mirror of
https://github.com/golang/go
synced 2024-11-06 10:36:13 -07:00
7aefdfded0
Currently, the check for legal pointers in stack copying uses _PageSize (8K) as the minimum legal pointer. By default, Linux won't let you map under 64K, but 1) it's less clear what other OSes allow or will allow in the future; 2) while mapping the first page is a terrible idea, mapping anywhere above that is arguably more justifiable; 3) the compiler only assumes the first physical page (4K) is never mapped. Make the runtime consistent with the compiler and more robust by changing the bad pointer check to use 4K as the minimum legal pointer. This came out of discussions on CLs 34663 and 34719. Change-Id: Idf721a788bd9699fb348f47bdd083cf8fa8bd3e5 Reviewed-on: https://go-review.googlesource.com/34890 Run-TryBot: Austin Clements <austin@google.com> TryBot-Result: Gobot Gobot <gobot@golang.org> Reviewed-by: Russ Cox <rsc@golang.org>
974 lines
31 KiB
Go
974 lines
31 KiB
Go
// Copyright 2014 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Memory allocator.
|
|
//
|
|
// This was originally based on tcmalloc, but has diverged quite a bit.
|
|
// http://goog-perftools.sourceforge.net/doc/tcmalloc.html
|
|
|
|
// The main allocator works in runs of pages.
|
|
// Small allocation sizes (up to and including 32 kB) are
|
|
// rounded to one of about 70 size classes, each of which
|
|
// has its own free set of objects of exactly that size.
|
|
// Any free page of memory can be split into a set of objects
|
|
// of one size class, which are then managed using a free bitmap.
|
|
//
|
|
// The allocator's data structures are:
|
|
//
|
|
// fixalloc: a free-list allocator for fixed-size off-heap objects,
|
|
// used to manage storage used by the allocator.
|
|
// mheap: the malloc heap, managed at page (8192-byte) granularity.
|
|
// mspan: a run of pages managed by the mheap.
|
|
// mcentral: collects all spans of a given size class.
|
|
// mcache: a per-P cache of mspans with free space.
|
|
// mstats: allocation statistics.
|
|
//
|
|
// Allocating a small object proceeds up a hierarchy of caches:
|
|
//
|
|
// 1. Round the size up to one of the small size classes
|
|
// and look in the corresponding mspan in this P's mcache.
|
|
// Scan the mspan's free bitmap to find a free slot.
|
|
// If there is a free slot, allocate it.
|
|
// This can all be done without acquiring a lock.
|
|
//
|
|
// 2. If the mspan has no free slots, obtain a new mspan
|
|
// from the mcentral's list of mspans of the required size
|
|
// class that have free space.
|
|
// Obtaining a whole span amortizes the cost of locking
|
|
// the mcentral.
|
|
//
|
|
// 3. If the mcentral's mspan list is empty, obtain a run
|
|
// of pages from the mheap to use for the mspan.
|
|
//
|
|
// 4. If the mheap is empty or has no page runs large enough,
|
|
// allocate a new group of pages (at least 1MB) from the
|
|
// operating system. Allocating a large run of pages
|
|
// amortizes the cost of talking to the operating system.
|
|
//
|
|
// Sweeping an mspan and freeing objects on it proceeds up a similar
|
|
// hierarchy:
|
|
//
|
|
// 1. If the mspan is being swept in response to allocation, it
|
|
// is returned to the mcache to satisfy the allocation.
|
|
//
|
|
// 2. Otherwise, if the mspan still has allocated objects in it,
|
|
// it is placed on the mcentral free list for the mspan's size
|
|
// class.
|
|
//
|
|
// 3. Otherwise, if all objects in the mspan are free, the mspan
|
|
// is now "idle", so it is returned to the mheap and no longer
|
|
// has a size class.
|
|
// This may coalesce it with adjacent idle mspans.
|
|
//
|
|
// 4. If an mspan remains idle for long enough, return its pages
|
|
// to the operating system.
|
|
//
|
|
// Allocating and freeing a large object uses the mheap
|
|
// directly, bypassing the mcache and mcentral.
|
|
//
|
|
// Free object slots in an mspan are zeroed only if mspan.needzero is
|
|
// false. If needzero is true, objects are zeroed as they are
|
|
// allocated. There are various benefits to delaying zeroing this way:
|
|
//
|
|
// 1. Stack frame allocation can avoid zeroing altogether.
|
|
//
|
|
// 2. It exhibits better temporal locality, since the program is
|
|
// probably about to write to the memory.
|
|
//
|
|
// 3. We don't zero pages that never get reused.
|
|
|
|
package runtime
|
|
|
|
import (
|
|
"runtime/internal/sys"
|
|
"unsafe"
|
|
)
|
|
|
|
const (
|
|
debugMalloc = false
|
|
|
|
maxTinySize = _TinySize
|
|
tinySizeClass = _TinySizeClass
|
|
maxSmallSize = _MaxSmallSize
|
|
|
|
pageShift = _PageShift
|
|
pageSize = _PageSize
|
|
pageMask = _PageMask
|
|
// By construction, single page spans of the smallest object class
|
|
// have the most objects per span.
|
|
maxObjsPerSpan = pageSize / 8
|
|
|
|
mSpanInUse = _MSpanInUse
|
|
|
|
concurrentSweep = _ConcurrentSweep
|
|
|
|
_PageSize = 1 << _PageShift
|
|
_PageMask = _PageSize - 1
|
|
|
|
// _64bit = 1 on 64-bit systems, 0 on 32-bit systems
|
|
_64bit = 1 << (^uintptr(0) >> 63) / 2
|
|
|
|
// Tiny allocator parameters, see "Tiny allocator" comment in malloc.go.
