{value: value{toType(*p.typ), addr(&fn), true}, first: v, isInterface: false};
return fv;
}
// implemented in ../pkg/runtime/*/asm.s
func call(fn, arg *byte, n uint32)
type tiny struct { b byte }
// Call calls the function v with input parameters in.
// It returns the function's output parameters as Values.
func (fv *FuncValue) Call(in []Value) []Value {
var structAlign = Typeof((*tiny)(nil)).(*PtrType).Elem().Size();
t := fv.Type().(*FuncType);
nin := len(in);
if fv.first != nil && !fv.isInterface {
nin++;
}
if nin != t.NumIn() {
panic("FuncValue: wrong argument count");
}
nout := t.NumOut();
// Compute arg size & allocate.
// This computation is 6g/8g-dependent
// and probably wrong for gccgo, but so
// is most of this function.
size := uintptr(0);
if fv.isInterface {
// extra word for interface value
size += ptrSize;
}
for i := 0; i < nin; i++ {
tv := t.In(i);
a := uintptr(tv.Align());
size = (size + a - 1) &^ (a - 1);
size += tv.Size();
}
size = (size + structAlign - 1) &^ (structAlign - 1);
for i := 0; i < nout; i++ {
tv := t.Out(i);
a := uintptr(tv.Align());
size = (size + a - 1) &^ (a - 1);
size += tv.Size();
}
// size must be > 0 in order for &args[0] to be valid.
// the argument copying is going to round it up to
// a multiple of 8 anyway, so make it 8 to begin with.
if size < 8 {
size = 8;
}
args := make([]byte, size);
ptr := uintptr(unsafe.Pointer(&args[0]));
// Copy into args.
//
// TODO(rsc): revisit when reference counting happens.
// This one may be fine. The values are holding up the
// references for us, so maybe this can be treated
// like any stack-to-stack copy.
off := uintptr(0);
delta := 0;
if v := fv.first; v != nil {
// Hard-wired first argument.
if fv.isInterface {
// v is a single uninterpreted word
memmove(addr(ptr), v.getAddr(), ptrSize);
off = ptrSize;
} else {
// v is a real value
tv := v.Type();
typesMustMatch(t.In(0), tv);
n := tv.Size();
memmove(addr(ptr), v.getAddr(), n);
off = n;
delta = 1;
}
}
for i, v := range in {
tv := v.Type();
typesMustMatch(t.In(i+delta), tv);
a := uintptr(tv.Align());
off = (off + a - 1) &^ (a - 1);
n := tv.Size();
memmove(addr(ptr+off), v.getAddr(), n);
off += n;
}
off = (off + structAlign - 1) &^ (structAlign - 1);
// Call
call(*(**byte)(fv.addr), (*byte)(addr(ptr)), uint32(size));
// Copy return values out of args.
//
// TODO(rsc): revisit like above.
ret := make([]Value, nout);
for i := 0; i < nout; i++ {
tv := t.Out(i);
a := uintptr(tv.Align());
off = (off + a - 1) &^ (a - 1);
v := MakeZero(tv);
n := tv.Size();
memmove(v.getAddr(), addr(ptr+off), n);
ret[i] = v;
off += n;
}
return ret;
}
/*
* interface
*/
// An InterfaceValue represents an interface value.
type InterfaceValue struct {
value
}
// No Get because v.Interface() is available.
// IsNil returns whether v is a nil interface value.
func (v *InterfaceValue) IsNil() bool {
return v.Interface() == nil;
}
// Elem returns the concrete value stored in the interface value v.
func (v *InterfaceValue) Elem() Value {
return NewValue(v.Interface());
}
// ../runtime/reflect.cgo
func setiface(typ *InterfaceType, x *interface{}, addr addr)
// Set assigns x to v.
func (v *InterfaceValue) Set(x Value) {
i := x.Interface();
if !v.canSet {
panic(cannotSet);
}
// Two different representations; see comment in Get.
// Empty interface is easy.
t := v.typ.(*InterfaceType);
if t.NumMethod() == 0 {
*(*interface{})(v.addr) = i;
return;
}
// Non-empty interface requires a runtime check.
setiface(t, &i, v.addr);
}
// Method returns a FuncValue corresponding to v's i'th method.
