mirror of
https://github.com/golang/go
synced 2024-11-17 02:24:42 -07:00
8badef4cf6
Updates #38485. Change-Id: I46f515973c0a31d7c3e0e05ce006121c60c4041e Reviewed-on: https://go-review.googlesource.com/c/go/+/268497 Trust: Cherry Zhang <cherryyz@google.com> Reviewed-by: Dmitri Shuralyov <dmitshur@golang.org> Reviewed-by: Ian Lance Taylor <iant@golang.org>
441 lines
10 KiB
HTML
441 lines
10 KiB
HTML
<!--{
|
|
"Title": "Data Race Detector",
|
|
"Template": true
|
|
}-->
|
|
|
|
<h2 id="Introduction">Introduction</h2>
|
|
|
|
<p>
|
|
Data races are among the most common and hardest to debug types of bugs in concurrent systems.
|
|
A data race occurs when two goroutines access the same variable concurrently and at least one of the accesses is a write.
|
|
See the <a href="/ref/mem/">The Go Memory Model</a> for details.
|
|
</p>
|
|
|
|
<p>
|
|
Here is an example of a data race that can lead to crashes and memory corruption:
|
|
</p>
|
|
|
|
<pre>
|
|
func main() {
|
|
c := make(chan bool)
|
|
m := make(map[string]string)
|
|
go func() {
|
|
m["1"] = "a" // First conflicting access.
|
|
c <- true
|
|
}()
|
|
m["2"] = "b" // Second conflicting access.
|
|
<-c
|
|
for k, v := range m {
|
|
fmt.Println(k, v)
|
|
}
|
|
}
|
|
</pre>
|
|
|
|
<h2 id="Usage">Usage</h2>
|
|
|
|
<p>
|
|
To help diagnose such bugs, Go includes a built-in data race detector.
|
|
To use it, add the <code>-race</code> flag to the go command:
|
|
</p>
|
|
|
|
<pre>
|
|
$ go test -race mypkg // to test the package
|
|
$ go run -race mysrc.go // to run the source file
|
|
$ go build -race mycmd // to build the command
|
|
$ go install -race mypkg // to install the package
|
|
</pre>
|
|
|
|
<h2 id="Report_Format">Report Format</h2>
|
|
|
|
<p>
|
|
When the race detector finds a data race in the program, it prints a report.
|
|
The report contains stack traces for conflicting accesses, as well as stacks where the involved goroutines were created.
|
|
Here is an example:
|
|
</p>
|
|
|
|
<pre>
|
|
WARNING: DATA RACE
|
|
Read by goroutine 185:
|
|
net.(*pollServer).AddFD()
|
|
src/net/fd_unix.go:89 +0x398
|
|
net.(*pollServer).WaitWrite()
|
|
src/net/fd_unix.go:247 +0x45
|
|
net.(*netFD).Write()
|
|
src/net/fd_unix.go:540 +0x4d4
|
|
net.(*conn).Write()
|
|
src/net/net.go:129 +0x101
|
|
net.func·060()
|
|
src/net/timeout_test.go:603 +0xaf
|
|
|
|
Previous write by goroutine 184:
|
|
net.setWriteDeadline()
|
|
src/net/sockopt_posix.go:135 +0xdf
|
|
net.setDeadline()
|
|
src/net/sockopt_posix.go:144 +0x9c
|
|
net.(*conn).SetDeadline()
|
|
src/net/net.go:161 +0xe3
|
|
net.func·061()
|
|
src/net/timeout_test.go:616 +0x3ed
|
|
|
|
Goroutine 185 (running) created at:
|
|
net.func·061()
|
|
src/net/timeout_test.go:609 +0x288
|
|
|
|
Goroutine 184 (running) created at:
|
|
net.TestProlongTimeout()
|
|
src/net/timeout_test.go:618 +0x298
|
|
testing.tRunner()
|
|
src/testing/testing.go:301 +0xe8
|
|
</pre>
|
|
|
|
<h2 id="Options">Options</h2>
|
|
|
|
<p>
|
|
The <code>GORACE</code> environment variable sets race detector options.
