mirror of
https://github.com/golang/go
synced 2024-11-20 11:04:56 -07:00
22a5c78f44
because they are in package runtime. another step to enforcing package boundaries. R=r DELTA=732 (114 added, 93 deleted, 525 changed) OCL=35811 CL=35824
992 lines
25 KiB
C
992 lines
25 KiB
C
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
#include "runtime.h"
|
|
#include "hashmap.h"
|
|
#include "type.h"
|
|
|
|
/* Return a pointer to the struct/union of type "type"
|
|
whose "field" field is addressed by pointer "p". */
|
|
|
|
|
|
struct hash { /* a hash table; initialize with hash_init() */
|
|
uint32 count; /* elements in table - must be first */
|
|
|
|
uint8 datasize; /* amount of data to store in entry */
|
|
uint8 max_power; /* max power of 2 to create sub-tables */
|
|
uint8 max_probes; /* max entries to probe before rehashing */
|
|
int32 changes; /* inc'ed whenever a subtable is created/grown */
|
|
hash_hash_t (*data_hash) (uint32, void *a); /* return hash of *a */
|
|
uint32 (*data_eq) (uint32, void *a, void *b); /* return whether *a == *b */
|
|
void (*data_del) (uint32, void *arg, void *data); /* invoked on deletion */
|
|
struct hash_subtable *st; /* first-level table */
|
|
|
|
uint32 keysize;
|
|
uint32 valsize;
|
|
uint32 datavo;
|
|
|
|
// three sets of offsets: the digit counts how many
|
|
// of key, value are passed as inputs:
|
|
// 0 = func() (key, value)
|
|
// 1 = func(key) (value)
|
|
// 2 = func(key, value)
|
|
uint32 ko0;
|
|
uint32 vo0;
|
|
uint32 ko1;
|
|
uint32 vo1;
|
|
uint32 po1;
|
|
uint32 ko2;
|
|
uint32 vo2;
|
|
uint32 po2;
|
|
Alg* keyalg;
|
|
Alg* valalg;
|
|
};
|
|
|
|
struct hash_entry {
|
|
hash_hash_t hash; /* hash value of data */
|
|
byte data[1]; /* user data has "datasize" bytes */
|
|
};
|
|
|
|
struct hash_subtable {
|
|
uint8 power; /* bits used to index this table */
|
|
uint8 used; /* bits in hash used before reaching this table */
|
|
uint8 datasize; /* bytes of client data in an entry */
|
|
uint8 max_probes; /* max number of probes when searching */
|
|
int16 limit_bytes; /* max_probes * (datasize+sizeof (hash_hash_t)) */
|
|
struct hash_entry *end; /* points just past end of entry[] */
|
|
struct hash_entry entry[1]; /* 2**power+max_probes-1 elements of elemsize bytes */
|
|
};
|
|
|
|
#define HASH_DATA_EQ(h,x,y) ((*h->data_eq) (h->keysize, (x), (y)))
|
|
|
|
#define HASH_REHASH 0x2 /* an internal flag */
|
|
/* the number of bits used is stored in the flags word too */
|
|
#define HASH_USED(x) ((x) >> 2)
|
|
#define HASH_MAKE_USED(x) ((x) << 2)
|
|
|
|
#define HASH_LOW 6
|
|
#define HASH_ONE (((hash_hash_t)1) << HASH_LOW)
|
|
#define HASH_MASK (HASH_ONE - 1)
|
|
#define HASH_ADJUST(x) (((x) < HASH_ONE) << HASH_LOW)
|
|
|
|
#define HASH_BITS (sizeof (hash_hash_t) * 8)
|
|
|
|
#define HASH_SUBHASH HASH_MASK
|
|
#define HASH_NIL 0
|
|
#define HASH_NIL_MEMSET 0
|
|
|
|
#define HASH_OFFSET(base, byte_offset) \
|
|
((struct hash_entry *) (((byte *) (base)) + (byte_offset)))
|
|
|
|
|
|
/* return a hash layer with 2**power empty entries */
|
|
static struct hash_subtable *
|
|
hash_subtable_new (struct hash *h, int32 power, int32 used)
|
|
{
|
|
int32 elemsize = h->datasize + offsetof (struct hash_entry, data[0]);
|
|
int32 bytes = elemsize << power;
|
|
struct hash_subtable *st;
|
|
int32 limit_bytes = h->max_probes * elemsize;
|
|
int32 max_probes = h->max_probes;
|
|
|
|
if (bytes < limit_bytes) {
|
|
limit_bytes = bytes;
|
|
max_probes = 1 << power;
|
|
}
|
|
bytes += limit_bytes - elemsize;
|
|
st = malloc (offsetof (struct hash_subtable, entry[0]) + bytes);
|
|
st->power = power;
|
|
st->used = used;
