1
0
mirror of https://github.com/golang/go synced 2024-11-12 10:30:23 -07:00
go/usr/gri/bignum/bignum.go
Robert Griesemer 78b0013a07 - changed general div/mod implementation to a faster algorithm
(operates on 30bit values at a time instead of 20bit values)
- refactored and cleaned up lots of code
- more tests
- close to check-in as complete library

R=r
OCL=18326
CL=18326
2008-11-03 09:21:10 -08:00

978 lines
18 KiB
Go
Executable File

// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package Bignum
// A package for arbitrary precision arithmethic.
// It implements the following numeric types:
//
// - Natural unsigned integer numbers
// - Integer signed integer numbers
// - Rational rational numbers
// ----------------------------------------------------------------------------
// Representation
//
// A natural number of the form
//
// x = x[n-1]*B^(n-1) + x[n-2]*B^(n-2) + ... + x[1]*B + x[0]
//
// with 0 <= x[i] < B and 0 <= i < n is stored in an array of length n,
// with the digits x[i] as the array elements.
//
// A natural number is normalized if the array contains no leading 0 digits.
// During arithmetic operations, denormalized values may occur which are
// always normalized before returning the final result. The normalized
// representation of 0 is the empty array (length = 0).
//
// The base B is chosen as large as possible on a given platform but there
// are a few constraints besides the size of the largest unsigned integer
// type available.
// TODO describe the constraints.
const LogW = 64;
const LogH = 4; // bits for a hex digit (= "small" number)
const LogB = LogW - LogH;
const (
L2 = LogB / 2;
B2 = 1 << L2;
M2 = B2 - 1;
L = L2 * 2;
B = 1 << L;
M = B - 1;
)
type (
Digit2 uint32;
Digit uint64;
)
// ----------------------------------------------------------------------------
// Support
// TODO replace this with a Go built-in assert
func assert(p bool) {
if !p {
panic("assert failed");
}
}
// ----------------------------------------------------------------------------
// Raw operations
func And1(z, x *[]Digit, y Digit) {
for i := len(x) - 1; i >= 0; i-- {
z[i] = x[i] & y;
}
}
func And(z, x, y *[]Digit) {
for i := len(x) - 1; i >= 0; i-- {
z[i] = x[i] & y[i];
}
}
func Or1(z, x *[]Digit, y Digit) {
for i := len(x) - 1; i >= 0; i-- {
z[i] = x[i] | y;
}
}
func Or(z, x, y *[]Digit) {
for i := len(x) - 1; i >= 0; i-- {
z[i] = x[i] | y[i];
}
}
func Xor1(z, x *[]Digit, y Digit) {
for i := len(x) - 1; i >= 0; i-- {
z[i] = x[i] ^ y;
}
}
func Xor(z, x, y *[]Digit) {
for i := len(x) - 1; i >= 0; i-- {
z[i] = x[i] ^ y[i];
}
}
func Add1(z, x *[]Digit, c Digit) Digit {
n := len(x);
for i := 0; i < n; i++ {
t := c + x[i];
c, z[i] = t>>L, t&M
}
return c;
}
func Add(z, x, y *[]Digit) Digit {
var c Digit;
n := len(x);
for i := 0; i < n; i++ {
t := c + x[i] + y[i];
c, z[i] = t>>L, t&M
}
return c;
}
func Sub1(z, x *[]Digit, c Digit) Digit {
n := len(x);
for i := 0; i < n; i++ {
t := c + x[i];
c, z[i] = Digit(int64(t)>>L), t&M; // arithmetic shift!
}
return c;
}
func Sub(z, x, y *[]Digit) Digit {
var c Digit;
n := len(x);
for i := 0; i < n; i++ {
t := c + x[i] - y[i];
c, z[i] = Digit(int64(t)>>L), t&M; // arithmetic shift!