|
|
_TinySize = 16
|
|
_TinySizeClass = 2
|
|
|
|
_FixAllocChunk = 16 << 10 // Chunk size for FixAlloc
|
|
_MaxMHeapList = 1 << (20 - _PageShift) // Maximum page length for fixed-size list in MHeap.
|
|
_HeapAllocChunk = 1 << 20 // Chunk size for heap growth
|
|
|
|
// Per-P, per order stack segment cache size.
|
|
_StackCacheSize = 32 * 1024
|
|
|
|
// Number of orders that get caching. Order 0 is FixedStack
|
|
// and each successive order is twice as large.
|
|
// We want to cache 2KB, 4KB, 8KB, and 16KB stacks. Larger stacks
|
|
// will be allocated directly.
|
|
// Since FixedStack is different on different systems, we
|
|
// must vary NumStackOrders to keep the same maximum cached size.
|
|
// OS | FixedStack | NumStackOrders
|
|
// -----------------+------------+---------------
|
|
// linux/darwin/bsd | 2KB | 4
|
|
// windows/32 | 4KB | 3
|
|
// windows/64 | 8KB | 2
|
|
// plan9 | 4KB | 3
|
|
_NumStackOrders = 4 - sys.PtrSize/4*sys.GoosWindows - 1*sys.GoosPlan9
|
|
|
|
// Number of bits in page to span calculations (4k pages).
|
|
// On Windows 64-bit we limit the arena to 32GB or 35 bits.
|
|
// Windows counts memory used by page table into committed memory
|
|
// of the process, so we can't reserve too much memory.
|
|
// See https://golang.org/issue/5402 and https://golang.org/issue/5236.
|
|
// On other 64-bit platforms, we limit the arena to 512GB, or 39 bits.
|
|
// On 32-bit, we don't bother limiting anything, so we use the full 32-bit address.
|
|
// The only exception is mips32 which only has access to low 2GB of virtual memory.
|
|
// On Darwin/arm64, we cannot reserve more than ~5GB of virtual memory,
|
|
// but as most devices have less than 4GB of physical memory anyway, we
|
|
// try to be conservative here, and only ask for a 2GB heap.
|
|
_MHeapMap_TotalBits = (_64bit*sys.GoosWindows)*35 + (_64bit*(1-sys.GoosWindows)*(1-sys.GoosDarwin*sys.GoarchArm64))*39 + sys.GoosDarwin*sys.GoarchArm64*31 + (1-_64bit)*(32-(sys.GoarchMips+sys.GoarchMipsle))
|
|
_MHeapMap_Bits = _MHeapMap_TotalBits - _PageShift
|
|
|
|
_MaxMem = uintptr(1<<_MHeapMap_TotalBits - 1)
|
|
|
|
// Max number of threads to run garbage collection.
|
|
// 2, 3, and 4 are all plausible maximums depending
|
|
// on the hardware details of the machine. The garbage
|
|
// collector scales well to 32 cpus.
|
|
_MaxGcproc = 32
|
|
|
|
_MaxArena32 = 1<<32 - 1
|
|
|
|
// minLegalPointer is the smallest possible legal pointer.
|
|
// This is the smallest possible architectural page size,
|
|
// since we assume that the first page is never mapped.
|
|
//
|
|
// This should agree with minZeroPage in the compiler.
|
|
minLegalPointer uintptr = 4096
|
|
)
|
|
|
|
// physPageSize is the size in bytes of the OS's physical pages.
|
|
// Mapping and unmapping operations must be done at multiples of
|
|
// physPageSize.
|
|
//
|
|
// This must be set by the OS init code (typically in osinit) before
|
|
// mallocinit.
|
|
var physPageSize uintptr
|
|
|
|
// OS-defined helpers:
|
|
//
|
|
// sysAlloc obtains a large chunk of zeroed memory from the
|
|
// operating system, typically on the order of a hundred kilobytes
|
|
// or a megabyte.
|
|
// NOTE: sysAlloc returns OS-aligned memory, but the heap allocator
|
|
// may use larger alignment, so the caller must be careful to realign the
|
|
// memory obtained by sysAlloc.
|
|
//
|
|
// SysUnused notifies the operating system that the contents
|
|
// of the memory region are no longer needed and can be reused
|
|
// for other purposes.
|
|
// SysUsed notifies the operating system that the contents
|
|
// of the memory region are needed again.
|
|
//
|
|
// SysFree returns it unconditionally; this is only used if
|
|
// an out-of-memory error has been detected midway through
|
|
// an allocation. It is okay if SysFree is a no-op.
|
|
//
|
|
// SysReserve reserves address space without allocating memory.
|
|
// If the pointer passed to it is non-nil, the caller wants the
|
|
// reservation there, but SysReserve can still choose another
|
|
// location if that one is unavailable. On some systems and in some
|
|
// cases SysReserve will simply check that the address space is
|
|
// available and not actually reserve it. If SysReserve returns
|
|
// non-nil, it sets *reserved to true if the address space is
|
|
// reserved, false if it has merely been checked.
|
|
// NOTE: SysReserve returns OS-aligned memory, but the heap allocator
|
|
// may use larger alignment, so the caller must be careful to realign the
|
|
// memory obtained by sysAlloc.