|
|
st->datasize = h->datasize;
|
|
st->max_probes = max_probes;
|
|
st->limit_bytes = limit_bytes;
|
|
st->end = HASH_OFFSET (st->entry, bytes);
|
|
memset (st->entry, HASH_NIL_MEMSET, bytes);
|
|
return (st);
|
|
}
|
|
|
|
static void
|
|
init_sizes (int64 hint, int32 *init_power, int32 *max_power)
|
|
{
|
|
int32 log = 0;
|
|
int32 i;
|
|
|
|
for (i = 32; i != 0; i >>= 1) {
|
|
if ((hint >> (log + i)) != 0) {
|
|
log += i;
|
|
}
|
|
}
|
|
log += 1 + (((hint << 3) >> log) >= 11); /* round up for utilization */
|
|
if (log <= 14) {
|
|
*init_power = log;
|
|
} else {
|
|
*init_power = 12;
|
|
}
|
|
*max_power = 12;
|
|
}
|
|
|
|
static void
|
|
hash_init (struct hash *h,
|
|
int32 datasize,
|
|
hash_hash_t (*data_hash) (uint32, void *),
|
|
uint32 (*data_eq) (uint32, void *, void *),
|
|
void (*data_del) (uint32, void *, void *),
|
|
int64 hint)
|
|
{
|
|
int32 init_power;
|
|
int32 max_power;
|
|
|
|
if(datasize < sizeof (void *))
|
|
datasize = sizeof (void *);
|
|
datasize = rnd(datasize, sizeof (void *));
|
|
init_sizes (hint, &init_power, &max_power);
|
|
h->datasize = datasize;
|
|
h->max_power = max_power;
|
|
h->max_probes = 15;
|
|
assert (h->datasize == datasize);
|
|
assert (h->max_power == max_power);
|
|
assert (sizeof (void *) <= h->datasize || h->max_power == 255);
|
|
h->count = 0;
|
|
h->changes = 0;
|
|
h->data_hash = data_hash;
|
|
h->data_eq = data_eq;
|
|
h->data_del = data_del;
|
|
h->st = hash_subtable_new (h, init_power, 0);
|
|
}
|
|
|
|
static void
|
|
hash_remove_n (struct hash_subtable *st, struct hash_entry *dst_e, int32 n)
|
|
{
|
|
int32 elemsize = st->datasize + offsetof (struct hash_entry, data[0]);
|
|
struct hash_entry *src_e = HASH_OFFSET (dst_e, n * elemsize);
|
|
struct hash_entry *end_e = st->end;
|
|
int32 shift = HASH_BITS - (st->power + st->used);
|
|
int32 index_mask = (((hash_hash_t)1) << st->power) - 1;
|
|
int32 dst_i = (((byte *) dst_e) - ((byte *) st->entry)) / elemsize;
|
|
int32 src_i = dst_i + n;
|
|
hash_hash_t hash;
|
|
int32 skip;
|
|
int32 bytes;
|
|
|
|
while (dst_e != src_e) {
|
|
if (src_e != end_e) {
|
|
struct hash_entry *cp_e = src_e;
|
|
int32 save_dst_i = dst_i;
|
|
while (cp_e != end_e && (hash = cp_e->hash) != HASH_NIL &&
|
|
((hash >> shift) & index_mask) <= dst_i) {
|
|
cp_e = HASH_OFFSET (cp_e, elemsize);
|
|
dst_i++;
|
|
}
|
|
bytes = ((byte *) cp_e) - (byte *) src_e;
|
|
memmove (dst_e, src_e, bytes);
|
|
dst_e = HASH_OFFSET (dst_e, bytes);
|
|
src_e = cp_e;
|
|
src_i += dst_i - save_dst_i;
|
|
if (src_e != end_e && (hash = src_e->hash) != HASH_NIL) {
|
|
skip = ((hash >> shift) & index_mask) - dst_i;
|
|
} else {
|
|
skip = src_i - dst_i;
|
|
}
|
|
} else {
|
|
skip = src_i - dst_i;
|
|
}
|
|
bytes = skip * elemsize;
|
|
memset (dst_e, HASH_NIL_MEMSET, bytes);
|
|
dst_e = HASH_OFFSET (dst_e, bytes);
|
|
dst_i += skip;
|
|
}
|
|
}
|
|
|
|
static int32
|
|
hash_insert_internal (struct hash_subtable **pst, int32 flags, hash_hash_t hash,
|
|
struct hash *h, void *data, void **pres);
|
|
|
|
static void
|
|
hash_conv (struct hash *h,
|
|
struct hash_subtable *st, int32 flags,
|
|
hash_hash_t hash,
|
|
struct hash_entry *e)
|
|
{
|
|
int32 new_flags = (flags + HASH_MAKE_USED (st->power)) | HASH_REHASH;
|
|
int32 shift = HASH_BITS - HASH_USED (new_flags);
|
|
hash_hash_t prefix_mask = (-(hash_hash_t)1) << shift;
|
|
int32 elemsize = h->datasize + offsetof (struct hash_entry, data[0]);
|
|
void *dummy_result;
|
|
struct hash_entry *de;
|
|
int32 index_mask = (1 << st->power) - 1;
|
|
hash_hash_t e_hash;
|
|
struct hash_entry *pe = HASH_OFFSET (e, -elemsize);
|
|
|
|
