mirror of
https://github.com/golang/go
synced 2024-11-19 05:44:40 -07:00
87ced824bd
Motivation: Previously, we assumed that the set of types for which a complete method set (containing all synthesized wrapper functions) is required at runtime was the set of types used as operands to some *ssa.MakeInterface instruction. In fact, this is an underapproximation because types can be derived from other ones via reflection, and some of these may need methods. The reflect.Type API allows *T to be derived from T, and these may have different method sets. Reflection also allows almost any subcomponent of a type to be accessed (with one exception: given T, defined 'type T struct{S}', you can reach S but not struct{S}). As a result, the pointer analysis was unable to generate all necessary constraints before running the solver, causing a crash when reflection derives types whose methods are unavailable. (A similar problem would afflict an ahead-of-time compiler based on ssa. The ssa/interp interpreter was immune only because it does not require all wrapper methods to be created before execution begins.) Description: This change causes the SSA builder to record, for each package, the set of all types with non-empty method sets that are referenced within that package. This set is accessed via Packages.TypesWithMethodSets(). Program.TypesWithMethodSets() returns its union across all packages. The set of references that matter are: - types of operands to some MakeInterface instruction (as before) - types of all exported package members - all subcomponents of the above, recursively. This is a conservative approximation to the set of types whose methods may be called dynamically. We define the owning package of a type as follows: - the owner of a named type is the package in which it is defined; - the owner of a pointer-to-named type is the owner of that named type; - the owner of all other types is nil. A package must include the method sets for all types that it owns, and all subcomponents of that type that are not owned by another package, recursively. Types with an owner appear in exactly one package; types with no owner (such as struct{T}) may appear within multiple packages. (A typical Go compiler would emit multiple copies of these methods as weak symbols; a typical linker would eliminate duplicates.) Also: - go/types/typemap: implement hash function for *Tuple. - pointer: generate nodes/constraints for all of ssa.Program.TypesWithMethodSets(). Add rtti.go regression test. - Add API test of Package.TypesWithMethodSets(). - Set Function.Pkg to nil (again) for wrapper functions, since these may be shared by many packages. - Remove a redundant logging statement. - Document that ssa CREATE phase is in fact sequential. Fixes golang/go#6605 R=gri CC=golang-dev https://golang.org/cl/14920056
452 lines
12 KiB
Go
452 lines
12 KiB
Go
// Copyright 2013 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package ssa
|
|
|
|
// Helpers for emitting SSA instructions.
|
|
|
|
import (
|
|
"go/ast"
|
|
"go/token"
|
|
|
|
"code.google.com/p/go.tools/go/types"
|
|
)
|
|
|
|
// emitNew emits to f a new (heap Alloc) instruction allocating an
|
|
// object of type typ. pos is the optional source location.
|
|
//
|
|
func emitNew(f *Function, typ types.Type, pos token.Pos) *Alloc {
|
|
v := &Alloc{Heap: true}
|
|
v.setType(types.NewPointer(typ))
|
|
v.setPos(pos)
|
|
f.emit(v)
|
|
return v
|
|
}
|
|
|
|
// emitLoad emits to f an instruction to load the address addr into a
|
|
// new temporary, and returns the value so defined.
|
|
//
|
|
func emitLoad(f *Function, addr Value) *UnOp {
|
|
v := &UnOp{Op: token.MUL, X: addr}
|
|
v.setType(deref(addr.Type()))
|
|
f.emit(v)
|
|
return v
|
|
}
|
|
|
|
// emitDebugRef emits to f a DebugRef pseudo-instruction associating
|
|
// expression e with value v.