|
|
//
|
|
// SysMap maps previously reserved address space for use.
|
|
// The reserved argument is true if the address space was really
|
|
// reserved, not merely checked.
|
|
//
|
|
// SysFault marks a (already sysAlloc'd) region to fault
|
|
// if accessed. Used only for debugging the runtime.
|
|
|
|
func mallocinit() {
|
|
if class_to_size[_TinySizeClass] != _TinySize {
|
|
throw("bad TinySizeClass")
|
|
}
|
|
|
|
testdefersizes()
|
|
|
|
// Copy class sizes out for statistics table.
|
|
for i := range class_to_size {
|
|
memstats.by_size[i].size = uint32(class_to_size[i])
|
|
}
|
|
|
|
// Check physPageSize.
|
|
if physPageSize == 0 {
|
|
// The OS init code failed to fetch the physical page size.
|
|
throw("failed to get system page size")
|
|
}
|
|
if physPageSize < minPhysPageSize {
|
|
print("system page size (", physPageSize, ") is smaller than minimum page size (", minPhysPageSize, ")\n")
|
|
throw("bad system page size")
|
|
}
|
|
if physPageSize&(physPageSize-1) != 0 {
|
|
print("system page size (", physPageSize, ") must be a power of 2\n")
|
|
throw("bad system page size")
|
|
}
|
|
|
|
var p, bitmapSize, spansSize, pSize, limit uintptr
|
|
var reserved bool
|
|
|
|
// limit = runtime.memlimit();
|
|
// See https://golang.org/issue/5049
|
|
// TODO(rsc): Fix after 1.1.
|
|
limit = 0
|
|
|
|
// Set up the allocation arena, a contiguous area of memory where
|
|
// allocated data will be found. The arena begins with a bitmap large
|
|
// enough to hold 2 bits per allocated word.
|
|
if sys.PtrSize == 8 && (limit == 0 || limit > 1<<30) {
|
|
// On a 64-bit machine, allocate from a single contiguous reservation.
|
|
// 512 GB (MaxMem) should be big enough for now.
|
|
//
|
|
// The code will work with the reservation at any address, but ask
|
|
// SysReserve to use 0x0000XXc000000000 if possible (XX=00...7f).
|
|
// Allocating a 512 GB region takes away 39 bits, and the amd64
|
|
// doesn't let us choose the top 17 bits, so that leaves the 9 bits
|
|
// in the middle of 0x00c0 for us to choose. Choosing 0x00c0 means
|
|
// that the valid memory addresses will begin 0x00c0, 0x00c1, ..., 0x00df.
|
|
// In little-endian, that's c0 00, c1 00, ..., df 00. None of those are valid
|
|
// UTF-8 sequences, and they are otherwise as far away from
|
|
// ff (likely a common byte) as possible. If that fails, we try other 0xXXc0
|
|
// addresses. An earlier attempt to use 0x11f8 caused out of memory errors
|
|
// on OS X during thread allocations. 0x00c0 causes conflicts with
|
|
// AddressSanitizer which reserves all memory up to 0x0100.
|
|
// These choices are both for debuggability and to reduce the
|
|
// odds of a conservative garbage collector (as is still used in gccgo)
|
|
// not collecting memory because some non-pointer block of memory
|
|
// had a bit pattern that matched a memory address.
|
|
//
|
|
// Actually we reserve 544 GB (because the bitmap ends up being 32 GB)
|
|
// but it hardly matters: e0 00 is not valid UTF-8 either.
|
|
//
|
|
// If this fails we fall back to the 32 bit memory mechanism
|
|
//
|
|
// However, on arm64, we ignore all this advice above and slam the
|
|
// allocation at 0x40 << 32 because when using 4k pages with 3-level
|
|
// translation buffers, the user address space is limited to 39 bits
|
|
// On darwin/arm64, the address space is even smaller.
|
|
arenaSize := round(_MaxMem, _PageSize)
|
|
bitmapSize = arenaSize / (sys.PtrSize * 8 / 2)
|
|
spansSize = arenaSize / _PageSize * sys.PtrSize
|
|
spansSize = round(spansSize, _PageSize)
|
|
for i := 0; i <= 0x7f; i++ {
|
|
switch {
|
|
case GOARCH == "arm64" && GOOS == "darwin":
|
|
p = uintptr(i)<<40 | uintptrMask&(0x0013<<28)
|
|
case GOARCH == "arm64":
|
|
p = uintptr(i)<<40 | uintptrMask&(0x0040<<32)
|
|
default:
|
|
p = uintptr(i)<<40 | uintptrMask&(0x00c0<<32)
|
|
}
|
|
pSize = bitmapSize + spansSize + arenaSize + _PageSize
|
|
p = uintptr(sysReserve(unsafe.Pointer(p), pSize, &reserved))
|
|
if p != 0 {
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
if p == 0 {
|
|
// On a 32-bit machine, we can't typically get away
|
|
// with a giant virtual address space reservation.
|
|
// Instead we map the memory information bitmap
|
|
// immediately after the data segment, large enough
|
|
// to handle the entire 4GB address space (256 MB),
|
|
// along with a reservation for an initial arena.
|
|
// When that gets used up, we'll start asking the kernel
|
|
// for any memory anywhere.
|
|
|
|
// If we fail to allocate, try again with a smaller arena.
|
|
// This is necessary on Android L where we share a process
|
|
// with ART, which reserves virtual memory aggressively.
|
|
// In the worst case, fall back to a 0-sized initial arena,
|
|
// in the hope that subsequent reservations will succeed.
