1
0
mirror of https://github.com/golang/go synced 2024-11-20 04:54:44 -07:00
go/src/runtime/proc.c
Russ Cox 79e1db2da1 add stub routines stackalloc() and stackfree().
run oldstack on g0's stack, just like newstack does,
so that oldstack can free the old stack.

R=r
DELTA=53  (44 added, 0 deleted, 9 changed)
OCL=20404
CL=20433
2008-12-04 08:30:54 -08:00

684 lines
14 KiB
C

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "runtime.h"
typedef struct Sched Sched;
M m0;
G g0; // idle goroutine for m0
static int32 debug = 0;
static Lock debuglock;
// Go scheduler
//
// The go scheduler's job is to match ready-to-run goroutines (`g's)
// with waiting-for-work schedulers (`m's). If there are ready gs
// and no waiting ms, ready() will start a new m running in a new
// OS thread, so that all ready gs can run simultaneously, up to a limit.
// For now, ms never go away.
//
// The default maximum number of ms is one: go runs single-threaded.
// This is because some locking details have to be worked ou
// (select in particular is not locked properly) and because the low-level
// code hasn't been written yet for OS X. Setting the environmen
// variable $gomaxprocs changes sched.mmax for now.
//
// Even a program that can run without deadlock in a single process
// might use more ms if given the chance. For example, the prime
// sieve will use as many ms as there are primes (up to sched.mmax),
// allowing different stages of the pipeline to execute in parallel.
// We could revisit this choice, only kicking off new ms for blocking
// system calls, but that would limit the amount of parallel computation
// that go would try to do.
//
// In general, one could imagine all sorts of refinements to the
// scheduler, but the goal now is just to get something working on
// Linux and OS X.
struct Sched {
Lock;
G *gfree; // available gs (status == Gdead)
G *ghead; // gs waiting to run
G *gtail;
int32 gwait; // number of gs waiting to run
int32 gcount; // number of gs that are alive
M *mhead; // ms waiting for work
int32 mwait; // number of ms waiting for work
int32 mcount; // number of ms that have been created
int32 mcpu; // number of ms executing on cpu
int32 mcpumax; // max number of ms allowed on cpu
int32 msyscall; // number of ms in system calls
int32 predawn; // running initialization, don't run new gs.
};
Sched sched;
// Scheduling helpers. Sched must be locked.
static void gput(G*); // put/get on ghead/gtail
static G* gget(void);
static void mput(M*); // put/get on mhead
static M* mget(void);
static void gfput(G*); // put/get on gfree
static G* gfget(void);
static void matchmg(void); // match ms to gs
static void readylocked(G*); // ready, but sched is locked
// Scheduler loop.
static void scheduler(void);
// The bootstrap sequence is:
//
// call osinit
// call schedinit
// make & queue new G
// call mstart
//
// The new G does:
//
// call main·init_function
// call initdone
// call main·main
void
schedinit(void)
{
int32 n;
byte *p;
sched.mcpumax = 1;
p = getenv("GOMAXPROCS");
if(p != nil && (n = atoi(p)) != 0)
sched.mcpumax = n;
sched.mcount = 1;
sched.predawn = 1;
}
// Called after main·init_function; main·main will be called on return.
void
initdone(void)
{
// Let's go.
sched.predawn = 0;
// If main·init_function started other goroutines,
// kick off new ms to handle them, like ready
// would have, had it not been pre-dawn.