|
|
The format is:
|
|
</p>
|
|
|
|
<pre>
|
|
GORACE="option1=val1 option2=val2"
|
|
</pre>
|
|
|
|
<p>
|
|
The options are:
|
|
</p>
|
|
|
|
<ul>
|
|
<li>
|
|
<code>log_path</code> (default <code>stderr</code>): The race detector writes
|
|
its report to a file named <code>log_path.<em>pid</em></code>.
|
|
The special names <code>stdout</code>
|
|
and <code>stderr</code> cause reports to be written to standard output and
|
|
standard error, respectively.
|
|
</li>
|
|
|
|
<li>
|
|
<code>exitcode</code> (default <code>66</code>): The exit status to use when
|
|
exiting after a detected race.
|
|
</li>
|
|
|
|
<li>
|
|
<code>strip_path_prefix</code> (default <code>""</code>): Strip this prefix
|
|
from all reported file paths, to make reports more concise.
|
|
</li>
|
|
|
|
<li>
|
|
<code>history_size</code> (default <code>1</code>): The per-goroutine memory
|
|
access history is <code>32K * 2**history_size elements</code>.
|
|
Increasing this value can avoid a "failed to restore the stack" error in reports, at the
|
|
cost of increased memory usage.
|
|
</li>
|
|
|
|
<li>
|
|
<code>halt_on_error</code> (default <code>0</code>): Controls whether the program
|
|
exits after reporting first data race.
|
|
</li>
|
|
|
|
<li>
|
|
<code>atexit_sleep_ms</code> (default <code>1000</code>): Amount of milliseconds
|
|
to sleep in the main goroutine before exiting.
|
|
</li>
|
|
</ul>
|
|
|
|
<p>
|
|
Example:
|
|
</p>
|
|
|
|
<pre>
|
|
$ GORACE="log_path=/tmp/race/report strip_path_prefix=/my/go/sources/" go test -race
|
|
</pre>
|
|
|
|
<h2 id="Excluding_Tests">Excluding Tests</h2>
|
|
|
|
<p>
|
|
When you build with <code>-race</code> flag, the <code>go</code> command defines additional
|
|
<a href="/pkg/go/build/#hdr-Build_Constraints">build tag</a> <code>race</code>.
|
|
You can use the tag to exclude some code and tests when running the race detector.
|
|
Some examples:
|
|
</p>
|
|
|
|
<pre>
|
|
// +build !race
|
|
|
|
package foo
|
|
|
|
// The test contains a data race. See issue 123.
|
|
func TestFoo(t *testing.T) {
|
|
// ...
|
|
}
|
|
|
|
// The test fails under the race detector due to timeouts.
|
|
func TestBar(t *testing.T) {
|
|
// ...
|
|
}
|
|
|
|
// The test takes too long under the race detector.
|
|
func TestBaz(t *testing.T) {
|
|
// ...
|
|
}
|
|
</pre>
|
|
|
|
<h2 id="How_To_Use">How To Use</h2>
|
|
|
|
<p>
|
|
To start, run your tests using the race detector (<code>go test -race</code>).
|
|
The race detector only finds races that happen at runtime, so it can't find
|
|
races in code paths that are not executed.
|
|
If your tests have incomplete coverage,
|
|
you may find more races by running a binary built with <code>-race</code> under a realistic
|
|
workload.
|
|
</p>
|
|
|
|
<h2 id="Typical_Data_Races">Typical Data Races</h2>
|
|
|
|
<p>
|
|
Here are some typical data races. All of them can be detected with the race detector.
|
|
</p>
|
|
|
|
<h3 id="Race_on_loop_counter">Race on loop counter</h3>
|
|
|
|
<pre>
|
|
func main() {
|
|
var wg sync.WaitGroup
|
|
wg.Add(5)
|
|
for i := 0; i < 5; i++ {
|
|
go func() {
|
|
fmt.Println(i) // Not the 'i' you are looking for.