|
|
arenaSizes := []uintptr{
|
|
512 << 20,
|
|
256 << 20,
|
|
128 << 20,
|
|
0,
|
|
}
|
|
|
|
for _, arenaSize := range arenaSizes {
|
|
bitmapSize = (_MaxArena32 + 1) / (sys.PtrSize * 8 / 2)
|
|
spansSize = (_MaxArena32 + 1) / _PageSize * sys.PtrSize
|
|
if limit > 0 && arenaSize+bitmapSize+spansSize > limit {
|
|
bitmapSize = (limit / 9) &^ ((1 << _PageShift) - 1)
|
|
arenaSize = bitmapSize * 8
|
|
spansSize = arenaSize / _PageSize * sys.PtrSize
|
|
}
|
|
spansSize = round(spansSize, _PageSize)
|
|
|
|
// SysReserve treats the address we ask for, end, as a hint,
|
|
// not as an absolute requirement. If we ask for the end
|
|
// of the data segment but the operating system requires
|
|
// a little more space before we can start allocating, it will
|
|
// give out a slightly higher pointer. Except QEMU, which
|
|
// is buggy, as usual: it won't adjust the pointer upward.
|
|
// So adjust it upward a little bit ourselves: 1/4 MB to get
|
|
// away from the running binary image and then round up
|
|
// to a MB boundary.
|
|
p = round(firstmoduledata.end+(1<<18), 1<<20)
|
|
pSize = bitmapSize + spansSize + arenaSize + _PageSize
|
|
p = uintptr(sysReserve(unsafe.Pointer(p), pSize, &reserved))
|
|
if p != 0 {
|
|
break
|
|
}
|
|
}
|
|
if p == 0 {
|
|
throw("runtime: cannot reserve arena virtual address space")
|
|
}
|
|
}
|
|
|
|
// PageSize can be larger than OS definition of page size,
|
|
// so SysReserve can give us a PageSize-unaligned pointer.
|
|
// To overcome this we ask for PageSize more and round up the pointer.
|
|
p1 := round(p, _PageSize)
|
|
|
|
spansStart := p1
|
|
mheap_.bitmap = p1 + spansSize + bitmapSize
|
|
if sys.PtrSize == 4 {
|
|
// Set arena_start such that we can accept memory
|
|
// reservations located anywhere in the 4GB virtual space.
|
|
mheap_.arena_start = 0
|
|
} else {
|
|
mheap_.arena_start = p1 + (spansSize + bitmapSize)
|
|
}
|
|
mheap_.arena_end = p + pSize
|
|
mheap_.arena_used = p1 + (spansSize + bitmapSize)
|
|
mheap_.arena_reserved = reserved
|
|
|
|
if mheap_.arena_start&(_PageSize-1) != 0 {
|
|
println("bad pagesize", hex(p), hex(p1), hex(spansSize), hex(bitmapSize), hex(_PageSize), "start", hex(mheap_.arena_start))
|
|
throw("misrounded allocation in mallocinit")
|
|
}
|
|
|
|
// Initialize the rest of the allocator.
|
|
mheap_.init(spansStart, spansSize)
|
|
_g_ := getg()
|
|
_g_.m.mcache = allocmcache()
|
|
}
|
|
|
|
// sysAlloc allocates the next n bytes from the heap arena. The
|
|
// returned pointer is always _PageSize aligned and between
|
|
// h.arena_start and h.arena_end. sysAlloc returns nil on failure.
|
|
// There is no corresponding free function.
|
|
func (h *mheap) sysAlloc(n uintptr) unsafe.Pointer {
|
|
if n > h.arena_end-h.arena_used {
|
|
// We are in 32-bit mode, maybe we didn't use all possible address space yet.
|
|
// Reserve some more space.
|
|
p_size := round(n+_PageSize, 256<<20)
|
|
new_end := h.arena_end + p_size // Careful: can overflow
|
|
if h.arena_end <= new_end && new_end-h.arena_start-1 <= _MaxArena32 {
|
|
// TODO: It would be bad if part of the arena
|
|
// is reserved and part is not.
|
|
var reserved bool
|
|
p := uintptr(sysReserve(unsafe.Pointer(h.arena_end), p_size, &reserved))
|
|
if p == 0 {
|
|
return nil
|
|
}
|
|
if p == h.arena_end {
|
|
h.arena_end = new_end
|
|
h.arena_reserved = reserved
|
|
} else if h.arena_start <= p && p+p_size-h.arena_start-1 <= _MaxArena32 {
|
|
// Keep everything page-aligned.
|
|
// Our pages are bigger than hardware pages.
|
|
h.arena_end = p + p_size
|
|
used := p + (-p & (_PageSize - 1))
|
|
h.mapBits(used)
|
|
h.mapSpans(used)
|
|
h.arena_used = used
|
|
h.arena_reserved = reserved
|
|
} else {
|
|
// We haven't added this allocation to
|
|
// the stats, so subtract it from a
|
|
// fake stat (but avoid underflow).
|
|
stat := uint64(p_size)
|
|
sysFree(unsafe.Pointer(p), p_size, &stat)
|
|
}
|
|
}
|
|
}
|
|
|
|
if n <= h.arena_end-h.arena_used {
|
|
// Keep taking from our reservation.