lock(&sched);
matchmg();
unlock(&sched);
}
void
sys·goexit(void)
{
if(debug > 1){
lock(&debuglock);
printf("goexit goid=%d\n", g->goid);
unlock(&debuglock);
}
g->status = Gmoribund;
sys·gosched();
}
G*
malg(int32 stacksize)
{
G *g;
byte *stk;
// 160 is the slop amount known to the stack growth code
g = mal(sizeof(G));
stk = mal(160 + stacksize);
g->stack0 = stk;
g->stackguard = stk + 160;
g->stackbase = stk + 160 + stacksize;
return g;
}
void
sys·newproc(int32 siz, byte* fn, byte* arg0)
{
byte *stk, *sp;
G *newg;
//printf("newproc siz=%d fn=%p", siz, fn);
siz = (siz+7) & ~7;
if(siz > 1024)
throw("sys·newproc: too many args");
lock(&sched);
if((newg = gfget()) != nil){
newg->status = Gwaiting;
}else{
newg = malg(4096);
newg->status = Gwaiting;
newg->alllink = allg;
allg = newg;
}
stk = newg->stack0;
newg->stackguard = stk+160;
sp = stk + 4096 - 4*8;
newg->stackbase = sp;
sp -= siz;
mcpy(sp, (byte*)&arg0, siz);
sp -= 8;
*(byte**)sp = (byte*)sys·goexit;
sp -= 8; // retpc used by gogo
newg->sched.SP = sp;
newg->sched.PC = fn;
sched.gcount++;
goidgen++;
newg->goid = goidgen;
readylocked(newg);
unlock(&sched);
//printf(" goid=%d\n", newg->goid);
}
void
tracebackothers(G *me)
{
G *g;
for(g = allg; g != nil; g = g->alllink) {
if(g == me || g->status == Gdead)
continue;
printf("\ngoroutine %d:\n", g->goid);
traceback(g->sched.PC, g->sched.SP+8, g); // gogo adjusts SP by 8 (not portable!)
}
}
// Put on `g' queue. Sched must be locked.
static void
gput(G *g)
{
g->schedlink = nil;
if(sched.ghead == nil)
sched.ghead = g;
else
sched.gtail->schedlink = g;
sched.gtail = g;
sched.gwait++;
}
// Get from `g' queue. Sched must be locked.
static G*
gget(void)
{
G *g;
g = sched.ghead;
if(g){
sched.ghead = g->schedlink;
if(sched.ghead == nil)
sched.gtail = nil;
sched.gwait--;
}
return g;
}
// Put on `m' list. Sched must be locked.
static void
mput(M *m)
{
m->schedlink = sched.mhead;
sched.mhead = m;
sched.mwait++;
}
// Get from `m' list. Sched must be locked.
static M*
mget(void)
{
M *m;
m = sched.mhead;
if(m){
sched.mhead = m->schedlink;
sched.mwait--;
}
return m;
}
// Put on gfree list. Sched must be locked.
static void
gfput(G *g)
{
g->schedlink = sched.gfree;
sched.gfree = g;
}
// Get from gfree list. Sched must be locked.
static G*
gfget(void)
{
G *g;
g = sched.gfree;
if(g)
sched.gfree = g->schedlink;
return g;
}
// Mark g ready to run.
void
ready(G *g)
{
lock(&sched);
readylocked(g);
unlock(&sched);
}
// Mark g ready to run. Sched is already locked.
// G might be running already and about to stop.
// The sched lock protects g->status from changing underfoot.
static void
readylocked(G *g)
{
if(g->m){
// Running on another machine.
// Ready it when it stops.
g->readyonstop = 1;
return;
}
// Mark runnable.
if(g->status == Grunnable || g->status == Grunning)
throw("bad g->status in ready");
g->status = Grunnable;
gput(g);
if(!sched.predawn)
matchmg();
}
// Get the next goroutine that m should run.
// Sched must be locked on entry, is unlocked on exit.
// Makes sure that at most $GOMAXPROCS gs are
// running on cpus (not in system calls) at any given time.
static G*
nextgandunlock(void)
{
G *gp;
// On startup, each m is assigned a nextg and
// has already been accounted for in mcpu.
if(m->nextg != nil) {
gp = m->nextg;
m->nextg = nil;
unlock(&sched);
if(debug > 1) {
lock(&debuglock);
printf("m%d nextg found g%d\n", m->id, gp->goid);
unlock(&debuglock);
}
return gp;
}
// Otherwise, look for work.
if(sched.mcpu < sched.mcpumax && (gp=gget()) != nil) {
sched.mcpu++;
unlock(&sched);
if(debug > 1) {
lock(&debuglock);
printf("m%d nextg got g%d\n", m->id, gp->goid);
unlock(&debuglock);
}
return gp;
}
// Otherwise, sleep.
mput(m);
if(sched.mcpu == 0 && sched.msyscall == 0)
throw("all goroutines are asleep - deadlock!");
m->nextg = nil;
noteclear(&m->havenextg);
unlock(&sched);
notesleep(&m->havenextg);
if((gp = m->nextg) == nil)
throw("bad m->nextg in nextgoroutine");
m->nextg = nil;
if(debug > 1) {
lock(&debuglock);
printf("m%d nextg woke g%d\n", m->id, gp->goid);
unlock(&debuglock);
}
return gp;
}
// Called to start an M.
void
mstart(void)
{
minit();
scheduler();
}
// Kick of new ms as needed (up to mcpumax).