|
|
//
|
|
func emitDebugRef(f *Function, e ast.Expr, v Value) {
|
|
if !f.debugInfo() {
|
|
return // debugging not enabled
|
|
}
|
|
if v == nil || e == nil {
|
|
panic("nil")
|
|
}
|
|
var obj types.Object
|
|
if id, ok := e.(*ast.Ident); ok {
|
|
if isBlankIdent(id) {
|
|
return
|
|
}
|
|
obj = f.Pkg.objectOf(id)
|
|
if _, ok := obj.(*types.Const); ok {
|
|
return
|
|
}
|
|
}
|
|
f.emit(&DebugRef{
|
|
X: v,
|
|
Expr: unparen(e),
|
|
object: obj,
|
|
})
|
|
}
|
|
|
|
// emitArith emits to f code to compute the binary operation op(x, y)
|
|
// where op is an eager shift, logical or arithmetic operation.
|
|
// (Use emitCompare() for comparisons and Builder.logicalBinop() for
|
|
// non-eager operations.)
|
|
//
|
|
func emitArith(f *Function, op token.Token, x, y Value, t types.Type, pos token.Pos) Value {
|
|
switch op {
|
|
case token.SHL, token.SHR:
|
|
x = emitConv(f, x, t)
|
|
// y may be signed or an 'untyped' constant.
|
|
// TODO(adonovan): whence signed values?
|
|
if b, ok := y.Type().Underlying().(*types.Basic); ok && b.Info()&types.IsUnsigned == 0 {
|
|
y = emitConv(f, y, types.Typ[types.Uint64])
|
|
}
|
|
|
|
case token.ADD, token.SUB, token.MUL, token.QUO, token.REM, token.AND, token.OR, token.XOR, token.AND_NOT:
|
|
x = emitConv(f, x, t)
|
|
y = emitConv(f, y, t)
|
|
|
|
default:
|
|
panic("illegal op in emitArith: " + op.String())
|
|
|
|
}
|
|
v := &BinOp{
|
|
Op: op,
|
|
X: x,
|
|
Y: y,
|
|
}
|
|
v.setPos(pos)
|
|
v.setType(t)
|
|
return f.emit(v)
|
|
}
|
|
|
|
// emitCompare emits to f code compute the boolean result of
|
|
// comparison comparison 'x op y'.
|
|
//
|
|
func emitCompare(f *Function, op token.Token, x, y Value, pos token.Pos) Value {
|
|
xt := x.Type().Underlying()
|
|
yt := y.Type().Underlying()
|
|
|
|
// Special case to optimise a tagless SwitchStmt so that
|
|
// these are equivalent
|
|
// switch { case e: ...}
|
|
// switch true { case e: ... }
|
|
// if e==true { ... }
|
|
// even in the case when e's type is an interface.
|
|
// TODO(adonovan): opt: generalise to x==true, false!=y, etc.
|
|
if x == vTrue && op == token.EQL {
|
|
if yt, ok := yt.(*types.Basic); ok && yt.Info()&types.IsBoolean != 0 {
|
|
return y
|
|
}
|
|
}
|
|
|
|
if types.IsIdentical(xt, yt) {
|
|
// no conversion necessary
|
|
} else if _, ok := xt.(*types.Interface); ok {
|
|
y = emitConv(f, y, x.Type())
|
|
} else if _, ok := yt.(*types.Interface); ok {
|
|
x = emitConv(f, x, y.Type())
|
|
} else if _, ok := x.(*Const); ok {
|
|
x = emitConv(f, x, y.Type())
|
|
} else if _, ok := y.(*Const); ok {
|
|
y = emitConv(f, y, x.Type())
|
|
} else {
|
|
// other cases, e.g. channels. No-op.
|
|
}
|
|
|
|
v := &BinOp{
|
|
Op: op,
|
|
X: x,
|
|
Y: y,
|
|
}
|
|
v.setPos(pos)
|
|
v.setType(tBool)
|
|
return f.emit(v)
|
|
}
|
|
|
|
// isValuePreserving returns true if a conversion from ut_src to
|
|
// ut_dst is value-preserving, i.e. just a change of type.
|
|
// Precondition: neither argument is a named type.