|
|
p := h.arena_used
|
|
sysMap(unsafe.Pointer(p), n, h.arena_reserved, &memstats.heap_sys)
|
|
h.mapBits(p + n)
|
|
h.mapSpans(p + n)
|
|
h.arena_used = p + n
|
|
if raceenabled {
|
|
racemapshadow(unsafe.Pointer(p), n)
|
|
}
|
|
|
|
if p&(_PageSize-1) != 0 {
|
|
throw("misrounded allocation in MHeap_SysAlloc")
|
|
}
|
|
return unsafe.Pointer(p)
|
|
}
|
|
|
|
// If using 64-bit, our reservation is all we have.
|
|
if h.arena_end-h.arena_start > _MaxArena32 {
|
|
return nil
|
|
}
|
|
|
|
// On 32-bit, once the reservation is gone we can
|
|
// try to get memory at a location chosen by the OS.
|
|
p_size := round(n, _PageSize) + _PageSize
|
|
p := uintptr(sysAlloc(p_size, &memstats.heap_sys))
|
|
if p == 0 {
|
|
return nil
|
|
}
|
|
|
|
if p < h.arena_start || p+p_size-h.arena_start > _MaxArena32 {
|
|
top := ^uintptr(0)
|
|
if top-h.arena_start-1 > _MaxArena32 {
|
|
top = h.arena_start + _MaxArena32 + 1
|
|
}
|
|
print("runtime: memory allocated by OS (", hex(p), ") not in usable range [", hex(h.arena_start), ",", hex(top), ")\n")
|
|
sysFree(unsafe.Pointer(p), p_size, &memstats.heap_sys)
|
|
return nil
|
|
}
|
|
|
|
p_end := p + p_size
|
|
p += -p & (_PageSize - 1)
|
|
if p+n > h.arena_used {
|
|
h.mapBits(p + n)
|
|
h.mapSpans(p + n)
|
|
h.arena_used = p + n
|
|
if p_end > h.arena_end {
|
|
h.arena_end = p_end
|
|
}
|
|
if raceenabled {
|
|
racemapshadow(unsafe.Pointer(p), n)
|
|
}
|
|
}
|
|
|
|
if p&(_PageSize-1) != 0 {
|
|
throw("misrounded allocation in MHeap_SysAlloc")
|
|
}
|
|
return unsafe.Pointer(p)
|
|
}
|
|
|
|
// base address for all 0-byte allocations
|
|
var zerobase uintptr
|
|
|
|
// nextFreeFast returns the next free object if one is quickly available.
|
|
// Otherwise it returns 0.
|
|
func nextFreeFast(s *mspan) gclinkptr {
|
|
theBit := sys.Ctz64(s.allocCache) // Is there a free object in the allocCache?
|
|
if theBit < 64 {
|
|
result := s.freeindex + uintptr(theBit)
|
|
if result < s.nelems {
|
|
freeidx := result + 1
|
|
if freeidx%64 == 0 && freeidx != s.nelems {
|
|
return 0
|
|
}
|
|
s.allocCache >>= (theBit + 1)
|
|
s.freeindex = freeidx
|
|
v := gclinkptr(result*s.elemsize + s.base())
|
|
s.allocCount++
|
|
return v
|
|
}
|
|
}
|
|
return 0
|
|
}
|
|
|
|
// nextFree returns the next free object from the cached span if one is available.
|
|
// Otherwise it refills the cache with a span with an available object and
|
|
// returns that object along with a flag indicating that this was a heavy
|
|
// weight allocation. If it is a heavy weight allocation the caller must
|
|
// determine whether a new GC cycle needs to be started or if the GC is active
|
|
// whether this goroutine needs to assist the GC.
|
|
func (c *mcache) nextFree(sizeclass uint8) (v gclinkptr, s *mspan, shouldhelpgc bool) {
|
|
s = c.alloc[sizeclass]
|
|
shouldhelpgc = false
|
|
freeIndex := s.nextFreeIndex()
|
|
if freeIndex == s.nelems {
|
|
// The span is full.
|
|
if uintptr(s.allocCount) != s.nelems {
|
|
println("runtime: s.allocCount=", s.allocCount, "s.nelems=", s.nelems)
|
|
throw("s.allocCount != s.nelems && freeIndex == s.nelems")
|
|
}
|
|
systemstack(func() {
|
|
c.refill(int32(sizeclass))
|
|
})
|
|
shouldhelpgc = true
|
|
s = c.alloc[sizeclass]
|
|
|
|
freeIndex = s.nextFreeIndex()
|
|
}
|
|
|
|
if freeIndex >= s.nelems {
|
|
throw("freeIndex is not valid")
|
|
}
|
|
|
|
v = gclinkptr(freeIndex*s.elemsize + s.base())
|
|
s.allocCount++
|
|
if uintptr(s.allocCount) > s.nelems {
|
|
println("s.allocCount=", s.allocCount, "s.nelems=", s.nelems)
|
|
throw("s.allocCount > s.nelems")
|
|
}
|
|
return
|
|
}
|
|
|
|
// Allocate an object of size bytes.
|
|
// Small objects are allocated from the per-P cache's free lists.
|
|
// Large objects (> 32 kB) are allocated straight from the heap.
|
|
func mallocgc(size uintptr, typ *_type, needzero bool) unsafe.Pointer {
|
|
if gcphase == _GCmarktermination {
|
|
throw("mallocgc called with gcphase == _GCmarktermination")
|
|
}
|
|
|
|
if size == 0 {
|
|
return unsafe.Pointer(&zerobase)
|
|
}
|
|
|
|
if debug.sbrk != 0 {
|
|
align := uintptr(16)
|
|
if typ != nil {
|
|
align = uintptr(typ.align)
|
|
}
|
|
return persistentalloc(size, align, &memstats.other_sys)
|
|
}
|
|
|
|
// assistG is the G to charge for this allocation, or nil if
|
|
// GC is not currently active.