// There are already `other' other cpus that will
// start looking for goroutines shortly.
// Sched is locked.
static void
matchmg(void)
{
M *m;
G *g;
if(debug > 1 && sched.ghead != nil) {
lock(&debuglock);
printf("matchmg mcpu=%d mcpumax=%d gwait=%d\n", sched.mcpu, sched.mcpumax, sched.gwait);
unlock(&debuglock);
}
while(sched.mcpu < sched.mcpumax && (g = gget()) != nil){
sched.mcpu++;
if((m = mget()) != nil){
if(debug > 1) {
lock(&debuglock);
printf("wakeup m%d g%d\n", m->id, g->goid);
unlock(&debuglock);
}
m->nextg = g;
notewakeup(&m->havenextg);
}else{
m = mal(sizeof(M));
m->g0 = malg(1024);
m->nextg = g;
m->id = sched.mcount++;
if(debug) {
lock(&debuglock);
printf("alloc m%d g%d\n", m->id, g->goid);
unlock(&debuglock);
}
newosproc(m, m->g0, m->g0->stackbase, mstart);
}
}
}
// Scheduler loop: find g to run, run it, repeat.
static void
scheduler(void)
{
G* gp;
lock(&sched);
if(gosave(&m->sched)){
// Jumped here via gosave/gogo, so didn't
// execute lock(&sched) above.
lock(&sched);
if(sched.predawn)
throw("init sleeping");
// Just finished running m->curg.
gp = m->curg;
gp->m = nil;
sched.mcpu--;
if(debug > 1) {
lock(&debuglock);
printf("m%d sched g%d status %d\n", m->id, gp->goid, gp->status);
unlock(&debuglock);
}
switch(gp->status){
case Grunnable:
case Gdead:
// Shouldn't have been running!
throw("bad gp->status in sched");
case Grunning:
gp->status = Grunnable;
gput(gp);
break;
case Gmoribund:
gp->status = Gdead;
if(--sched.gcount == 0)
sys·exit(0);
break;
}
if(gp->readyonstop){
gp->readyonstop = 0;
readylocked(gp);
}
}
// Find (or wait for) g to run. Unlocks sched.
gp = nextgandunlock();
gp->readyonstop = 0;
gp->status = Grunning;
if(debug > 1) {
lock(&debuglock);
printf("m%d run g%d\n", m->id, gp->goid);
unlock(&debuglock);
}
m->curg = gp;
gp->m = m;
g = gp;
gogo(&gp->sched);
}
// Enter scheduler. If g->status is Grunning,
// re-queues g and runs everyone else who is waiting
// before running g again. If g->status is Gmoribund,
// kills off g.
void
sys·gosched(void)
{
if(gosave(&g->sched) == 0){
g = m->g0;
gogo(&m->sched);
}
}
// The goroutine g is about to enter a system call.
// Record that it's not using the cpu anymore.
// This is called only from the go syscall library, not
// from the low-level system calls used by the runtime.
// The "arguments" are syscall.Syscall's stack frame
void
sys·entersyscall(uint64 callerpc, int64 trap)
{
USED(callerpc);
if(debug > 1) {
lock(&debuglock);
printf("m%d g%d enter syscall %D\n", m->id, g->goid, trap);
unlock(&debuglock);
}
lock(&sched);
sched.mcpu--;
sched.msyscall++;
if(sched.gwait != 0)
matchmg();
unlock(&sched);
}
// The goroutine g exited its system call.
// Arrange for it to run on a cpu again.