}
return c;
}
// Returns c = x*y div B, z = x*y mod B.
func Mul11(x, y Digit) (Digit, Digit) {
// Split x and y into 2 sub-digits each (in base sqrt(B)),
// multiply the digits separately while avoiding overflow,
// and return the product as two separate digits.
const L0 = (L + 1)/2;
const L1 = L - L0;
const DL = L0 - L1; // 0 or 1
const b = 1<<L0;
const m = b - 1;
// split x and y into sub-digits
// x = (x1*b + x0)
// y = (y1*b + y0)
x1, x0 := x>>L0, x&m;
y1, y0 := y>>L0, y&m;
// x*y = t2*b^2 + t1*b + t0
t0 := x0*y0;
t1 := x1*y0 + x0*y1;
t2 := x1*y1;
// compute the result digits but avoid overflow
// z = z1*B + z0 = x*y
z0 := (t1<<L0 + t0)&M;
z1 := t2<<DL + (t1 + t0>>L0)>>L1;
return z1, z0;
}
func Mul(z, x, y *[]Digit) {
n := len(x);
m := len(y);
for j := 0; j < m; j++ {
d := y[j];
if d != 0 {
c := Digit(0);
for i := 0; i < n; i++ {
// z[i+j] += c + x[i]*d;
z1, z0 := Mul11(x[i], d);
t := c + z[i+j] + z0;
c, z[i+j] = t>>L, t&M;
c += z1;
}
z[n+j] = c;
}
}
}
func Mul1(z, x *[]Digit2, y Digit2) Digit2 {
n := len(x);
var c Digit;
f := Digit(y);
for i := 0; i < n; i++ {
t := c + Digit(x[i])*f;
c, z[i] = t>>L2, Digit2(t&M2);
}
return Digit2(c);
}
func Div1(z, x *[]Digit2, y Digit2) Digit2 {
n := len(x);
var c Digit;
d := Digit(y);
for i := n-1; i >= 0; i-- {
t := c*B2 + Digit(x[i]);
c, z[i] = t%d, Digit2(t/d);
}
return Digit2(c);
}
func Shl(z, x *[]Digit, s uint) Digit {
assert(s <= L);
n := len(x);
var c Digit;
for i := 0; i < n; i++ {
c, z[i] = x[i] >> (L-s), x[i] << s & M | c;
}
return c;
}
func Shr(z, x *[]Digit, s uint) Digit {
assert(s <= L);
n := len(x);
var c Digit;
for i := n - 1; i >= 0; i-- {
c, z[i] = x[i] << (L-s) & M, x[i] >> s | c;
}
return c;
}
// ----------------------------------------------------------------------------
// Support
func IsSmall(x Digit) bool {
return x < 1<<LogH;
}
func Split(x Digit) (Digit, Digit) {
return x>>L, x&M;
}
export func Dump(x *[]Digit) {
print("[", len(x), "]");
for i := len(x) - 1; i >= 0; i-- {
print(" ", x[i]);
}
println();
}
// ----------------------------------------------------------------------------
// Natural numbers
//
// Naming conventions
//
// B, b bases
// c carry
// x, y operands
// z result
// n, m n = len(x), m = len(y)
export type Natural []Digit;
export var NatZero *Natural = new(Natural, 0);
export func Nat(x Digit) *Natural {
var z *Natural;
switch {
case x == 0:
z = NatZero;
case x < B:
z = new(Natural, 1);
z[0] = x;
return z;
default:
z = new(Natural, 2);
z[1], z[0] = Split(x);
}
return z;
}
func Normalize(x *Natural) *Natural {
n := len(x);
for n > 0 && x[n - 1] == 0 { n-- }
if n < len(x) {
x = x[0 : n]; // trim leading 0's
}
return x;
}
func Normalize2(x *[]Digit2) *[]Digit2 {
n := len(x);
for n > 0 && x[n - 1] == 0 { n-- }
if n < len(x) {
x = x[0 : n]; // trim leading 0's
}
return x;
}
// Predicates
func (x *Natural) IsZero() bool { return len(x) == 0; }
func (x *Natural) IsOdd() bool { return len(x) > 0 && x[0]&1 != 0; }
func (x *Natural) Add(y *Natural) *Natural {
n := len(x);
m := len(y);
if n < m {
return y.Add(x);
}
z := new(Natural, n + 1);
c := Add(z[0 : m], x[0 : m], y);
z[n] = Add1(z[m : n], x[m : n], c);
return Normalize(z);
}
func (x *Natural) Sub(y *Natural) *Natural {
n := len(x);
m := len(y);
if n < m {
panic("underflow")
}
z := new(Natural, n);
c := Sub(z[0 : m], x[0 : m], y);
if Sub1(z[m : n], x[m : n], c) != 0 {
panic("underflow");
}
return Normalize(z);
}
// Computes x = x*a + c (in place) for "small" a's.