// The arguments to a Call on the returned FuncValue
// should not include a receiver; the FuncValue will use v
// as the receiver.
func (v *InterfaceValue) Method(i int) *FuncValue {
t := v.Type().(*InterfaceType);
if t == nil || i < 0 || i >= len(t.methods) {
return nil;
}
p := &t.methods[i];
// Interface is two words: itable, data.
tab := *(**runtime.Itable)(v.addr);
data := &value{Typeof((*byte)(nil)), addr(uintptr(v.addr)+ptrSize), true};
// Function pointer is at p.perm in the table.
fn := tab.Fn[p.perm];
fv := &FuncValue{value: value{toType(*p.typ), addr(&fn), true}, first: data, isInterface: true};
return fv;
}
/*
* map
*/
// A MapValue represents a map value.
type MapValue struct {
value
}
// IsNil returns whether v is a nil map value.
func (v *MapValue) IsNil() bool {
return *(*uintptr)(v.addr) == 0;
}
// Set assigns x to v.
// The new value x must have the same type as v.
func (v *MapValue) Set(x *MapValue) {
if !v.canSet {
panic(cannotSet);
}
typesMustMatch(v.typ, x.typ);
*(*uintptr)(v.addr) = *(*uintptr)(x.addr);
}
// implemented in ../pkg/runtime/reflect.cgo
func mapaccess(m, key, val *byte) bool
func mapassign(m, key, val *byte)
func maplen(m *byte) int32
func mapiterinit(m *byte) *byte
func mapiternext(it *byte)
func mapiterkey(it *byte, key *byte) bool
func makemap(t *runtime.MapType) *byte
// Elem returns the value associated with key in the map v.
// It returns nil if key is not found in the map.
func (v *MapValue) Elem(key Value) Value {
t := v.Type().(*MapType);
typesMustMatch(t.Key(), key.Type());
m := *(**byte)(v.addr);
if m == nil {
return nil;
}
newval := MakeZero(t.Elem());
if !mapaccess(m, (*byte)(key.getAddr()), (*byte)(newval.getAddr())) {
return nil;
}
return newval;
}
// SetElem sets the value associated with key in the map v to val.
// If val is nil, Put deletes the key from map.
func (v *MapValue) SetElem(key, val Value) {
t := v.Type().(*MapType);
typesMustMatch(t.Key(), key.Type());
var vaddr *byte;
if val != nil {
typesMustMatch(t.Elem(), val.Type());
vaddr = (*byte)(val.getAddr());
}
m := *(**byte)(v.addr);
mapassign(m, (*byte)(key.getAddr()), vaddr);
}
// Len returns the number of keys in the map v.
func (v *MapValue) Len() int {
m := *(**byte)(v.addr);
if m == nil {
return 0;
}
return int(maplen(m));
}
// Keys returns a slice containing all the keys present in the map,
// in unspecified order.
func (v *MapValue) Keys() []Value {
tk := v.Type().(*MapType).Key();
m := *(**byte)(v.addr);
mlen := int32(0);
if m != nil {
mlen = maplen(m)
}
it := mapiterinit(m);
a := make([]Value, mlen);
var i int;
for i = 0; i < len(a); i++ {
k := MakeZero(tk);
if !mapiterkey(it, (*byte)(k.getAddr())) {
break;
}
a[i] = k;
mapiternext(it);
}
return a[0:i];
}
// MakeMap creates a new map of the specified type.
func MakeMap(typ *MapType) *MapValue {
v := MakeZero(typ).(*MapValue);
*(**byte)(v.addr) = makemap((*runtime.MapType)(unsafe.Pointer(typ)));
return v;
}
/*
* ptr
*/
// A PtrValue represents a pointer.
type PtrValue struct {
value
}
// IsNil returns whether v is a nil pointer.
func (v *PtrValue) IsNil() bool {
return *(*uintptr)(v.addr) == 0;
}
// Get returns the uintptr value of v.
// It is mainly useful for printing.
func (v *PtrValue) Get() uintptr {
return *(*uintptr)(v.addr);
}
// Set assigns x to v.
// The new value x must have the same type as v.
func (v *PtrValue) Set(x *PtrValue) {
if !v.canSet {
panic(cannotSet);
}
typesMustMatch(v.typ, x.typ);
// TODO: This will have to move into the runtime
// once the new gc goes in
*(*uintptr)(v.addr) = *(*uintptr)(x.addr);
}
// PointTo changes v to point to x.
func (v *PtrValue) PointTo(x Value) {
if !x.CanSet() {
panic("cannot set x; cannot point to x");
}
typesMustMatch(v.typ.(*PtrType).Elem(), x.Type());
// TODO: This will have to move into the runtime
// once the new gc goes in.
*(*uintptr)(v.addr) = x.Addr();
}
// Elem returns the value that v points to.
// If v is a nil pointer, Elem returns a nil Value.
func (v *PtrValue) Elem() Value {
if v.IsNil() {
return nil;
}
return newValue(v.typ.(*PtrType).Elem(), *(*addr)(v.addr), v.canSet);
}
// Indirect returns the value that v points to.