// This is called only from the go syscall library, not
// from the low-level system calls used by the runtime.
void
sys·exitsyscall(void)
{
if(debug > 1) {
lock(&debuglock);
printf("m%d g%d exit syscall mcpu=%d mcpumax=%d\n", m->id, g->goid, sched.mcpu, sched.mcpumax);
unlock(&debuglock);
}
lock(&sched);
sched.msyscall--;
sched.mcpu++;
// Fast path - if there's room for this m, we're done.
if(sched.mcpu <= sched.mcpumax) {
unlock(&sched);
return;
}
unlock(&sched);
// Slow path - all the cpus are taken.
// The scheduler will ready g and put this m to sleep.
// When the scheduler takes g awa from m,
// it will undo the sched.mcpu++ above.
sys·gosched();
}
//
// the calling sequence for a routine tha
// needs N bytes stack, A args.
//
// N1 = (N+160 > 4096)? N+160: 0
// A1 = A
//
// if N <= 75
// CMPQ SP, 0(R15)
// JHI 4(PC)
// MOVQ $(N1<<0) | (A1<<32)), AX
// MOVQ AX, 0(R14)
// CALL sys·morestack(SB)
//
// if N > 75
// LEAQ (-N-75)(SP), AX
// CMPQ AX, 0(R15)
// JHI 4(PC)
// MOVQ $(N1<<0) | (A1<<32)), AX
// MOVQ AX, 0(R14)
// CALL sys·morestack(SB)
//
void
oldstack(void)
{
Stktop *top;
uint32 siz2;
byte *sp;
uint64 oldsp, oldpc, oldbase, oldguard;
// printf("oldstack m->cret=%p\n", m->cret);
top = (Stktop*)m->curg->stackbase;
siz2 = (top->magic>>32) & 0xffffLL;
sp = (byte*)top;
if(siz2 > 0) {
siz2 = (siz2+7) & ~7;
sp -= siz2;
mcpy(top->oldsp+16, sp, siz2);
}
oldsp = (uint64)top->oldsp + 8;
oldpc = *(uint64*)(top->oldsp + 8);
oldbase = (uint64)top->oldbase;
oldguard = (uint64)top->oldguard;
stackfree((byte*)m->curg->stackguard - 512 - 160);
m->curg->stackbase = (byte*)oldbase;
m->curg->stackguard = (byte*)oldguard;
m->morestack.SP = (byte*)oldsp;
m->morestack.PC = (byte*)oldpc;
// These two lines must happen in sequence;
// once g has been changed, must switch to g's stack
// before calling any non-assembly functions.
// TODO(rsc): Perhaps make the new g a parameter
// to gogoret and setspgoto, so that g is never
// explicitly assigned to without also setting
// the stack pointer.
g = m->curg;
gogoret(&m->morestack, m->cret);
}
void
lessstack(void)
{
g = m->g0;
setspgoto(m->sched.SP, oldstack, nil);
}
void
newstack(void)
{
int32 siz1, siz2;
Stktop *top;
byte *stk, *sp;
void (*fn)(void);
siz1 = m->morearg & 0xffffffffLL;
siz2 = (m->morearg>>32) & 0xffffLL;
// prints("newstack siz1=");
// sys·printint(siz1);
// prints(" siz2=");
// sys·printint(siz2);
// prints(" moresp=");
// sys·printpointer(m->moresp);
// prints("\n");
if(siz1 < 4096)
siz1 = 4096;
stk = stackalloc(siz1 + 1024);
stk += 512;
top = (Stktop*)(stk+siz1-sizeof(*top));
top->oldbase = m->curg->stackbase;
top->oldguard = m->curg->stackguard;
top->oldsp = m->moresp;
top->magic = m->morearg;
m->curg->stackbase = (byte*)top;
m->curg->stackguard = stk + 160;
sp = (byte*)top;
if(siz2 > 0) {
siz2 = (siz2+7) & ~7;
sp -= siz2;
mcpy(sp, m->moresp+16, siz2);
}
g = m->curg;
fn = (void(*)(void))(*(uint64*)m->moresp);
// prints("fn=");
// sys·printpointer(fn);
// prints("\n");
setspgoto(sp, fn, retfromnewstack);
*(int32*)345 = 123; // never return
}
void
sys·morestack(uint64 u)
{
while(g == m->g0) {
// very bad news
*(int32*)123 = 123;
}
g = m->g0;
m->moresp = (byte*)(&u-1);
setspgoto(m->sched.SP, newstack, nil);
*(int32*)234 = 123; // never return
}