func (x* Natural) MulAdd1(a, c Digit) *Natural {
assert(IsSmall(a-1) && IsSmall(c));
n := len(x);
z := new(Natural, n + 1);
for i := 0; i < n; i++ { c, z[i] = Split(c + x[i]*a); }
z[n] = c;
return Normalize(z);
}
func (x *Natural) Mul(y *Natural) *Natural {
n := len(x);
m := len(y);
z := new(Natural, n + m);
Mul(z, x, y);
return Normalize(z);
}
func Pop1(x Digit) uint {
n := uint(0);
for x != 0 {
x &= x-1;
n++;
}
return n;
}
func (x *Natural) Pop() uint {
n := uint(0);
for i := len(x) - 1; i >= 0; i-- {
n += Pop1(x[i]);
}
return n;
}
func (x *Natural) Pow(n uint) *Natural {
z := Nat(1);
for n > 0 {
// z * x^n == x^n0
if n&1 == 1 {
z = z.Mul(x);
}
x, n = x.Mul(x), n/2;
}
return z;
}
func (x *Natural) Shl(s uint) *Natural {
n := uint(len(x));
m := n + s/L;
z := new(Natural, m+1);
z[m] = Shl(z[m-n : m], x, s%L);
return Normalize(z);
}
func (x *Natural) Shr(s uint) *Natural {
n := uint(len(x));
m := n - s/L;
if m > n { // check for underflow
m = 0;
}
z := new(Natural, m);
Shr(z, x[n-m : n], s%L);
return Normalize(z);
}
// DivMod needs multi-precision division which is not available if Digit
// is already using the largest uint size. Split base before division,
// and merge again after. Each Digit is split into 2 Digit2's.
func Unpack(x *Natural) *[]Digit2 {
// TODO Use Log() for better result - don't need Normalize2 at the end!
n := len(x);
z := new([]Digit2, n*2 + 1); // add space for extra digit (used by DivMod)
for i := 0; i < n; i++ {
t := x[i];
z[i*2] = Digit2(t & M2);
z[i*2 + 1] = Digit2(t >> L2 & M2);
}
return Normalize2(z);
}
func Pack(x *[]Digit2) *Natural {
n := (len(x) + 1) / 2;
z := new(Natural, n);
if len(x) & 1 == 1 {
// handle odd len(x)
n--;
z[n] = Digit(x[n*2]);
}
for i := 0; i < n; i++ {
z[i] = Digit(x[i*2 + 1]) << L2 | Digit(x[i*2]);
}
return Normalize(z);
}
// Division and modulo computation - destroys x and y. Based on the
// algorithms described in:
//
// 1) D. Knuth, "The Art of Computer Programming. Volume 2. Seminumerical
// Algorithms." Addison-Wesley, Reading, 1969.
//
// 2) P. Brinch Hansen, Multiple-length division revisited: A tour of the
// minefield. "Software - Practice and Experience 24", (June 1994),
// 579-601. John Wiley & Sons, Ltd.