while (e != st->entry && (e_hash = pe->hash) != HASH_NIL && (e_hash & HASH_MASK) != HASH_SUBHASH) {
|
|
e = pe;
|
|
pe = HASH_OFFSET (pe, -elemsize);
|
|
}
|
|
|
|
de = e;
|
|
while (e != st->end &&
|
|
(e_hash = e->hash) != HASH_NIL &&
|
|
(e_hash & HASH_MASK) != HASH_SUBHASH) {
|
|
struct hash_entry *target_e = HASH_OFFSET (st->entry, ((e_hash >> shift) & index_mask) * elemsize);
|
|
struct hash_entry *ne = HASH_OFFSET (e, elemsize);
|
|
hash_hash_t current = e_hash & prefix_mask;
|
|
if (de < target_e) {
|
|
memset (de, HASH_NIL_MEMSET, ((byte *) target_e) - (byte *) de);
|
|
de = target_e;
|
|
}
|
|
if ((hash & prefix_mask) == current ||
|
|
(ne != st->end && (e_hash = ne->hash) != HASH_NIL &&
|
|
(e_hash & prefix_mask) == current)) {
|
|
struct hash_subtable *new_st = hash_subtable_new (h, 1, HASH_USED (new_flags));
|
|
int32 rc = hash_insert_internal (&new_st, new_flags, e->hash, h, e->data, &dummy_result);
|
|
assert (rc == 0);
|
|
memcpy(dummy_result, e->data, h->datasize);
|
|
e = ne;
|
|
while (e != st->end && (e_hash = e->hash) != HASH_NIL && (e_hash & prefix_mask) == current) {
|
|
assert ((e_hash & HASH_MASK) != HASH_SUBHASH);
|
|
rc = hash_insert_internal (&new_st, new_flags, e_hash, h, e->data, &dummy_result);
|
|
assert (rc == 0);
|
|
memcpy(dummy_result, e->data, h->datasize);
|
|
e = HASH_OFFSET (e, elemsize);
|
|
}
|
|
memset (de->data, HASH_NIL_MEMSET, h->datasize);
|
|
*(struct hash_subtable **)de->data = new_st;
|
|
de->hash = current | HASH_SUBHASH;
|
|
} else {
|
|
if (e != de) {
|
|
memcpy (de, e, elemsize);
|
|
}
|
|
e = HASH_OFFSET (e, elemsize);
|
|
}
|
|
de = HASH_OFFSET (de, elemsize);
|
|
}
|
|
if (e != de) {
|
|
hash_remove_n (st, de, (((byte *) e) - (byte *) de) / elemsize);
|
|
}
|
|
}
|
|
|
|
static void
|
|
hash_grow (struct hash *h, struct hash_subtable **pst, int32 flags)
|
|
{
|
|
struct hash_subtable *old_st = *pst;
|
|
int32 elemsize = h->datasize + offsetof (struct hash_entry, data[0]);
|
|
*pst = hash_subtable_new (h, old_st->power + 1, HASH_USED (flags));
|
|
struct hash_entry *end_e = old_st->end;
|
|
struct hash_entry *e;
|
|
void *dummy_result;
|
|
int32 used = 0;
|
|
|
|
flags |= HASH_REHASH;
|
|
for (e = old_st->entry; e != end_e; e = HASH_OFFSET (e, elemsize)) {
|
|
hash_hash_t hash = e->hash;
|
|
if (hash != HASH_NIL) {
|
|
int32 rc = hash_insert_internal (pst, flags, e->hash, h, e->data, &dummy_result);
|
|
assert (rc == 0);
|
|
memcpy(dummy_result, e->data, h->datasize);
|
|
used++;
|
|
}
|
|
}
|
|
free (old_st);
|
|
}
|
|
|
|
int32
|
|
hash_lookup (struct hash *h, void *data, void **pres)
|
|
{
|
|
int32 elemsize = h->datasize + offsetof (struct hash_entry, data[0]);
|
|
hash_hash_t hash = (*h->data_hash) (h->keysize, data) & ~HASH_MASK;
|
|
struct hash_subtable *st = h->st;
|
|
int32 used = 0;
|
|
hash_hash_t e_hash;
|
|
struct hash_entry *e;
|
|
struct hash_entry *end_e;
|
|
|
|
hash += HASH_ADJUST (hash);
|
|
for (;;) {
|
|
int32 shift = HASH_BITS - (st->power + used);
|
|
int32 index_mask = (1 << st->power) - 1;
|
|
int32 i = (hash >> shift) & index_mask; /* i is the natural position of hash */
|
|
|
|
e = HASH_OFFSET (st->entry, i * elemsize); /* e points to element i */
|
|
e_hash = e->hash;
|
|
if ((e_hash & HASH_MASK) != HASH_SUBHASH) { /* a subtable */
|
|
break;
|
|
}
|
|
used += st->power;
|
|
st = *(struct hash_subtable **)e->data;
|
|
}
|
|
end_e = HASH_OFFSET (e, st->limit_bytes);
|
|
while (e != end_e && (e_hash = e->hash) != HASH_NIL && e_hash < hash) {
|
|
e = HASH_OFFSET (e, elemsize);
|
|
}
|
|
while (e != end_e && ((e_hash = e->hash) ^ hash) < HASH_SUBHASH) {
|
|