// If v is a nil pointer, Indirect returns a nil Value.
// If v is not a pointer, Indirect returns v.
func Indirect(v Value) Value {
if pv, ok := v.(*PtrValue); ok {
return pv.Elem();
}
return v;
}
/*
* struct
*/
// A StructValue represents a struct value.
type StructValue struct {
value
}
// Set assigns x to v.
// The new value x must have the same type as v.
func (v *StructValue) Set(x *StructValue) {
// TODO: This will have to move into the runtime
// once the gc goes in.
if !v.canSet {
panic(cannotSet);
}
typesMustMatch(v.typ, x.typ);
memmove(v.addr, x.addr, v.typ.Size());
}
// Field returns the i'th field of the struct.
func (v *StructValue) Field(i int) Value {
t := v.typ.(*StructType);
if i < 0 || i >= t.NumField() {
return nil;
}
f := t.Field(i);
return newValue(f.Type, addr(uintptr(v.addr)+f.Offset), v.canSet && f.PkgPath == "");
}
// FieldByIndex returns the nested field corresponding to index.
func (t *StructValue) FieldByIndex(index []int) (v Value) {
v = t;
for i, x := range index {
if i > 0 {
if p, ok := v.(*PtrValue); ok {
v = p.Elem();
}
if s, ok := v.(*StructValue); ok {
t = s;
} else {
v = nil;
return;
}
}
v = t.Field(x);
}
return;
}
// FieldByName returns the struct field with the given name.
// The result is nil if no field was found.
func (t *StructValue) FieldByName(name string) Value {
if f, ok := t.Type().(*StructType).FieldByName(name); ok {
return t.FieldByIndex(f.Index);
}
return nil;
}
// NumField returns the number of fields in the struct.
func (v *StructValue) NumField() int {
return v.typ.(*StructType).NumField();
}
/*
* constructors
*/
// NewValue returns a new Value initialized to the concrete value
// stored in the interface i. NewValue(nil) returns nil.
func NewValue(i interface{}) Value {
if i == nil {
return nil;
}
t, a := unsafe.Reflect(i);
return newValue(toType(t), addr(a), true);
}
func newFuncValue(typ Type, addr addr, canSet bool) *FuncValue {
return &FuncValue{value: value{typ, addr, canSet}};
}
func newValue(typ Type, addr addr, canSet bool) Value {
// FuncValue has a different layout;
// it needs a extra space for the fixed receivers.
if _, ok := typ.(*FuncType); ok {
return newFuncValue(typ, addr, canSet);
}
// All values have same memory layout;
// build once and convert.
v := &struct{value}{value{typ, addr, canSet}};
switch t := typ.(type) { // TODO(rsc): s/t := // ?
case *ArrayType:
// TODO(rsc): Something must prevent
// clients of the package from doing
// this same kind of cast.
// We should be allowed because
// they're our types.
// Something about implicit assignment
// to struct fields.
return (*ArrayValue)(v);
case *BoolType:
return (*BoolValue)(v);
case *ChanType:
return (*ChanValue)(v);
case *FloatType:
return (*FloatValue)(v);
case *Float32Type:
return (*Float32Value)(v);
case *Float64Type:
return (*Float64Value)(v);
case *IntType:
return (*IntValue)(v);
case *Int8Type:
return (*Int8Value)(v);
case *Int16Type:
return (*Int16Value)(v);
case *Int32Type:
return (*Int32Value)(v);
case *Int64Type:
return (*Int64Value)(v);
case *InterfaceType:
return (*InterfaceValue)(v);
case *MapType:
return (*MapValue)(v);
case *PtrType:
return (*PtrValue)(v);
case *SliceType:
return (*SliceValue)(v);
case *StringType:
return (*StringValue)(v);
case *StructType:
return (*StructValue)(v);
case *UintType:
return (*UintValue)(v);
case *Uint8Type:
return (*Uint8Value)(v);
case *Uint16Type:
return (*Uint16Value)(v);
case *Uint32Type:
return (*Uint32Value)(v);
case *Uint64Type:
return (*Uint64Value)(v);
case *UintptrType:
return (*UintptrValue)(v);
case *UnsafePointerType:
return (*UnsafePointerValue)(v);
}
panicln("newValue", typ.String());
}
// MakeZero returns a zero Value for the specified Type.
func MakeZero(typ Type) Value {
// TODO: this will have to move into
// the runtime proper in order to play nicely
// with the garbage collector.
size := typ.Size();
if size == 0 {
size = 1;
}
data := make([]uint8, size);
return newValue(typ, addr(&data[0]), true);
}