1
0
mirror of https://github.com/golang/go synced 2024-11-20 01:54:41 -07:00
go/src/runtime/msize.go
Rick Hudson 899a4ad47e runtime: Speed up heapBitsForObject
Optimized heapBitsForObject by special casing
objects whose size is a power of two. When a
span holding such objects is initialized I
added a mask that when &ed with an interior pointer
results in the base of the pointer. For the garbage
benchmark this resulted in CPU_CLK_UNHALTED in
heapBitsForObject going from 7.7% down to 5.9%
of the total, INST_RETIRED went from 12.2 -> 8.7.

Here are the benchmarks that were at lease plus or minus 1%.

benchmark                          old ns/op      new ns/op      delta
BenchmarkFmtFprintfString          249            221            -11.24%
BenchmarkFmtFprintfInt             247            223            -9.72%
BenchmarkFmtFprintfEmpty           76.5           69.6           -9.02%
BenchmarkBinaryTree17              4106631412     3744550160     -8.82%
BenchmarkFmtFprintfFloat           424            399            -5.90%
BenchmarkGoParse                   4484421        4242115        -5.40%
BenchmarkGobEncode                 8803668        8449107        -4.03%
BenchmarkFmtManyArgs               1494           1436           -3.88%
BenchmarkGobDecode                 10431051       10032606       -3.82%
BenchmarkFannkuch11                2591306713     2517400464     -2.85%
BenchmarkTimeParse                 361            371            +2.77%
BenchmarkJSONDecode                70620492       68830357       -2.53%
BenchmarkRegexpMatchMedium_1K      54693          53343          -2.47%
BenchmarkTemplate                  90008879       91929940       +2.13%
BenchmarkTimeFormat                380            387            +1.84%
BenchmarkRegexpMatchEasy1_32       111            113            +1.80%
BenchmarkJSONEncode                21359159       21007583       -1.65%
BenchmarkRegexpMatchEasy1_1K       603            613            +1.66%
BenchmarkRegexpMatchEasy0_32       127            129            +1.57%
BenchmarkFmtFprintfIntInt          399            393            -1.50%
BenchmarkRegexpMatchEasy0_1K       373            378            +1.34%

Change-Id: I78e297161026f8b5cc7507c965fd3e486f81ed29
Reviewed-on: https://go-review.googlesource.com/8980
Reviewed-by: Austin Clements <austin@google.com>
2015-04-20 21:39:06 +00:00