|
|
var assistG *g
|
|
if gcBlackenEnabled != 0 {
|
|
// Charge the current user G for this allocation.
|
|
assistG = getg()
|
|
if assistG.m.curg != nil {
|
|
assistG = assistG.m.curg
|
|
}
|
|
// Charge the allocation against the G. We'll account
|
|
// for internal fragmentation at the end of mallocgc.
|
|
assistG.gcAssistBytes -= int64(size)
|
|
|
|
if assistG.gcAssistBytes < 0 {
|
|
// This G is in debt. Assist the GC to correct
|
|
// this before allocating. This must happen
|
|
// before disabling preemption.
|
|
gcAssistAlloc(assistG)
|
|
}
|
|
}
|
|
|
|
// Set mp.mallocing to keep from being preempted by GC.
|
|
mp := acquirem()
|
|
if mp.mallocing != 0 {
|
|
throw("malloc deadlock")
|
|
}
|
|
if mp.gsignal == getg() {
|
|
throw("malloc during signal")
|
|
}
|
|
mp.mallocing = 1
|
|
|
|
shouldhelpgc := false
|
|
dataSize := size
|
|
c := gomcache()
|
|
var x unsafe.Pointer
|
|
noscan := typ == nil || typ.kind&kindNoPointers != 0
|
|
if size <= maxSmallSize {
|
|
if noscan && size < maxTinySize {
|
|
// Tiny allocator.
|
|
//
|
|
// Tiny allocator combines several tiny allocation requests
|
|
// into a single memory block. The resulting memory block
|
|
// is freed when all subobjects are unreachable. The subobjects
|
|
// must be noscan (don't have pointers), this ensures that
|
|
// the amount of potentially wasted memory is bounded.
|
|
//
|
|
// Size of the memory block used for combining (maxTinySize) is tunable.
|
|
// Current setting is 16 bytes, which relates to 2x worst case memory
|
|
// wastage (when all but one subobjects are unreachable).
|
|
// 8 bytes would result in no wastage at all, but provides less
|
|
// opportunities for combining.
|
|
// 32 bytes provides more opportunities for combining,
|
|
// but can lead to 4x worst case wastage.
|
|
// The best case winning is 8x regardless of block size.
|
|
//
|
|
// Objects obtained from tiny allocator must not be freed explicitly.
|
|
// So when an object will be freed explicitly, we ensure that
|
|
// its size >= maxTinySize.
|
|
//
|
|
// SetFinalizer has a special case for objects potentially coming
|
|
// from tiny allocator, it such case it allows to set finalizers
|
|
// for an inner byte of a memory block.
|
|
//
|
|
// The main targets of tiny allocator are small strings and
|
|
// standalone escaping variables. On a json benchmark
|
|
// the allocator reduces number of allocations by ~12% and
|
|
// reduces heap size by ~20%.
|
|
off := c.tinyoffset
|
|
// Align tiny pointer for required (conservative) alignment.
|
|
if size&7 == 0 {
|
|
off = round(off, 8)
|
|
} else if size&3 == 0 {
|
|
off = round(off, 4)
|
|
} else if size&1 == 0 {
|
|
off = round(off, 2)
|
|
}
|
|
if off+size <= maxTinySize && c.tiny != 0 {
|
|
// The object fits into existing tiny block.
|
|
x = unsafe.Pointer(c.tiny + off)
|
|
c.tinyoffset = off + size
|
|
c.local_tinyallocs++
|
|
mp.mallocing = 0
|
|
releasem(mp)
|
|
return x
|
|
}
|
|
// Allocate a new maxTinySize block.
|
|
span := c.alloc[tinySizeClass]
|
|
v := nextFreeFast(span)
|
|
if v == 0 {
|
|
v, _, shouldhelpgc = c.nextFree(tinySizeClass)
|
|
}
|
|
x = unsafe.Pointer(v)
|
|
(*[2]uint64)(x)[0] = 0
|
|
(*[2]uint64)(x)[1] = 0
|
|
// See if we need to replace the existing tiny block with the new one
|
|
// based on amount of remaining free space.
|
|
if size < c.tinyoffset || c.tiny == 0 {
|
|
c.tiny = uintptr(x)
|
|
c.tinyoffset = size
|
|
}
|
|
size = maxTinySize
|
|
} else {
|
|
var sizeclass uint8
|
|
if size <= smallSizeMax-8 {
|
|
sizeclass = size_to_class8[(size+smallSizeDiv-1)/smallSizeDiv]
|
|
} else {
|
|
sizeclass = size_to_class128[(size-smallSizeMax+largeSizeDiv-1)/largeSizeDiv]
|
|
}
|
|
size = uintptr(class_to_size[sizeclass])
|
|
span := c.alloc[sizeclass]
|
|
v := nextFreeFast(span)
|
|
if v == 0 {
|
|
v, span, shouldhelpgc = c.nextFree(sizeclass)
|
|
}
|
|
x = unsafe.Pointer(v)
|
|
if needzero && span.needzero != 0 {
|
|
memclrNoHeapPointers(unsafe.Pointer(v), size)
|
|
}
|
|
}
|
|
} else {
|
|
var s *mspan
|
|
shouldhelpgc = true
|
|
systemstack(func() {
|
|
s = largeAlloc(size, needzero)
|
|
})
|
|
s.freeindex = 1
|
|
s.allocCount = 1
|
|
x = unsafe.Pointer(s.base())
|
|
size = s.elemsize
|
|
}
|
|
|
|
var scanSize uintptr
|
|
if noscan {
|
|
heapBitsSetTypeNoScan(uintptr(x))
|
|
} else {
|
|
// If allocating a defer+arg block, now that we've picked a malloc size
|
|
// large enough to hold everything, cut the "asked for" size down to
|
|
// just the defer header, so that the GC bitmap will record the arg block
|
|
// as containing nothing at all (as if it were unused space at the end of
|
|
// a malloc block caused by size rounding).
