1
0
mirror of https://github.com/golang/go synced 2024-11-20 06:54:42 -07:00
go/src/runtime/malloc_test.go
Dmitry Vyukov 205ae07cd3 cmd/gc: don't copy []byte during string concatenation
Consider the following code:

s := "(" + string(byteSlice) + ")"

Currently we allocate a new string during []byte->string conversion,
and pass it to concatstrings. String allocation is unnecessary in
this case, because concatstrings does memorize the strings for later use.
This change uses slicebytetostringtmp to construct temp string directly
from []byte buffer and passes it to concatstrings.

I've found few such cases in std lib:

	s += string(msg[off:off+c]) + "."
	buf.WriteString("Sec-WebSocket-Accept: " + string(c.accept) + "\r\n")
	bw.WriteString("Sec-WebSocket-Key: " + string(nonce) + "\r\n")
	err = xml.Unmarshal([]byte("<Top>"+string(data)+"</Top>"), &logStruct)
	d.err = d.syntaxError("invalid XML name: " + string(b))
	return m, ProtocolError("malformed MIME header line: " + string(kv))

But there are much more in our internal code base.

Change-Id: I42f401f317131237ddd0cb9786b0940213af16fb
Reviewed-on: https://go-review.googlesource.com/3163
Reviewed-by: Keith Randall <khr@golang.org>
Reviewed-by: Russ Cox <rsc@golang.org>
2015-01-27 18:15:42 +00:00

207 lines
4.4 KiB
Go

// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package runtime_test
import (
"flag"
. "runtime"
"testing"
"time"
"unsafe"
)
func TestMemStats(t *testing.T) {
// Test that MemStats has sane values.
st := new(MemStats)
ReadMemStats(st)
// Everything except HeapReleased and HeapIdle, because they indeed can be 0.
if st.Alloc == 0 || st.TotalAlloc == 0 || st.Sys == 0 || st.Lookups == 0 ||
st.Mallocs == 0 || st.Frees == 0 || st.HeapAlloc == 0 || st.HeapSys == 0 ||
st.HeapInuse == 0 || st.HeapObjects == 0 || st.StackInuse == 0 ||
st.StackSys == 0 || st.MSpanInuse == 0 || st.MSpanSys == 0 || st.MCacheInuse == 0 ||
st.MCacheSys == 0 || st.BuckHashSys == 0 || st.GCSys == 0 || st.OtherSys == 0 ||
st.NextGC == 0 || st.NumGC == 0 {
t.Fatalf("Zero value: %+v", *st)
}
if st.Alloc > 1e10 || st.TotalAlloc > 1e11 || st.Sys > 1e10 || st.Lookups > 1e10 ||
st.Mallocs > 1e10 || st.Frees > 1e10 || st.HeapAlloc > 1e10 || st.HeapSys > 1e10 ||
st.HeapIdle > 1e10 || st.HeapInuse > 1e10 || st.HeapObjects > 1e10 || st.StackInuse > 1e10 ||
st.StackSys > 1e10 || st.MSpanInuse > 1e10 || st.MSpanSys > 1e10 || st.MCacheInuse > 1e10 ||
st.MCacheSys > 1e10 || st.BuckHashSys > 1e10 || st.GCSys > 1e10 || st.OtherSys > 1e10 ||
st.NextGC > 1e10 || st.NumGC > 1e9 {
t.Fatalf("Insanely high value (overflow?): %+v", *st)
}
if st.Sys != st.HeapSys+st.StackSys+st.MSpanSys+st.MCacheSys+
st.BuckHashSys+st.GCSys+st.OtherSys {
t.Fatalf("Bad sys value: %+v", *st)
}
if st.HeapIdle+st.HeapInuse != st.HeapSys {
t.Fatalf("HeapIdle(%d) + HeapInuse(%d) should be equal to HeapSys(%d), but isn't.", st.HeapIdle, st.HeapInuse, st.HeapSys)
}
}
func TestStringConcatenationAllocs(t *testing.T) {
n := testing.AllocsPerRun(1e3, func() {
b := make([]byte, 10)
for i := 0; i < 10; i++ {
b[i] = byte(i) + '0'
}
s := "foo" + string(b)
if want := "foo0123456789"; s != want {
t.Fatalf("want %v, got %v", want, s)
}
})
// Only string concatenation allocates.
if n != 1 {
t.Fatalf("want 1 allocation, got %v", n)
}
}
var mallocSink uintptr
func BenchmarkMalloc8(b *testing.B) {
var x uintptr
for i := 0; i < b.N; i++ {
p := new(int64)
x ^= uintptr(unsafe.Pointer(p))
}
mallocSink = x
}
func BenchmarkMalloc16(b *testing.B) {
var x uintptr
for i := 0; i < b.N; i++ {
p := new([2]int64)
x ^= uintptr(unsafe.Pointer(p))
}
mallocSink = x
}
func BenchmarkMallocTypeInfo8(b *testing.B) {
var x uintptr
for i := 0; i < b.N; i++ {
p := new(struct {
p [8 / unsafe.Sizeof(uintptr(0))]*int
})
x ^= uintptr(unsafe.Pointer(p))
}
mallocSink = x
}
func BenchmarkMallocTypeInfo16(b *testing.B) {
var x uintptr
for i := 0; i < b.N; i++ {
p := new(struct {
p [16 / unsafe.Sizeof(uintptr(0))]*int
})
x ^= uintptr(unsafe.Pointer(p))
}
mallocSink = x
}
type LargeStruct struct {
x [16][]byte
}
func BenchmarkMallocLargeStruct(b *testing.B) {
var x uintptr
for i := 0; i < b.N; i++ {
p := make([]LargeStruct, 2)
x ^= uintptr(unsafe.Pointer(&p[0]))
}
mallocSink = x
}
var n = flag.Int("n", 1000, "number of goroutines")
func BenchmarkGoroutineSelect(b *testing.B) {
quit := make(chan struct{})
read := func(ch chan struct{}) {
for {
select {
case _, ok := <-ch:
if !ok {
return
}
case <-quit:
return
}
}
}
benchHelper(b, *n, read)
}
func BenchmarkGoroutineBlocking(b *testing.B) {
read := func(ch chan struct{}) {
for {
if _, ok := <-ch; !ok {
return
}
}
}
benchHelper(b, *n, read)
}
func BenchmarkGoroutineForRange(b *testing.B) {
read := func(ch chan struct{}) {
for range ch {
}
}
benchHelper(b, *n, read)
}
func benchHelper(b *testing.B, n int, read func(chan struct{})) {
m := make([]chan struct{}, n)
for i := range m {
m[i] = make(chan struct{}, 1)
go read(m[i])
}
b.StopTimer()
b.ResetTimer()
GC()
for i := 0; i < b.N; i++ {
for _, ch := range m {
if ch != nil {
ch <- struct{}{}
}
}
time.Sleep(10 * time.Millisecond)
b.StartTimer()
GC()
b.StopTimer()
}
for _, ch := range m {
close(ch)
}
time.Sleep(10 * time.Millisecond)
}
func BenchmarkGoroutineIdle(b *testing.B) {
quit := make(chan struct{})
fn := func() {
<-quit
}
for i := 0; i < *n; i++ {
go fn()
}
GC()
b.ResetTimer()
for i := 0; i < b.N; i++ {
GC()
}
b.StopTimer()
close(quit)
time.Sleep(10 * time.Millisecond)
}