|
|
wg.Done()
|
|
}()
|
|
}
|
|
wg.Wait()
|
|
}
|
|
</pre>
|
|
|
|
<p>
|
|
The variable <code>i</code> in the function literal is the same variable used by the loop, so
|
|
the read in the goroutine races with the loop increment.
|
|
(This program typically prints 55555, not 01234.)
|
|
The program can be fixed by making a copy of the variable:
|
|
</p>
|
|
|
|
<pre>
|
|
func main() {
|
|
var wg sync.WaitGroup
|
|
wg.Add(5)
|
|
for i := 0; i < 5; i++ {
|
|
go func(j int) {
|
|
fmt.Println(j) // Good. Read local copy of the loop counter.
|
|
wg.Done()
|
|
}(i)
|
|
}
|
|
wg.Wait()
|
|
}
|
|
</pre>
|
|
|
|
<h3 id="Accidentally_shared_variable">Accidentally shared variable</h3>
|
|
|
|
<pre>
|
|
// ParallelWrite writes data to file1 and file2, returns the errors.
|
|
func ParallelWrite(data []byte) chan error {
|
|
res := make(chan error, 2)
|
|
f1, err := os.Create("file1")
|
|
if err != nil {
|
|
res <- err
|
|
} else {
|
|
go func() {
|
|
// This err is shared with the main goroutine,
|
|
// so the write races with the write below.
|
|
_, err = f1.Write(data)
|
|
res <- err
|
|
f1.Close()
|
|
}()
|
|
}
|
|
f2, err := os.Create("file2") // The second conflicting write to err.
|
|
if err != nil {
|
|
res <- err
|
|
} else {
|
|
go func() {
|
|
_, err = f2.Write(data)
|
|
res <- err
|
|
f2.Close()
|
|
}()
|
|
}
|
|
return res
|
|
}
|
|
</pre>
|
|
|
|
<p>
|
|
The fix is to introduce new variables in the goroutines (note the use of <code>:=</code>):
|
|
</p>
|
|
|
|
<pre>
|
|
...
|
|
_, err := f1.Write(data)
|
|
...
|
|
_, err := f2.Write(data)
|
|
...
|
|
</pre>
|
|
|
|
<h3 id="Unprotected_global_variable">Unprotected global variable</h3>
|
|
|
|
<p>
|
|
If the following code is called from several goroutines, it leads to races on the <code>service</code> map.
|
|
Concurrent reads and writes of the same map are not safe:
|
|
</p>
|
|
|
|
<pre>
|
|
var service map[string]net.Addr
|
|
|
|
func RegisterService(name string, addr net.Addr) {
|
|
service[name] = addr
|
|
}
|
|
|
|
func LookupService(name string) net.Addr {
|
|
return service[name]
|
|
}
|
|
</pre>
|
|
|
|
<p>
|
|
To make the code safe, protect the accesses with a mutex:
|
|
</p>
|
|
|
|
<pre>
|
|
var (
|
|
service map[string]net.Addr
|
|
serviceMu sync.Mutex
|
|
)
|
|
|
|
func RegisterService(name string, addr net.Addr) {
|
|
serviceMu.Lock()
|
|
defer serviceMu.Unlock()
|
|
service[name] = addr
|
|
}
|
|
|
|
func LookupService(name string) net.Addr {
|
|
serviceMu.Lock()
|
|
defer serviceMu.Unlock()
|
|
return service[name]
|
|
}
|
|
</pre>
|
|
|
|
<h3 id="Primitive_unprotected_variable">Primitive unprotected variable</h3>
|
|
|
|
<p>
|
|
Data races can happen on variables of primitive types as well (<code>bool</code>, <code>int</code>, <code>int64</code>, etc.),
|
|
as in this example:
|
|
</p>
|
|
|
|
<pre>
|
|
type Watchdog struct{ last int64 }
|
|
|
|
func (w *Watchdog) KeepAlive() {
|
|
w.last = time.Now().UnixNano() // First conflicting access.
|
|
}
|
|
|
|
func (w *Watchdog) Start() {
|
|
go func() {
|
|
for {
|
|
time.Sleep(time.Second)
|
|
// Second conflicting access.