if (HASH_DATA_EQ (h, data, e->data)) { /* a match */
|
|
*pres = e->data;
|
|
return (1);
|
|
}
|
|
e = HASH_OFFSET (e, elemsize);
|
|
}
|
|
USED(e_hash);
|
|
*pres = 0;
|
|
return (0);
|
|
}
|
|
|
|
int32
|
|
hash_remove (struct hash *h, void *data, void *arg)
|
|
{
|
|
int32 elemsize = h->datasize + offsetof (struct hash_entry, data[0]);
|
|
hash_hash_t hash = (*h->data_hash) (h->keysize, data) & ~HASH_MASK;
|
|
struct hash_subtable *st = h->st;
|
|
int32 used = 0;
|
|
hash_hash_t e_hash;
|
|
struct hash_entry *e;
|
|
struct hash_entry *end_e;
|
|
|
|
hash += HASH_ADJUST (hash);
|
|
for (;;) {
|
|
int32 shift = HASH_BITS - (st->power + used);
|
|
int32 index_mask = (1 << st->power) - 1;
|
|
int32 i = (hash >> shift) & index_mask; /* i is the natural position of hash */
|
|
|
|
e = HASH_OFFSET (st->entry, i * elemsize); /* e points to element i */
|
|
e_hash = e->hash;
|
|
if ((e_hash & HASH_MASK) != HASH_SUBHASH) { /* a subtable */
|
|
break;
|
|
}
|
|
used += st->power;
|
|
st = *(struct hash_subtable **)e->data;
|
|
}
|
|
end_e = HASH_OFFSET (e, st->limit_bytes);
|
|
while (e != end_e && (e_hash = e->hash) != HASH_NIL && e_hash < hash) {
|
|
e = HASH_OFFSET (e, elemsize);
|
|
}
|
|
while (e != end_e && ((e_hash = e->hash) ^ hash) < HASH_SUBHASH) {
|
|
if (HASH_DATA_EQ (h, data, e->data)) { /* a match */
|
|
(*h->data_del) (h->keysize, arg, e->data);
|
|
hash_remove_n (st, e, 1);
|
|
h->count--;
|
|
return (1);
|
|
}
|
|
e = HASH_OFFSET (e, elemsize);
|
|
}
|
|
USED(e_hash);
|
|
return (0);
|
|
}
|
|
|
|
static int32
|
|
hash_insert_internal (struct hash_subtable **pst, int32 flags, hash_hash_t hash,
|
|
struct hash *h, void *data, void **pres)
|
|
{
|
|
int32 elemsize = h->datasize + offsetof (struct hash_entry, data[0]);
|
|
|
|
if ((flags & HASH_REHASH) == 0) {
|
|
hash += HASH_ADJUST (hash);
|
|
hash &= ~HASH_MASK;
|
|
}
|
|
for (;;) {
|
|
struct hash_subtable *st = *pst;
|
|
int32 shift = HASH_BITS - (st->power + HASH_USED (flags));
|
|
int32 index_mask = (1 << st->power) - 1;
|
|
int32 i = (hash >> shift) & index_mask; /* i is the natural position of hash */
|
|
struct hash_entry *start_e =
|
|
HASH_OFFSET (st->entry, i * elemsize); /* start_e is the pointer to element i */
|
|
struct hash_entry *e = start_e; /* e is going to range over [start_e, end_e) */
|
|
struct hash_entry *end_e;
|
|
hash_hash_t e_hash = e->hash;
|
|
|
|
if ((e_hash & HASH_MASK) == HASH_SUBHASH) { /* a subtable */
|
|
pst = (struct hash_subtable **) e->data;
|
|
flags += HASH_MAKE_USED (st->power);
|
|
continue;
|
|
}
|
|
end_e = HASH_OFFSET (start_e, st->limit_bytes);
|
|
while (e != end_e && (e_hash = e->hash) != HASH_NIL && e_hash < hash) {
|
|
e = HASH_OFFSET (e, elemsize);
|
|
i++;
|
|
}
|
|
if (e != end_e && e_hash != HASH_NIL) {
|
|
/* ins_e ranges over the elements that may match */
|
|
struct hash_entry *ins_e = e;
|
|
int32 ins_i = i;
|
|
hash_hash_t ins_e_hash;
|
|
while (ins_e != end_e && ((e_hash = ins_e->hash) ^ hash) < HASH_SUBHASH) {
|
|
if (HASH_DATA_EQ (h, data, ins_e->data)) { /* a match */
|
|
*pres = ins_e->data;
|
|
return (1);
|
|
}
|
|
assert (e_hash != hash || (flags & HASH_REHASH) == 0);
|
|
hash += (e_hash == hash); /* adjust hash if it collides */
|
|
ins_e = HASH_OFFSET (ins_e, elemsize);
|
|
ins_i++;
|
|
if (e_hash <= hash) { /* set e to insertion point */
|
|
e = ins_e;
|
|
i = ins_i;
|
|
}
|
|
}
|
|
/* set ins_e to the insertion point for the new element */
|
|
ins_e = e;
|
|
ins_i = i;
|
|
ins_e_hash = 0;
|
|
/* move ins_e to point at the end of the contiguous block, but
|
|
stop if any element can't be moved by one up */
|
|