//
// Specifically, the inplace computation of quotient and remainder
// is described in 1), while 2) provides the background for a more
// accurate initial guess of the trial digit.
func DivMod2(x, y *[]Digit2) (*[]Digit2, *[]Digit2) {
const b = B2;
n := len(x);
m := len(y);
assert(m > 0); // division by zero
assert(n+1 <= cap(x)); // space for one extra digit (should it be == ?)
x = x[0 : n + 1];
if m == 1 {
// division by single digit
// result is shifted left by 1 in place!
x[0] = Div1(x[1 : n+1], x[0 : n], y[0]);
} else if m > n {
// quotient = 0, remainder = x
// TODO in this case we shouldn't even split base - FIX THIS
m = n;
} else {
// general case
assert(2 <= m && m <= n);
assert(x[n] == 0);
// normalize x and y
f := b/(Digit(y[m-1]) + 1);
Mul1(x, x, Digit2(f));
Mul1(y, y, Digit2(f));
assert(b/2 <= y[m-1] && y[m-1] < b); // incorrect scaling
y1, y2 := Digit(y[m-1]), Digit(y[m-2]);
d2 := Digit(y1)*b + Digit(y2);
for i := n-m; i >= 0; i-- {
k := i+m;
// compute trial digit
var q Digit;
{ // Knuth
x0, x1, x2 := Digit(x[k]), Digit(x[k-1]), Digit(x[k-2]);
if x0 != y1 {
q = (x0*b + x1)/y1;
} else {
q = b-1;
}
for y2 * q > (x0*b + x1 - y1*q)*b + x2 {
q--
}
}
// subtract y*q
c := Digit(0);
for j := 0; j < m; j++ {
t := c + Digit(x[i+j]) - Digit(y[j])*q; // arithmetic shift!
c, x[i+j] = Digit(int64(t)>>L2), Digit2(t&M2);
}
// correct if trial digit was too large
if c + Digit(x[k]) != 0 {
// add y
c := Digit(0);
for j := 0; j < m; j++ {
t := c + Digit(x[i+j]) + Digit(y[j]);
c, x[i+j] = uint64(int64(t) >> L2), Digit2(t & M2)
}
assert(c + Digit(x[k]) == 0);
// correct trial digit
q--;
}
x[k] = Digit2(q);
}
// undo normalization for remainder
c := Div1(x[0 : m], x[0 : m], Digit2(f));
assert(c == 0);
}
return x[m : n+1], x[0 : m];
}
func (x *Natural) Div(y *Natural) *Natural {
q, r := DivMod2(Unpack(x), Unpack(y));
return Pack(q);
}
func (x *Natural) Mod(y *Natural) *Natural {
q, r := DivMod2(Unpack(x), Unpack(y));
return Pack(r);
}
func (x *Natural) DivMod(y *Natural) (*Natural, *Natural) {
q, r := DivMod2(Unpack(x), Unpack(y));
return Pack(q), Pack(r);
}
func (x *Natural) Cmp(y *Natural) int {
n := len(x);
m := len(y);
if n != m || n == 0 {
return n - m;
}
i := n - 1;
for i > 0 && x[i] == y[i] { i--; }
d := 0;
switch {
case x[i] < y[i]: d = -1;
case x[i] > y[i]: d = 1;
}
return d;
}
func Log2(x Digit) int {
n := -1;
for x != 0 { x = x >> 1; n++; } // BUG >>= broken for uint64
return n;
}
func (x *Natural) Log2() int {
n := len(x);
if n > 0 {
n = (n - 1)*L + Log2(x[n - 1]);
} else {
n = -1;
}
return n;
}
func (x *Natural) And(y *Natural) *Natural {
n := len(x);
m := len(y);
if n < m {
return y.And(x);
}
z := new(Natural, n);
And(z[0 : m], x[0 : m], y);
Or1(z[m : n], x[m : n], 0);
return Normalize(z);
}
func (x *Natural) Or(y *Natural) *Natural {
n := len(x);
m := len(y);
if n < m {
return y.Or(x);
}
z := new(Natural, n);
Or(z[0 : m], x[0 : m], y);
Or1(z[m : n], x[m : n], 0);
return Normalize(z);
}
func (x *Natural) Xor(y *Natural) *Natural {
n := len(x);
m := len(y);
if n < m {
return y.Xor(x);
}
z := new(Natural, n);
Xor(z[0 : m], x[0 : m], y);
Or1(z[m : n], x[m : n], 0);
return Normalize(z);
}
// Computes x = x div d (in place - the recv maybe modified) for "small" d's.