|
|
//
|
|
func isValuePreserving(ut_src, ut_dst types.Type) bool {
|
|
// Identical underlying types?
|
|
if types.IsIdentical(ut_dst, ut_src) {
|
|
return true
|
|
}
|
|
|
|
switch ut_dst.(type) {
|
|
case *types.Chan:
|
|
// Conversion between channel types?
|
|
_, ok := ut_src.(*types.Chan)
|
|
return ok
|
|
|
|
case *types.Pointer:
|
|
// Conversion between pointers with identical base types?
|
|
_, ok := ut_src.(*types.Pointer)
|
|
return ok
|
|
|
|
case *types.Signature:
|
|
// Conversion from (T) func f() method to f(T) function?
|
|
_, ok := ut_src.(*types.Signature)
|
|
return ok
|
|
}
|
|
return false
|
|
}
|
|
|
|
// emitConv emits to f code to convert Value val to exactly type typ,
|
|
// and returns the converted value. Implicit conversions are required
|
|
// by language assignability rules in assignments, parameter passing,
|
|
// etc. Conversions cannot fail dynamically.
|
|
//
|
|
func emitConv(f *Function, val Value, typ types.Type) Value {
|
|
t_src := val.Type()
|
|
|
|
// Identical types? Conversion is a no-op.
|
|
if types.IsIdentical(t_src, typ) {
|
|
return val
|
|
}
|
|
|
|
ut_dst := typ.Underlying()
|
|
ut_src := t_src.Underlying()
|
|
|
|
// Just a change of type, but not value or representation?
|
|
if isValuePreserving(ut_src, ut_dst) {
|
|
c := &ChangeType{X: val}
|
|
c.setType(typ)
|
|
return f.emit(c)
|
|
}
|
|
|
|
// Conversion to, or construction of a value of, an interface type?
|
|
if _, ok := ut_dst.(*types.Interface); ok {
|
|
// Assignment from one interface type to another?
|
|
if _, ok := ut_src.(*types.Interface); ok {
|
|
c := &ChangeInterface{X: val}
|
|
c.setType(typ)
|
|
return f.emit(c)
|
|
}
|
|
|
|
// Untyped nil constant? Return interface-typed nil constant.
|
|
if ut_src == tUntypedNil {
|
|
return nilConst(typ)
|
|
}
|
|
|
|
// Convert (non-nil) "untyped" literals to their default type.
|
|
if t, ok := ut_src.(*types.Basic); ok && t.Info()&types.IsUntyped != 0 {
|
|
val = emitConv(f, val, DefaultType(ut_src))
|
|
}
|
|
|
|
f.Pkg.needMethodsOf(val.Type())
|
|
mi := &MakeInterface{X: val}
|
|
mi.setType(typ)
|
|
return f.emit(mi)
|
|
}
|
|
|
|
// Conversion of a constant to a non-interface type results in
|
|
// a new constant of the destination type and (initially) the
|
|
// same abstract value. We don't compute the representation
|
|
// change yet; this defers the point at which the number of
|
|
// possible representations explodes.
|
|
if c, ok := val.(*Const); ok {
|
|
return NewConst(c.Value, typ)
|
|
}
|
|
|
|
// A representation-changing conversion.
|
|
c := &Convert{X: val}
|
|
c.setType(typ)
|
|
return f.emit(c)
|
|
}
|
|
|
|
// emitStore emits to f an instruction to store value val at location
|
|
// addr, applying implicit conversions as required by assignabilty rules.
|
|
//
|
|
func emitStore(f *Function, addr, val Value) *Store {
|
|
s := &Store{
|
|
Addr: addr,
|
|
Val: emitConv(f, val, deref(addr.Type())),
|
|
}
|
|
f.emit(s)
|
|
return s
|
|
}
|
|
|
|
// emitJump emits to f a jump to target, and updates the control-flow graph.
|
|
// Postcondition: f.currentBlock is nil.