while (ins_e != st->end && (ins_e_hash = ins_e->hash) != HASH_NIL &&
|
|
ins_i + 1 - ((ins_e_hash >> shift) & index_mask) < st->max_probes &&
|
|
(ins_e_hash & HASH_MASK) != HASH_SUBHASH) {
|
|
ins_e = HASH_OFFSET (ins_e, elemsize);
|
|
ins_i++;
|
|
}
|
|
if (e == end_e || ins_e == st->end || ins_e_hash != HASH_NIL) {
|
|
e = end_e; /* can't insert; must grow or convert to subtable */
|
|
} else { /* make space for element */
|
|
memmove (HASH_OFFSET (e, elemsize), e, ((byte *) ins_e) - (byte *) e);
|
|
}
|
|
}
|
|
if (e != end_e) {
|
|
e->hash = hash;
|
|
*pres = e->data;
|
|
return (0);
|
|
}
|
|
h->changes++;
|
|
if (st->power < h->max_power) {
|
|
hash_grow (h, pst, flags);
|
|
} else {
|
|
hash_conv (h, st, flags, hash, start_e);
|
|
}
|
|
}
|
|
}
|
|
|
|
int32
|
|
hash_insert (struct hash *h, void *data, void **pres)
|
|
{
|
|
int32 rc = hash_insert_internal (&h->st, 0, (*h->data_hash) (h->keysize, data), h, data, pres);
|
|
|
|
h->count += (rc == 0); /* increment count if element didn't previously exist */
|
|
return (rc);
|
|
}
|
|
|
|
uint32
|
|
hash_count (struct hash *h)
|
|
{
|
|
return (h->count);
|
|
}
|
|
|
|
static void
|
|
iter_restart (struct hash_iter *it, struct hash_subtable *st, int32 used)
|
|
{
|
|
int32 elemsize = it->elemsize;
|
|
hash_hash_t last_hash = it->last_hash;
|
|
struct hash_entry *e;
|
|
hash_hash_t e_hash;
|
|
struct hash_iter_sub *sub = &it->subtable_state[it->i];
|
|
struct hash_entry *end;
|
|
|
|
for (;;) {
|
|
int32 shift = HASH_BITS - (st->power + used);
|
|
int32 index_mask = (1 << st->power) - 1;
|
|
int32 i = (last_hash >> shift) & index_mask;
|
|
|
|
end = st->end;
|
|
e = HASH_OFFSET (st->entry, i * elemsize);
|
|
sub->start = st->entry;
|
|
sub->end = end;
|
|
|
|
if ((e->hash & HASH_MASK) != HASH_SUBHASH) {
|
|
break;
|
|
}
|
|
sub->e = HASH_OFFSET (e, elemsize);
|
|
sub = &it->subtable_state[++(it->i)];
|
|
used += st->power;
|
|
st = *(struct hash_subtable **)e->data;
|
|
}
|
|
while (e != end && ((e_hash = e->hash) == HASH_NIL || e_hash <= last_hash)) {
|
|
e = HASH_OFFSET (e, elemsize);
|
|
}
|
|
sub->e = e;
|
|
}
|
|
|
|
void *
|
|
hash_next (struct hash_iter *it)
|
|
{
|
|
int32 elemsize = it->elemsize;
|
|
struct hash_iter_sub *sub = &it->subtable_state[it->i];
|
|
struct hash_entry *e = sub->e;
|
|
struct hash_entry *end = sub->end;
|
|
hash_hash_t e_hash = 0;
|
|
|
|
if (it->changes != it->h->changes) { /* hash table's structure changed; recompute */
|
|
it->changes = it->h->changes;
|
|
it->i = 0;
|
|
iter_restart (it, it->h->st, 0);
|
|
sub = &it->subtable_state[it->i];
|
|
e = sub->e;
|
|
end = sub->end;
|
|
}
|
|
if (e != sub->start && it->last_hash != HASH_OFFSET (e, -elemsize)->hash) {
|
|
struct hash_entry *start = HASH_OFFSET (e, -(elemsize * it->h->max_probes));
|
|
struct hash_entry *pe = HASH_OFFSET (e, -elemsize);
|
|
hash_hash_t last_hash = it->last_hash;
|
|
if (start < sub->start) {
|
|
start = sub->start;
|
|
}
|
|
while (e != start && ((e_hash = pe->hash) == HASH_NIL || last_hash < e_hash)) {
|
|
e = pe;
|
|
pe = HASH_OFFSET (pe, -elemsize);
|
|
}
|
|
while (e != end && ((e_hash = e->hash) == HASH_NIL || e_hash <= last_hash)) {
|
|
e = HASH_OFFSET (e, elemsize);
|
|
}
|
|
}
|
|
|
|
for (;;) {
|
|
while (e != end && (e_hash = e->hash) == HASH_NIL) {
|
|
e = HASH_OFFSET (e, elemsize);
|
|
}
|
|
if (e == end) {
|
|
if (it->i == 0) {
|
|
it->last_hash = HASH_OFFSET (e, -elemsize)->hash;
|
|
sub->e = e;
|
|
return (0);
|
|
} else {
|
|
it->i--;
|
|
sub = &it->subtable_state[it->i];
|
|
e = sub->e;
|
|
end = sub->end;
|
|
}
|
|
} else if ((e_hash & HASH_MASK) != HASH_SUBHASH) {
|
|