255 lines
7.9 KiB
Go

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Malloc small size classes.
//
// See malloc.go for overview.
//
// The size classes are chosen so that rounding an allocation
// request up to the next size class wastes at most 12.5% (1.125x).
//
// Each size class has its own page count that gets allocated
// and chopped up when new objects of the size class are needed.
// That page count is chosen so that chopping up the run of
// pages into objects of the given size wastes at most 12.5% (1.125x)
// of the memory. It is not necessary that the cutoff here be
// the same as above.
//
// The two sources of waste multiply, so the worst possible case
// for the above constraints would be that allocations of some
// size might have a 26.6% (1.266x) overhead.
// In practice, only one of the wastes comes into play for a
// given size (sizes < 512 waste mainly on the round-up,
// sizes > 512 waste mainly on the page chopping).
//
// TODO(rsc): Compute max waste for any given size.
package runtime
// Size classes. Computed and initialized by InitSizes.
//
// SizeToClass(0 <= n <= MaxSmallSize) returns the size class,
// 1 <= sizeclass < NumSizeClasses, for n.
// Size class 0 is reserved to mean "not small".
//
// class_to_size[i] = largest size in class i
// class_to_allocnpages[i] = number of pages to allocate when
// making new objects in class i
// The SizeToClass lookup is implemented using two arrays,
// one mapping sizes <= 1024 to their class and one mapping
// sizes >= 1024 and <= MaxSmallSize to their class.
// All objects are 8-aligned, so the first array is indexed by
// the size divided by 8 (rounded up). Objects >= 1024 bytes
// are 128-aligned, so the second array is indexed by the
// size divided by 128 (rounded up). The arrays are filled in
// by InitSizes.
var class_to_size [_NumSizeClasses]int32
var class_to_allocnpages [_NumSizeClasses]int32
var class_to_divmagic [_NumSizeClasses]divMagic
var size_to_class8 [1024/8 + 1]int8
var size_to_class128 [(_MaxSmallSize-1024)/128 + 1]int8
func sizeToClass(size int32) int32 {
if size > _MaxSmallSize {
throw("SizeToClass - invalid size")
}
if size > 1024-8 {
return int32(size_to_class128[(size-1024+127)>>7])
}
return int32(size_to_class8[(size+7)>>3])
}
func initSizes() {
// Initialize the runtime·class_to_size table (and choose class sizes in the process).
class_to_size[0] = 0
sizeclass := 1 // 0 means no class
align := 8
for size := align; size <= _MaxSmallSize; size += align {
if size&(size-1) == 0 { // bump alignment once in a while
if size >= 2048 {
align = 256
} else if size >= 128 {
align = size / 8
} else if size >= 16 {
align = 16 // required for x86 SSE instructions, if we want to use them
}
}
if align&(align-1) != 0 {
throw("InitSizes - bug")
}
// Make the allocnpages big enough that
// the leftover is less than 1/8 of the total,
// so wasted space is at most 12.5%.
allocsize := _PageSize
for allocsize%size > allocsize/8 {
allocsize += _PageSize
}
npages := allocsize >> _PageShift
// If the previous sizeclass chose the same
// allocation size and fit the same number of
// objects into the page, we might as well
// use just this size instead of having two
// different sizes.
if sizeclass > 1 && npages == int(class_to_allocnpages[sizeclass-1]) && allocsize/size == allocsize/int(class_to_size[sizeclass-1]) {
class_to_size[sizeclass-1] = int32(size)
continue
}
class_to_allocnpages[sizeclass] = int32(npages)
class_to_size[sizeclass] = int32(size)
sizeclass++
}
if sizeclass != _NumSizeClasses {
print("sizeclass=", sizeclass, " NumSizeClasses=", _NumSizeClasses, "\n")
throw("InitSizes - bad NumSizeClasses")
}
// Initialize the size_to_class tables.
nextsize := 0
for sizeclass = 1; sizeclass < _NumSizeClasses; sizeclass++ {
for ; nextsize < 1024 && nextsize <= int(class_to_size[sizeclass]); nextsize += 8 {
size_to_class8[nextsize/8] = int8(sizeclass)
}
if nextsize >= 1024 {
for ; nextsize <= int(class_to_size[sizeclass]); nextsize += 128 {
size_to_class128[(nextsize-1024)/128] = int8(sizeclass)
}
}
}
// Double-check SizeToClass.
if false {
for n := int32(0); n < _MaxSmallSize; n++ {
sizeclass := sizeToClass(n)
if sizeclass < 1 || sizeclass >= _NumSizeClasses || class_to_size[sizeclass] < n {
print("size=", n, " sizeclass=", sizeclass, " runtime·class_to_size=", class_to_size[sizeclass], "\n")
print("incorrect SizeToClass\n")
goto dump
}
if sizeclass > 1 && class_to_size[sizeclass-1] >= n {
print("size=", n, " sizeclass=", sizeclass, " runtime·class_to_size=", class_to_size[sizeclass], "\n")
print("SizeToClass too big\n")
goto dump
}
}
}
testdefersizes()
// Copy out for statistics table.
for i := 0; i < len(class_to_size); i++ {
memstats.by_size[i].size = uint32(class_to_size[i])
}
for i := 1; i < len(class_to_size); i++ {
class_to_divmagic[i] = computeDivMagic(uint32(class_to_size[i]))
}
return
dump:
if true {
print("NumSizeClasses=", _NumSizeClasses, "\n")
print("runtime·class_to_size:")
for sizeclass = 0; sizeclass < _NumSizeClasses; sizeclass++ {
print(" ", class_to_size[sizeclass], "")
}
print("\n\n")
print("size_to_class8:")
for i := 0; i < len(size_to_class8); i++ {
print(" ", i*8, "=>", size_to_class8[i], "(", class_to_size[size_to_class8[i]], ")\n")
}
print("\n")
print("size_to_class128:")
for i := 0; i < len(size_to_class128); i++ {
print(" ", i*128, "=>", size_to_class128[i], "(", class_to_size[size_to_class128[i]], ")\n")
}
print("\n")
}
throw("InitSizes failed")
}
// Returns size of the memory block that mallocgc will allocate if you ask for the size.
func roundupsize(size uintptr) uintptr {
if size < _MaxSmallSize {
if size <= 1024-8 {
return uintptr(class_to_size[size_to_class8[(size+7)>>3]])
} else {
return uintptr(class_to_size[size_to_class128[(size-1024+127)>>7]])
}
}
if size+_PageSize < size {
return size
}
return round(size, _PageSize)
}
// divMagic holds magic constants to implement division
// by a particular constant as a shift, multiply, and shift.
// That is, given
// m = computeMagic(d)
// then
// n/d == ((n>>m.shift) * m.mul) >> m.shift2
//
// The magic computation picks m such that
// d = d₁*d₂
// d₂= 2^m.shift
// m.mul = ⌈2^m.shift2 / d₁⌉
//
// The magic computation here is tailored for malloc block sizes
// and does not handle arbitrary d correctly. Malloc block sizes d are
// always even, so the first shift implements the factors of 2 in d
// and then the mul and second shift implement the odd factor
// that remains. Because the first shift divides n by at least 2 (actually 8)
// before the multiply gets involved, the huge corner cases that
// require additional adjustment are impossible, so the usual
// fixup is not needed.
//
// For more details see Hacker's Delight, Chapter 10, and
// http://ridiculousfish.com/blog/posts/labor-of-division-episode-i.html
// http://ridiculousfish.com/blog/posts/labor-of-division-episode-iii.html
type divMagic struct {
shift uint8
mul uint32
shift2 uint8
baseMask uintptr
}
func computeDivMagic(d uint32) divMagic {
var m divMagic
// If the size is a power of two, heapBitsForObject can divide even faster by masking.
// Compute this mask.
if d&(d-1) == 0 {
// It is a power of 2 (assuming dinptr != 1)
m.baseMask = ^(uintptr(d) - 1)
} else {
m.baseMask = 0
}
// Compute pre-shift by factoring power of 2 out of d.
for d&1 == 0 {
m.shift++
d >>= 1
}
// Compute largest k such that ⌈2^k / d⌉ fits in a 32-bit int.
// This is always a good enough approximation.
// We could use smaller k for some divisors but there's no point.
k := uint8(63)
d64 := uint64(d)
for ((1<<k)+d64-1)/d64 >= 1<<32 {
k--
}
m.mul = uint32(((1 << k) + d64 - 1) / d64) // ⌈2^k / d⌉
m.shift2 = k
return m
}