|
|
//
|
|
func emitJump(f *Function, target *BasicBlock) {
|
|
b := f.currentBlock
|
|
b.emit(new(Jump))
|
|
addEdge(b, target)
|
|
f.currentBlock = nil
|
|
}
|
|
|
|
// emitIf emits to f a conditional jump to tblock or fblock based on
|
|
// cond, and updates the control-flow graph.
|
|
// Postcondition: f.currentBlock is nil.
|
|
//
|
|
func emitIf(f *Function, cond Value, tblock, fblock *BasicBlock) {
|
|
b := f.currentBlock
|
|
b.emit(&If{Cond: cond})
|
|
addEdge(b, tblock)
|
|
addEdge(b, fblock)
|
|
f.currentBlock = nil
|
|
}
|
|
|
|
// emitExtract emits to f an instruction to extract the index'th
|
|
// component of tuple, ascribing it type typ. It returns the
|
|
// extracted value.
|
|
//
|
|
func emitExtract(f *Function, tuple Value, index int, typ types.Type) Value {
|
|
e := &Extract{Tuple: tuple, Index: index}
|
|
// In all cases but one (tSelect's recv), typ is redundant w.r.t.
|
|
// tuple.Type().(*types.Tuple).Values[index].Type.
|
|
e.setType(typ)
|
|
return f.emit(e)
|
|
}
|
|
|
|
// emitTypeAssert emits to f a type assertion value := x.(t) and
|
|
// returns the value. x.Type() must be an interface.
|
|
//
|
|
func emitTypeAssert(f *Function, x Value, t types.Type, pos token.Pos) Value {
|
|
a := &TypeAssert{X: x, AssertedType: t}
|
|
a.setPos(pos)
|
|
a.setType(t)
|
|
return f.emit(a)
|
|
}
|
|
|
|
// emitTypeTest emits to f a type test value,ok := x.(t) and returns
|
|
// a (value, ok) tuple. x.Type() must be an interface.
|
|
//
|
|
func emitTypeTest(f *Function, x Value, t types.Type, pos token.Pos) Value {
|
|
a := &TypeAssert{
|
|
X: x,
|
|
AssertedType: t,
|
|
CommaOk: true,
|
|
}
|
|
a.setPos(pos)
|
|
a.setType(types.NewTuple(
|
|
types.NewVar(token.NoPos, nil, "value", t),
|
|
varOk,
|
|
))
|
|
return f.emit(a)
|
|
}
|
|
|
|
// emitTailCall emits to f a function call in tail position. The
|
|
// caller is responsible for all fields of 'call' except its type.
|
|
// Intended for wrapper methods.
|
|
// Precondition: f does/will not use deferred procedure calls.
|
|
// Postcondition: f.currentBlock is nil.
|
|
//
|
|
func emitTailCall(f *Function, call *Call) {
|
|
tresults := f.Signature.Results()
|
|
nr := tresults.Len()
|
|
if nr == 1 {
|
|
call.typ = tresults.At(0).Type()
|
|
} else {
|
|
call.typ = tresults
|
|
}
|
|
tuple := f.emit(call)
|
|
var ret Return
|
|
switch nr {
|
|
case 0:
|
|
// no-op
|
|
case 1:
|
|
ret.Results = []Value{tuple}
|
|
default:
|
|
for i := 0; i < nr; i++ {
|
|
v := emitExtract(f, tuple, i, tresults.At(i).Type())
|
|
// TODO(adonovan): in principle, this is required:
|
|
// v = emitConv(f, o.Type, f.Signature.Results[i].Type)
|
|
// but in practice emitTailCall is only used when
|
|
// the types exactly match.
|
|
ret.Results = append(ret.Results, v)
|
|
}
|
|
}
|
|
f.emit(&ret)
|
|
f.currentBlock = nil
|
|
}
|
|
|
|
// emitImplicitSelections emits to f code to apply the sequence of
|
|
// implicit field selections specified by indices to base value v, and
|
|
// returns the selected value.