it->last_hash = e->hash;
|
|
sub->e = HASH_OFFSET (e, elemsize);
|
|
return (e->data);
|
|
} else {
|
|
struct hash_subtable *st =
|
|
*(struct hash_subtable **)e->data;
|
|
sub->e = HASH_OFFSET (e, elemsize);
|
|
it->i++;
|
|
assert (it->i < sizeof (it->subtable_state) /
|
|
sizeof (it->subtable_state[0]));
|
|
sub = &it->subtable_state[it->i];
|
|
sub->e = e = st->entry;
|
|
sub->start = st->entry;
|
|
sub->end = end = st->end;
|
|
}
|
|
}
|
|
}
|
|
|
|
void
|
|
hash_iter_init (struct hash *h, struct hash_iter *it)
|
|
{
|
|
it->elemsize = h->datasize + offsetof (struct hash_entry, data[0]);
|
|
it->changes = h->changes;
|
|
it->i = 0;
|
|
it->h = h;
|
|
it->last_hash = 0;
|
|
it->subtable_state[0].e = h->st->entry;
|
|
it->subtable_state[0].start = h->st->entry;
|
|
it->subtable_state[0].end = h->st->end;
|
|
}
|
|
|
|
static void
|
|
clean_st (struct hash_subtable *st, int32 *slots, int32 *used)
|
|
{
|
|
int32 elemsize = st->datasize + offsetof (struct hash_entry, data[0]);
|
|
struct hash_entry *e = st->entry;
|
|
struct hash_entry *end = st->end;
|
|
int32 lslots = (((byte *) end) - (byte *) e) / elemsize;
|
|
int32 lused = 0;
|
|
|
|
while (e != end) {
|
|
hash_hash_t hash = e->hash;
|
|
if ((hash & HASH_MASK) == HASH_SUBHASH) {
|
|
clean_st (*(struct hash_subtable **)e->data, slots, used);
|
|
} else {
|
|
lused += (hash != HASH_NIL);
|
|
}
|
|
e = HASH_OFFSET (e, elemsize);
|
|
}
|
|
free (st);
|
|
*slots += lslots;
|
|
*used += lused;
|
|
}
|
|
|
|
void
|
|
hash_destroy (struct hash *h)
|
|
{
|
|
int32 slots = 0;
|
|
int32 used = 0;
|
|
|
|
clean_st (h->st, &slots, &used);
|
|
free (h);
|
|
}
|
|
|
|
static void
|
|
hash_visit_internal (struct hash_subtable *st,
|
|
int32 used, int32 level,
|
|
void (*data_visit) (void *arg, int32 level, void *data),
|
|
void *arg)
|
|
{
|
|
int32 elemsize = st->datasize + offsetof (struct hash_entry, data[0]);
|
|
struct hash_entry *e = st->entry;
|
|
int32 shift = HASH_BITS - (used + st->power);
|
|
int32 i = 0;
|
|
|
|
while (e != st->end) {
|
|
int32 index = ((e->hash >> (shift - 1)) >> 1) & ((1 << st->power) - 1);
|
|
if ((e->hash & HASH_MASK) == HASH_SUBHASH) {
|
|
(*data_visit) (arg, level, e->data);
|
|
hash_visit_internal (*(struct hash_subtable **)e->data,
|
|
used + st->power, level + 1, data_visit, arg);
|
|
} else {
|
|
(*data_visit) (arg, level, e->data);
|
|
}
|
|
if (e->hash != HASH_NIL) {
|
|
assert (i < index + st->max_probes);
|
|
assert (index <= i);
|
|
}
|
|
e = HASH_OFFSET (e, elemsize);
|
|
i++;
|
|
}
|
|
}
|
|
|
|
void
|
|
hash_visit (struct hash *h, void (*data_visit) (void *arg, int32 level, void *data), void *arg)
|
|
{
|
|
hash_visit_internal (h->st, 0, 0, data_visit, arg);
|
|
}
|
|
|
|
//
|
|
/// interfaces to go runtime
|
|
//
|
|
|
|
static void
|
|
donothing(uint32 s, void *a, void *b)
|
|
{
|
|
USED(s);
|
|
USED(a);
|
|
USED(b);
|
|
}
|
|
|
|
static int32 debug = 0;
|
|
|
|
// makemap(key, val *Type, hint uint32) (hmap *map[any]any);
|
|
Hmap*
|
|
makemap(Type *key, Type *val, uint32 hint)
|
|
{
|
|
Hmap *h;
|
|
int32 keyalg, valalg, keysize, valsize;
|
|
|
|
keyalg = key->alg;
|
|
valalg = val->alg;
|
|
keysize = key->size;
|
|
valsize = val->size;
|
|
|
|
if(keyalg >= nelem(algarray) || algarray[keyalg].hash == nohash) {
|
|
printf("map(keyalg=%d)\n", keyalg);
|
|
throw("runtime·makemap: unsupported map key type");
|
|
}
|
|
|
|
if(valalg >= nelem(algarray)) {
|
|
printf("map(valalg=%d)\n", valalg);
|
|
throw("runtime·makemap: unsupported map value type");
|
|
}
|
|
|
|
h = mal(sizeof(*h));
|
|
|
|
// align value inside data so that mark-sweep gc can find it.