|
|
// The defer arg areas are scanned as part of scanstack.
|
|
if typ == deferType {
|
|
dataSize = unsafe.Sizeof(_defer{})
|
|
}
|
|
heapBitsSetType(uintptr(x), size, dataSize, typ)
|
|
if dataSize > typ.size {
|
|
// Array allocation. If there are any
|
|
// pointers, GC has to scan to the last
|
|
// element.
|
|
if typ.ptrdata != 0 {
|
|
scanSize = dataSize - typ.size + typ.ptrdata
|
|
}
|
|
} else {
|
|
scanSize = typ.ptrdata
|
|
}
|
|
c.local_scan += scanSize
|
|
}
|
|
|
|
// Ensure that the stores above that initialize x to
|
|
// type-safe memory and set the heap bits occur before
|
|
// the caller can make x observable to the garbage
|
|
// collector. Otherwise, on weakly ordered machines,
|
|
// the garbage collector could follow a pointer to x,
|
|
// but see uninitialized memory or stale heap bits.
|
|
publicationBarrier()
|
|
|
|
// Allocate black during GC.
|
|
// All slots hold nil so no scanning is needed.
|
|
// This may be racing with GC so do it atomically if there can be
|
|
// a race marking the bit.
|
|
if gcphase != _GCoff {
|
|
gcmarknewobject(uintptr(x), size, scanSize)
|
|
}
|
|
|
|
if raceenabled {
|
|
racemalloc(x, size)
|
|
}
|
|
|
|
if msanenabled {
|
|
msanmalloc(x, size)
|
|
}
|
|
|
|
mp.mallocing = 0
|
|
releasem(mp)
|
|
|
|
if debug.allocfreetrace != 0 {
|
|
tracealloc(x, size, typ)
|
|
}
|
|
|
|
if rate := MemProfileRate; rate > 0 {
|
|
if size < uintptr(rate) && int32(size) < c.next_sample {
|
|
c.next_sample -= int32(size)
|
|
} else {
|
|
mp := acquirem()
|
|
profilealloc(mp, x, size)
|
|
releasem(mp)
|
|
}
|
|
}
|
|
|
|
if assistG != nil {
|
|
// Account for internal fragmentation in the assist
|
|
// debt now that we know it.
|
|
assistG.gcAssistBytes -= int64(size - dataSize)
|
|
}
|
|
|
|
if shouldhelpgc && gcShouldStart(false) {
|
|
gcStart(gcBackgroundMode, false)
|
|
}
|
|
|
|
return x
|
|
}
|
|
|
|
func largeAlloc(size uintptr, needzero bool) *mspan {
|
|
// print("largeAlloc size=", size, "\n")
|
|
|
|
if size+_PageSize < size {
|
|
throw("out of memory")
|
|
}
|
|
npages := size >> _PageShift
|
|
if size&_PageMask != 0 {
|
|
npages++
|
|
}
|
|
|
|
// Deduct credit for this span allocation and sweep if
|
|
// necessary. mHeap_Alloc will also sweep npages, so this only
|
|
// pays the debt down to npage pages.
|
|
deductSweepCredit(npages*_PageSize, npages)
|
|
|
|
s := mheap_.alloc(npages, 0, true, needzero)
|
|
if s == nil {
|
|
throw("out of memory")
|
|
}
|
|
s.limit = s.base() + size
|
|
heapBitsForSpan(s.base()).initSpan(s)
|
|
return s
|
|
}
|
|
|
|
// implementation of new builtin
|
|
// compiler (both frontend and SSA backend) knows the signature
|
|
// of this function
|
|
func newobject(typ *_type) unsafe.Pointer {
|
|
return mallocgc(typ.size, typ, true)
|
|
}
|
|
|
|
//go:linkname reflect_unsafe_New reflect.unsafe_New
|
|
func reflect_unsafe_New(typ *_type) unsafe.Pointer {
|
|
return newobject(typ)
|
|
}
|
|
|
|
// newarray allocates an array of n elements of type typ.
|
|
func newarray(typ *_type, n int) unsafe.Pointer {
|
|
if n < 0 || uintptr(n) > maxSliceCap(typ.size) {
|
|
panic(plainError("runtime: allocation size out of range"))
|
|
}
|
|
return mallocgc(typ.size*uintptr(n), typ, true)
|
|
}
|
|
|
|
//go:linkname reflect_unsafe_NewArray reflect.unsafe_NewArray
|
|
func reflect_unsafe_NewArray(typ *_type, n int) unsafe.Pointer {
|
|
return newarray(typ, n)
|
|
}
|
|
|
|
func profilealloc(mp *m, x unsafe.Pointer, size uintptr) {
|
|
mp.mcache.next_sample = nextSample()
|
|
mProf_Malloc(x, size)
|
|
}
|
|
|
|
// nextSample returns the next sampling point for heap profiling.