|
|
//
|
|
// If v is the address of a struct, the result will be the address of
|
|
// a field; if it is the value of a struct, the result will be the
|
|
// value of a field.
|
|
//
|
|
func emitImplicitSelections(f *Function, v Value, indices []int) Value {
|
|
for _, index := range indices {
|
|
fld := deref(v.Type()).Underlying().(*types.Struct).Field(index)
|
|
|
|
if isPointer(v.Type()) {
|
|
instr := &FieldAddr{
|
|
X: v,
|
|
Field: index,
|
|
}
|
|
instr.setType(types.NewPointer(fld.Type()))
|
|
v = f.emit(instr)
|
|
// Load the field's value iff indirectly embedded.
|
|
if isPointer(fld.Type()) {
|
|
v = emitLoad(f, v)
|
|
}
|
|
} else {
|
|
instr := &Field{
|
|
X: v,
|
|
Field: index,
|
|
}
|
|
instr.setType(fld.Type())
|
|
v = f.emit(instr)
|
|
}
|
|
}
|
|
return v
|
|
}
|
|
|
|
// emitFieldSelection emits to f code to select the index'th field of v.
|
|
//
|
|
// If wantAddr, the input must be a pointer-to-struct and the result
|
|
// will be the field's address; otherwise the result will be the
|
|
// field's value.
|
|
//
|
|
func emitFieldSelection(f *Function, v Value, index int, wantAddr bool, pos token.Pos) Value {
|
|
fld := deref(v.Type()).Underlying().(*types.Struct).Field(index)
|
|
if isPointer(v.Type()) {
|
|
instr := &FieldAddr{
|
|
X: v,
|
|
Field: index,
|
|
}
|
|
instr.setPos(pos)
|
|
instr.setType(types.NewPointer(fld.Type()))
|
|
v = f.emit(instr)
|
|
// Load the field's value iff we don't want its address.
|
|
if !wantAddr {
|
|
v = emitLoad(f, v)
|
|
}
|
|
} else {
|
|
instr := &Field{
|
|
X: v,
|
|
Field: index,
|
|
}
|
|
instr.setPos(pos)
|
|
instr.setType(fld.Type())
|
|
v = f.emit(instr)
|
|
}
|
|
return v
|
|
}
|
|
|
|
// createRecoverBlock emits to f a block of code to return after a
|
|
// recovered panic, and sets f.Recover to it.
|
|
//
|
|
// If f's result parameters are named, the code loads and returns
|
|
// their current values, otherwise it returns the zero values of their
|
|
// type.
|
|
//
|
|
// Idempotent.
|
|
//
|
|
func createRecoverBlock(f *Function) {
|
|
if f.Recover != nil {
|
|
return // already created
|
|
}
|
|
saved := f.currentBlock
|
|
|
|
f.Recover = f.newBasicBlock("recover")
|
|
f.currentBlock = f.Recover
|
|
|
|
var results []Value
|
|
if f.namedResults != nil {
|
|
// Reload NRPs to form value tuple.
|
|
for _, r := range f.namedResults {
|
|
results = append(results, emitLoad(f, r))
|
|
}
|
|
} else {
|
|
R := f.Signature.Results()
|
|
for i, n := 0, R.Len(); i < n; i++ {
|
|
T := R.At(i).Type()
|
|
var v Value
|
|
|
|
// Return zero value of each result type.
|
|
switch T.Underlying().(type) {
|
|
case *types.Struct, *types.Array:
|
|
v = emitLoad(f, f.addLocal(T, token.NoPos))
|
|
default:
|
|
v = zeroConst(T)
|
|
}
|
|
results = append(results, v)
|
|
}
|
|
}
|
|
f.emit(&Return{Results: results})
|
|
|
|
f.currentBlock = saved
|
|
}
|