// Returns updated x and x mod d.
func (x *Natural) DivMod1(d Digit) (*Natural, Digit) {
assert(0 < d && IsSmall(d - 1));
c := Digit(0);
for i := len(x) - 1; i >= 0; i-- {
t := c<<L + x[i];
c, x[i] = t%d, t/d;
}
return Normalize(x), c;
}
func (x *Natural) String(base uint) string {
if x.IsZero() {
return "0";
}
// allocate string
assert(2 <= base && base <= 16);
n := (x.Log2() + 1) / Log2(Digit(base)) + 1; // TODO why the +1?
s := new([]byte, n);
// convert
// don't destroy x, make a copy
t := new(Natural, len(x));
Or1(t, x, 0); // copy x
i := n;
for !t.IsZero() {
i--;
var d Digit;
t, d = t.DivMod1(Digit(base));
s[i] = "0123456789abcdef"[d];
};
return string(s[i : n]);
}
export func MulRange(a, b Digit) *Natural {
switch {
case a > b: return Nat(1);
case a == b: return Nat(a);
case a + 1 == b: return Nat(a).Mul(Nat(b));
}
m := (a + b)>>1;
assert(a <= m && m < b);
return MulRange(a, m).Mul(MulRange(m + 1, b));
}
export func Fact(n Digit) *Natural {
// Using MulRange() instead of the basic for-loop
// lead to faster factorial computation.
return MulRange(2, n);
}
func (x *Natural) Gcd(y *Natural) *Natural {
// Euclidean algorithm.
for !y.IsZero() {
x, y = y, x.Mod(y);
}
return x;
}
func HexValue(ch byte) uint {
d := uint(1 << LogH);
switch {
case '0' <= ch && ch <= '9': d = uint(ch - '0');
case 'a' <= ch && ch <= 'f': d = uint(ch - 'a') + 10;
case 'A' <= ch && ch <= 'F': d = uint(ch - 'A') + 10;
}
return d;
}
// TODO auto-detect base if base argument is 0
export func NatFromString(s string, base uint) *Natural {
x := NatZero;
for i := 0; i < len(s); i++ {
d := HexValue(s[i]);
if d < base {
x = x.MulAdd1(Digit(base), Digit(d));
} else {
break;
}
}
return x;
}
// ----------------------------------------------------------------------------
// Algorithms
export type T interface {
IsZero() bool;
Mod(y T) bool;
}
export func Gcd(x, y T) T {
// Euclidean algorithm.