|
|
// It produces a random variable with a geometric distribution and
|
|
// mean MemProfileRate. This is done by generating a uniformly
|
|
// distributed random number and applying the cumulative distribution
|
|
// function for an exponential.
|
|
func nextSample() int32 {
|
|
if GOOS == "plan9" {
|
|
// Plan 9 doesn't support floating point in note handler.
|
|
if g := getg(); g == g.m.gsignal {
|
|
return nextSampleNoFP()
|
|
}
|
|
}
|
|
|
|
period := MemProfileRate
|
|
|
|
// make nextSample not overflow. Maximum possible step is
|
|
// -ln(1/(1<<kRandomBitCount)) * period, approximately 20 * period.
|
|
switch {
|
|
case period > 0x7000000:
|
|
period = 0x7000000
|
|
case period == 0:
|
|
return 0
|
|
}
|
|
|
|
// Let m be the sample rate,
|
|
// the probability distribution function is m*exp(-mx), so the CDF is
|
|
// p = 1 - exp(-mx), so
|
|
// q = 1 - p == exp(-mx)
|
|
// log_e(q) = -mx
|
|
// -log_e(q)/m = x
|
|
// x = -log_e(q) * period
|
|
// x = log_2(q) * (-log_e(2)) * period ; Using log_2 for efficiency
|
|
const randomBitCount = 26
|
|
q := fastrand()%(1<<randomBitCount) + 1
|
|
qlog := fastlog2(float64(q)) - randomBitCount
|
|
if qlog > 0 {
|
|
qlog = 0
|
|
}
|
|
const minusLog2 = -0.6931471805599453 // -ln(2)
|
|
return int32(qlog*(minusLog2*float64(period))) + 1
|
|
}
|
|
|
|
// nextSampleNoFP is similar to nextSample, but uses older,
|
|
// simpler code to avoid floating point.
|
|
func nextSampleNoFP() int32 {
|
|
// Set first allocation sample size.
|
|
rate := MemProfileRate
|
|
if rate > 0x3fffffff { // make 2*rate not overflow
|
|
rate = 0x3fffffff
|
|
}
|
|
if rate != 0 {
|
|
return int32(int(fastrand()) % (2 * rate))
|
|
}
|
|
return 0
|
|
}
|
|
|
|
type persistentAlloc struct {
|
|
base unsafe.Pointer
|
|
off uintptr
|
|
}
|
|
|
|
var globalAlloc struct {
|
|
mutex
|
|
persistentAlloc
|
|
}
|
|
|
|
// Wrapper around sysAlloc that can allocate small chunks.
|
|
// There is no associated free operation.
|
|
// Intended for things like function/type/debug-related persistent data.
|
|
// If align is 0, uses default align (currently 8).
|
|
// The returned memory will be zeroed.
|
|
//
|
|
// Consider marking persistentalloc'd types go:notinheap.
|
|
func persistentalloc(size, align uintptr, sysStat *uint64) unsafe.Pointer {
|
|
var p unsafe.Pointer
|
|
systemstack(func() {
|
|
p = persistentalloc1(size, align, sysStat)
|
|
})
|
|
return p
|
|
}
|
|
|
|
// Must run on system stack because stack growth can (re)invoke it.
|
|
// See issue 9174.
|
|
//go:systemstack
|
|
func persistentalloc1(size, align uintptr, sysStat *uint64) unsafe.Pointer {
|
|
const (
|
|
chunk = 256 << 10
|
|
maxBlock = 64 << 10 // VM reservation granularity is 64K on windows
|
|
)
|
|
|
|
if size == 0 {
|
|
throw("persistentalloc: size == 0")
|
|
}
|
|
if align != 0 {
|
|
if align&(align-1) != 0 {
|
|
throw("persistentalloc: align is not a power of 2")
|
|
}
|
|
if align > _PageSize {
|
|
throw("persistentalloc: align is too large")
|
|
}
|
|
} else {
|
|
align = 8
|
|
}
|
|
|
|
if size >= maxBlock {
|
|
return sysAlloc(size, sysStat)
|
|
}
|
|
|
|
mp := acquirem()
|
|
var persistent *persistentAlloc
|
|
if mp != nil && mp.p != 0 {
|
|
persistent = &mp.p.ptr().palloc
|
|
} else {
|
|
lock(&globalAlloc.mutex)
|
|
persistent = &globalAlloc.persistentAlloc
|
|
}
|
|
persistent.off = round(persistent.off, align)
|
|
if persistent.off+size > chunk || persistent.base == nil {
|
|
persistent.base = sysAlloc(chunk, &memstats.other_sys)
|
|
if persistent.base == nil {
|
|
if persistent == &globalAlloc.persistentAlloc {
|
|
unlock(&globalAlloc.mutex)
|
|
}
|
|
throw("runtime: cannot allocate memory")
|
|
}
|
|
persistent.off = 0
|
|
}
|
|
p := add(persistent.base, persistent.off)
|
|
persistent.off += size
|
|
releasem(mp)
|
|
if persistent == &globalAlloc.persistentAlloc {
|
|
unlock(&globalAlloc.mutex)
|
|
}
|
|
|
|
if sysStat != &memstats.other_sys {
|
|
mSysStatInc(sysStat, size)
|
|
mSysStatDec(&memstats.other_sys, size)
|
|
}
|
|
return p
|
|
}
|