|
|
// might remove in the future and just assume datavo == keysize.
|
|
h->datavo = keysize;
|
|
if(valsize >= sizeof(void*))
|
|
h->datavo = rnd(keysize, sizeof(void*));
|
|
|
|
hash_init(h, h->datavo+valsize,
|
|
algarray[keyalg].hash,
|
|
algarray[keyalg].equal,
|
|
donothing,
|
|
hint);
|
|
|
|
h->keysize = keysize;
|
|
h->valsize = valsize;
|
|
h->keyalg = &algarray[keyalg];
|
|
h->valalg = &algarray[valalg];
|
|
|
|
// these calculations are compiler dependent.
|
|
// figure out offsets of map call arguments.
|
|
|
|
// func() (key, val)
|
|
h->ko0 = rnd(sizeof(h), Structrnd);
|
|
h->vo0 = rnd(h->ko0+keysize, val->align);
|
|
|
|
// func(key) (val[, pres])
|
|
h->ko1 = rnd(sizeof(h), key->align);
|
|
h->vo1 = rnd(h->ko1+keysize, Structrnd);
|
|
h->po1 = rnd(h->vo1+valsize, 1);
|
|
|
|
// func(key, val[, pres])
|
|
h->ko2 = rnd(sizeof(h), key->align);
|
|
h->vo2 = rnd(h->ko2+keysize, val->align);
|
|
h->po2 = rnd(h->vo2+valsize, 1);
|
|
|
|
if(debug) {
|
|
printf("makemap: map=%p; keysize=%d; valsize=%d; keyalg=%d; valalg=%d; offsets=%d,%d; %d,%d,%d; %d,%d,%d\n",
|
|
h, keysize, valsize, keyalg, valalg, h->ko0, h->vo0, h->ko1, h->vo1, h->po1, h->ko2, h->vo2, h->po2);
|
|
}
|
|
|
|
return h;
|
|
}
|
|
|
|
// makemap(key, val *Type, hint uint32) (hmap *map[any]any);
|
|
void
|
|
runtime·makemap(Type *key, Type *val, uint32 hint, Hmap *ret)
|
|
{
|
|
ret = makemap(key, val, hint);
|
|
FLUSH(&ret);
|
|
}
|
|
|
|
void
|
|
mapaccess(Hmap *h, byte *ak, byte *av, bool *pres)
|
|
{
|
|
byte *res;
|
|
|
|
res = nil;
|
|
if(hash_lookup(h, ak, (void**)&res)) {
|
|
*pres = true;
|
|
h->valalg->copy(h->valsize, av, res+h->datavo);
|
|
} else {
|
|
*pres = false;
|
|
h->valalg->copy(h->valsize, av, nil);
|
|
}
|
|
}
|
|
|
|
// mapaccess1(hmap *map[any]any, key any) (val any);
|
|
void
|
|
runtime·mapaccess1(Hmap *h, ...)
|
|
{
|
|
byte *ak, *av;
|
|
bool pres;
|
|
|
|
ak = (byte*)&h + h->ko1;
|
|
av = (byte*)&h + h->vo1;
|
|
|
|
mapaccess(h, ak, av, &pres);
|
|
if(!pres)
|
|
throw("runtime·mapaccess1: key not in map");
|
|
|
|
if(debug) {
|
|
prints("runtime·mapaccess1: map=");
|
|
runtime·printpointer(h);
|
|
prints("; key=");
|
|
h->keyalg->print(h->keysize, ak);
|
|
prints("; val=");
|
|
h->valalg->print(h->valsize, av);
|
|
prints("; pres=");
|
|
runtime·printbool(pres);
|
|
prints("\n");
|
|
}
|
|
}
|
|
|
|
// mapaccess2(hmap *map[any]any, key any) (val any, pres bool);
|
|
void
|
|
runtime·mapaccess2(Hmap *h, ...)
|
|
{
|
|
byte *ak, *av, *ap;
|
|
|
|
ak = (byte*)&h + h->ko1;
|
|
av = (byte*)&h + h->vo1;
|
|
ap = (byte*)&h + h->po1;
|
|
|
|
mapaccess(h, ak, av, ap);
|
|
|
|
if(debug) {
|
|
prints("runtime·mapaccess2: map=");
|
|
runtime·printpointer(h);
|
|
prints("; key=");
|
|
h->keyalg->print(h->keysize, ak);
|
|
prints("; val=");
|
|
h->valalg->print(h->valsize, av);
|
|
prints("; pres=");
|
|
runtime·printbool(*ap);
|
|
prints("\n");
|
|
}
|
|
}
|
|
|
|
void
|
|
mapassign(Hmap *h, byte *ak, byte *av)
|
|
{
|
|
byte *res;
|
|
int32 hit;
|
|
|
|
res = nil;
|
|
if(av == nil) {
|
|
hash_remove(h, ak, (void**)&res);
|
|
return;
|
|
}
|
|
|
|
hit = hash_insert(h, ak, (void**)&res);
|
|
h->keyalg->copy(h->keysize, res, ak);
|
|
h->valalg->copy(h->valsize, res+h->datavo, av);
|
|
|
|
if(debug) {
|
|
prints("mapassign: map=");
|
|
runtime·printpointer(h);
|
|
prints("; key=");
|
|
h->keyalg->print(h->keysize, ak);
|
|
prints("; val=");
|
|
h->valalg->print(h->valsize, av);
|
|
prints("; hit=");
|
|
runtime·printint(hit);
|
|
prints("; res=");
|
|
runtime·printpointer(res);
|
|
prints("\n");
|
|
}
|
|
}
|
|
|
|
// mapassign1(hmap *map[any]any, key any, val any);
|
|
void
|
|
runtime·mapassign1(Hmap *h, ...)