for !y.IsZero() {
x, y = y, x.Mod(y);
}
return x;
}
// ----------------------------------------------------------------------------
// Integer numbers
export type Integer struct {
sign bool;
mant *Natural;
}
export func Int(x int64) *Integer {
return nil;
}
func (x *Integer) Add(y *Integer) *Integer {
var z *Integer;
if x.sign == y.sign {
// x + y == x + y
// (-x) + (-y) == -(x + y)
z = &Integer{x.sign, x.mant.Add(y.mant)};
} else {
// x + (-y) == x - y == -(y - x)
// (-x) + y == y - x == -(x - y)
if x.mant.Cmp(y.mant) >= 0 {
z = &Integer{false, x.mant.Sub(y.mant)};
} else {
z = &Integer{true, y.mant.Sub(x.mant)};
}
}
if x.sign {
z.sign = !z.sign;
}
return z;
}
func (x *Integer) Sub(y *Integer) *Integer {
var z *Integer;
if x.sign != y.sign {
// x - (-y) == x + y
// (-x) - y == -(x + y)
z = &Integer{x.sign, x.mant.Add(y.mant)};
} else {
// x - y == x - y == -(y - x)
// (-x) - (-y) == y - x == -(x - y)
if x.mant.Cmp(y.mant) >= 0 {
z = &Integer{false, x.mant.Sub(y.mant)};
} else {
z = &Integer{true, y.mant.Sub(x.mant)};
}
}
if x.sign {
z.sign = !z.sign;
}
return z;
}
func (x *Integer) Mul(y *Integer) *Integer {
// x * y == x * y
// x * (-y) == -(x * y)
// (-x) * y == -(x * y)
// (-x) * (-y) == x * y
return &Integer{x.sign != y.sign, x.mant.Mul(y.mant)};
}
func (x *Integer) Quo(y *Integer) *Integer {
// x / y == x / y
// x / (-y) == -(x / y)
// (-x) / y == -(x / y)
// (-x) / (-y) == x / y
return &Integer{x.sign != y.sign, x.mant.Div(y.mant)};
}
func (x *Integer) Rem(y *Integer) *Integer {
// x % y == x % y
// x % (-y) == x % y
// (-x) % y == -(x % y)
// (-x) % (-y) == -(x % y)
return &Integer{y.sign, x.mant.Mod(y.mant)};
}
func (x *Integer) QuoRem(y *Integer) (*Integer, *Integer) {
q, r := x.mant.DivMod(y.mant);
return &Integer{x.sign != y.sign, q}, &Integer{y.sign, q};
}
func (x *Integer) Div(y *Integer) *Integer {
q, r := x.mant.DivMod(y.mant);
return nil;
}
func (x *Integer) Mod(y *Integer) *Integer {
panic("UNIMPLEMENTED");
return nil;
}
func (x *Integer) Cmp(y *Integer) int {
panic("UNIMPLEMENTED");
return 0;
}
func (x *Integer) String(base uint) string {
if x.mant.IsZero() {
return "0";
}
var s string;
if x.sign {
s = "-";
}
return s + x.mant.String(base);
}
export func IntFromString(s string, base uint) *Integer {
// get sign, if any
sign := false;
if len(s) > 0 && (s[0] == '-' || s[0] == '+') {
sign = s[0] == '-';
}
return &Integer{sign, NatFromString(s[1 : len(s)], base)};
}
// ----------------------------------------------------------------------------
// Rational numbers
export type Rational struct {
a, b *Integer; // a = numerator, b = denominator
}
func (x *Rational) Normalize() *Rational {
f := x.a.mant.Gcd(x.b.mant);
x.a.mant = x.a.mant.Div(f);
x.b.mant = x.b.mant.Div(f);
return x;
}
func Rat(a, b *Integer) *Rational {
return (&Rational{a, b}).Normalize();
}
func (x *Rational) Add(y *Rational) *Rational {
return Rat((x.a.Mul(y.b)).Add(x.b.Mul(y.a)), x.b.Mul(y.b));
}
func (x *Rational) Sub(y *Rational) *Rational {
return Rat((x.a.Mul(y.b)).Sub(x.b.Mul(y.a)), x.b.Mul(y.b));
}
func (x *Rational) Mul(y *Rational) *Rational {
return Rat(x.a.Mul(y.a), x.b.Mul(y.b));
}
func (x *Rational) Div(y *Rational) *Rational {
return Rat(x.a.Mul(y.b), x.b.Mul(y.a));
}
func (x *Rational) Mod(y *Rational) *Rational {
panic("UNIMPLEMENTED");
return nil;
}
func (x *Rational) Cmp(y *Rational) int {
panic("UNIMPLEMENTED");
return 0;
}
export func RatFromString(s string) *Rational {
panic("UNIMPLEMENTED");
return nil;
}