|
|
if w.last < time.Now().Add(-10*time.Second).UnixNano() {
|
|
fmt.Println("No keepalives for 10 seconds. Dying.")
|
|
os.Exit(1)
|
|
}
|
|
}
|
|
}()
|
|
}
|
|
</pre>
|
|
|
|
<p>
|
|
Even such "innocent" data races can lead to hard-to-debug problems caused by
|
|
non-atomicity of the memory accesses,
|
|
interference with compiler optimizations,
|
|
or reordering issues accessing processor memory .
|
|
</p>
|
|
|
|
<p>
|
|
A typical fix for this race is to use a channel or a mutex.
|
|
To preserve the lock-free behavior, one can also use the
|
|
<a href="/pkg/sync/atomic/"><code>sync/atomic</code></a> package.
|
|
</p>
|
|
|
|
<pre>
|
|
type Watchdog struct{ last int64 }
|
|
|
|
func (w *Watchdog) KeepAlive() {
|
|
atomic.StoreInt64(&w.last, time.Now().UnixNano())
|
|
}
|
|
|
|
func (w *Watchdog) Start() {
|
|
go func() {
|
|
for {
|
|
time.Sleep(time.Second)
|
|
if atomic.LoadInt64(&w.last) < time.Now().Add(-10*time.Second).UnixNano() {
|
|
fmt.Println("No keepalives for 10 seconds. Dying.")
|
|
os.Exit(1)
|
|
}
|
|
}
|
|
}()
|
|
}
|
|
</pre>
|
|
|
|
<h3 id="Unsynchronized_send_and_close_operations">Unsynchronized send and close operations</h3>
|
|
|
|
<p>
|
|
As this example demonstrates, unsynchronized send and close operations
|
|
on the same channel can also be a race condition:
|
|
</p>
|
|
|
|
<pre>
|
|
c := make(chan struct{}) // or buffered channel
|
|
|
|
// The race detector cannot derive the happens before relation
|
|
// for the following send and close operations. These two operations
|
|
// are unsynchronized and happen concurrently.
|
|
go func() { c <- struct{}{} }()
|
|
close(c)
|
|
</pre>
|
|
|
|
<p>
|
|
According to the Go memory model, a send on a channel happens before
|
|
the corresponding receive from that channel completes. To synchronize
|
|
send and close operations, use a receive operation that guarantees
|
|
the send is done before the close:
|
|
</p>
|
|
|
|
<pre>
|
|
c := make(chan struct{}) // or buffered channel
|
|
|
|
go func() { c <- struct{}{} }()
|
|
<-c
|
|
close(c)
|
|
</pre>
|
|
|
|
<h2 id="Supported_Systems">Supported Systems</h2>
|
|
|
|
<p>
|
|
The race detector runs on
|
|
<code>linux/amd64</code>, <code>linux/ppc64le</code>,
|
|
<code>linux/arm64</code>, <code>freebsd/amd64</code>,
|
|
<code>netbsd/amd64</code>, <code>darwin/amd64</code>,
|
|
<code>darwin/arm64</code>, and <code>windows/amd64</code>.
|
|
</p>
|
|
|
|
<h2 id="Runtime_Overheads">Runtime Overhead</h2>
|
|
|
|
<p>
|
|
The cost of race detection varies by program, but for a typical program, memory
|
|
usage may increase by 5-10x and execution time by 2-20x.
|
|
</p>
|
|
|
|
<p>
|
|
The race detector currently allocates an extra 8 bytes per <code>defer</code>
|
|
and <code>recover</code> statement. Those extra allocations <a
|
|
href="https://golang.org/issue/26813">are not recovered until the goroutine
|
|
exits</a>. This means that if you have a long-running goroutine that is
|
|
periodically issuing <code>defer</code> and <code>recover</code> calls,
|
|
the program memory usage may grow without bound. These memory allocations
|
|
will not show up in the output of <code>runtime.ReadMemStats</code> or
|
|
<code>runtime/pprof</code>.
|
|
</p>
|