|
|
{
|
|
byte *ak, *av;
|
|
|
|
ak = (byte*)&h + h->ko2;
|
|
av = (byte*)&h + h->vo2;
|
|
|
|
mapassign(h, ak, av);
|
|
}
|
|
|
|
// mapassign2(hmap *map[any]any, key any, val any, pres bool);
|
|
void
|
|
runtime·mapassign2(Hmap *h, ...)
|
|
{
|
|
byte *ak, *av, *ap;
|
|
|
|
ak = (byte*)&h + h->ko2;
|
|
av = (byte*)&h + h->vo2;
|
|
ap = (byte*)&h + h->po2;
|
|
|
|
if(*ap == false)
|
|
av = nil; // delete
|
|
|
|
mapassign(h, ak, av);
|
|
|
|
if(debug) {
|
|
prints("mapassign2: map=");
|
|
runtime·printpointer(h);
|
|
prints("; key=");
|
|
h->keyalg->print(h->keysize, ak);
|
|
prints("\n");
|
|
}
|
|
}
|
|
|
|
// mapiterinit(hmap *map[any]any, hiter *any);
|
|
void
|
|
runtime·mapiterinit(Hmap *h, struct hash_iter *it)
|
|
{
|
|
if(h == nil) {
|
|
it->data = nil;
|
|
return;
|
|
}
|
|
hash_iter_init(h, it);
|
|
it->data = hash_next(it);
|
|
if(debug) {
|
|
prints("runtime·mapiterinit: map=");
|
|
runtime·printpointer(h);
|
|
prints("; iter=");
|
|
runtime·printpointer(it);
|
|
prints("; data=");
|
|
runtime·printpointer(it->data);
|
|
prints("\n");
|
|
}
|
|
}
|
|
|
|
struct hash_iter*
|
|
mapiterinit(Hmap *h)
|
|
{
|
|
struct hash_iter *it;
|
|
|
|
it = mal(sizeof *it);
|
|
runtime·mapiterinit(h, it);
|
|
return it;
|
|
}
|
|
|
|
// mapiternext(hiter *any);
|
|
void
|
|
runtime·mapiternext(struct hash_iter *it)
|
|
{
|
|
it->data = hash_next(it);
|
|
if(debug) {
|
|
prints("runtime·mapiternext: iter=");
|
|
runtime·printpointer(it);
|
|
prints("; data=");
|
|
runtime·printpointer(it->data);
|
|
prints("\n");
|
|
}
|
|
}
|
|
|
|
void
|
|
mapiternext(struct hash_iter *it)
|
|
{
|
|
runtime·mapiternext(it);
|
|
}
|
|
|
|
// mapiter1(hiter *any) (key any);
|
|
void
|
|
runtime·mapiter1(struct hash_iter *it, ...)
|
|
{
|
|
Hmap *h;
|
|
byte *ak, *res;
|
|
|
|
h = it->h;
|
|
ak = (byte*)&it + h->ko0;
|
|
|
|
res = it->data;
|
|
if(res == nil)
|
|
throw("runtime·mapiter2: key:val nil pointer");
|
|
|
|
h->keyalg->copy(h->keysize, ak, res);
|
|
|
|
if(debug) {
|
|
prints("mapiter2: iter=");
|
|
runtime·printpointer(it);
|
|
prints("; map=");
|
|
runtime·printpointer(h);
|
|
prints("\n");
|
|
}
|
|
}
|
|
|
|
bool
|
|
mapiterkey(struct hash_iter *it, void *ak)
|
|
{
|
|
Hmap *h;
|
|
byte *res;
|
|
|
|
h = it->h;
|
|
res = it->data;
|
|
if(res == nil)
|
|
return false;
|
|
h->keyalg->copy(h->keysize, ak, res);
|
|
return true;
|
|
}
|
|
|
|
// mapiter2(hiter *any) (key any, val any);
|
|
void
|
|
runtime·mapiter2(struct hash_iter *it, ...)
|
|
{
|
|
Hmap *h;
|
|
byte *ak, *av, *res;
|
|
|
|
h = it->h;
|
|
ak = (byte*)&it + h->ko0;
|
|
av = (byte*)&it + h->vo0;
|
|
|
|
res = it->data;
|
|
if(res == nil)
|
|
throw("runtime·mapiter2: key:val nil pointer");
|
|
|
|
h->keyalg->copy(h->keysize, ak, res);
|
|
h->valalg->copy(h->valsize, av, res+h->datavo);
|
|
|
|
if(debug) {
|
|
prints("mapiter2: iter=");
|
|
runtime·printpointer(it);
|
|
prints("; map=");
|
|
runtime·printpointer(h);
|
|
prints("\n");
|
|
}
|
|
}
|