1
0
mirror of https://github.com/golang/go synced 2024-11-18 22:14:56 -07:00
go/internal/lsp/lsprpc/lsprpc.go
Rob Findley 2b5917cebf internal/lsp/lsprpc: forward the go environment in initialize requests
The gopls workspace environment defaults to the process environment in
which gopls was started. This means that when switching environments,
gopls can potentially get a different environment when connecting as an
editor sidecar from when forwarding requests to the daemon.

To (hopefully mostly) mitigate this pain point, inject the Go
environment when forwarding the 'initialize' request, which contains
InitializationOptions containing the 'env' configuration. We could go
further and send the entire os.Environ(), but that seems problematic
both in its unbounded nature, and because in many cases the user may not
actually want to send their process env over the wire. Gopls behavior
should *mostly* be parameterized by gopls binary and Go env, and after
this change these should match for forwarder and daemon.

For go1.15, Explicitly set the GOMODCACHE environment variable in the
regtest sandbox. Without this, regtests were failing in the forwarded
environment because they implicitly shared a module cache.

Fixes golang/go#37830

Change-Id: Ic1b335506f8b481505eac9f74c0df6293dc07158
Reviewed-on: https://go-review.googlesource.com/c/tools/+/234109
Run-TryBot: Robert Findley <rfindley@google.com>
Reviewed-by: Ian Cottrell <iancottrell@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
2020-06-16 15:43:56 +00:00

519 lines
16 KiB
Go

// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package lsprpc implements a jsonrpc2.StreamServer that may be used to
// serve the LSP on a jsonrpc2 channel.
package lsprpc
import (
"context"
"encoding/json"
"fmt"
"log"
"net"
"os"
"strconv"
"sync/atomic"
"time"
"golang.org/x/tools/internal/event"
"golang.org/x/tools/internal/gocommand"
"golang.org/x/tools/internal/jsonrpc2"
"golang.org/x/tools/internal/lsp"
"golang.org/x/tools/internal/lsp/cache"
"golang.org/x/tools/internal/lsp/debug"
"golang.org/x/tools/internal/lsp/debug/tag"
"golang.org/x/tools/internal/lsp/protocol"
)
// AutoNetwork is the pseudo network type used to signal that gopls should use
// automatic discovery to resolve a remote address.
const AutoNetwork = "auto"
// Unique identifiers for client/server.
var serverIndex int64
// The StreamServer type is a jsonrpc2.StreamServer that handles incoming
// streams as a new LSP session, using a shared cache.
type StreamServer struct {
cache *cache.Cache
// serverForTest may be set to a test fake for testing.
serverForTest protocol.Server
}
// NewStreamServer creates a StreamServer using the shared cache. If
// withTelemetry is true, each session is instrumented with telemetry that
// records RPC statistics.
func NewStreamServer(cache *cache.Cache) *StreamServer {
return &StreamServer{cache: cache}
}
// ServeStream implements the jsonrpc2.StreamServer interface, by handling
// incoming streams using a new lsp server.
func (s *StreamServer) ServeStream(ctx context.Context, conn jsonrpc2.Conn) error {
client := protocol.ClientDispatcher(conn)
session := s.cache.NewSession(ctx)
server := s.serverForTest
if server == nil {
server = lsp.NewServer(session, client)
}
// Clients may or may not send a shutdown message. Make sure the server is
// shut down.
// TODO(rFindley): this shutdown should perhaps be on a disconnected context.
defer func() {
if err := server.Shutdown(ctx); err != nil {
event.Error(ctx, "error shutting down", err)
}
}()
executable, err := os.Executable()
if err != nil {
log.Printf("error getting gopls path: %v", err)
executable = ""
}
ctx = protocol.WithClient(ctx, client)
conn.Go(ctx,
protocol.Handlers(
handshaker(session, executable,
protocol.ServerHandler(server,
jsonrpc2.MethodNotFound))))
<-conn.Done()
return conn.Err()
}
// A Forwarder is a jsonrpc2.StreamServer that handles an LSP stream by
// forwarding it to a remote. This is used when the gopls process started by
// the editor is in the `-remote` mode, which means it finds and connects to a
// separate gopls daemon. In these cases, we still want the forwarder gopls to
// be instrumented with telemetry, and want to be able to in some cases hijack
// the jsonrpc2 connection with the daemon.
type Forwarder struct {
network, addr string
// goplsPath is the path to the current executing gopls binary.
goplsPath string
// configuration
dialTimeout time.Duration
retries int
remoteDebug string
remoteListenTimeout time.Duration
remoteLogfile string
}
// A ForwarderOption configures the behavior of the LSP forwarder.
type ForwarderOption interface {
setForwarder(*Forwarder)
}
// RemoteDebugAddress configures the address used by the auto-started Gopls daemon
// for serving debug information.
type RemoteDebugAddress string
func (d RemoteDebugAddress) setForwarder(fwd *Forwarder) {
fwd.remoteDebug = string(d)
}
// RemoteListenTimeout configures the amount of time the auto-started gopls
// daemon will wait with no client connections before shutting down.
type RemoteListenTimeout time.Duration
func (d RemoteListenTimeout) setForwarder(fwd *Forwarder) {
fwd.remoteListenTimeout = time.Duration(d)
}
// RemoteLogfile configures the logfile location for the auto-started gopls
// daemon.
type RemoteLogfile string
func (l RemoteLogfile) setForwarder(fwd *Forwarder) {
fwd.remoteLogfile = string(l)
}
// NewForwarder creates a new Forwarder, ready to forward connections to the
// remote server specified by network and addr.
func NewForwarder(network, addr string, opts ...ForwarderOption) *Forwarder {
gp, err := os.Executable()
if err != nil {
log.Printf("error getting gopls path for forwarder: %v", err)
gp = ""
}
fwd := &Forwarder{
network: network,
addr: addr,
goplsPath: gp,
dialTimeout: 1 * time.Second,
retries: 5,
remoteLogfile: "auto",
remoteListenTimeout: 1 * time.Minute,
}
for _, opt := range opts {
opt.setForwarder(fwd)
}
return fwd
}
// QueryServerState queries the server state of the current server.
func QueryServerState(ctx context.Context, network, address string) (*ServerState, error) {
if network == AutoNetwork {
gp, err := os.Executable()
if err != nil {
return nil, fmt.Errorf("getting gopls path: %w", err)
}
network, address = autoNetworkAddress(gp, address)
}
netConn, err := net.DialTimeout(network, address, 5*time.Second)
if err != nil {
return nil, fmt.Errorf("dialing remote: %w", err)
}
serverConn := jsonrpc2.NewConn(jsonrpc2.NewHeaderStream(netConn))
serverConn.Go(ctx, jsonrpc2.MethodNotFound)
var state ServerState
if err := protocol.Call(ctx, serverConn, sessionsMethod, nil, &state); err != nil {
return nil, fmt.Errorf("querying server state: %w", err)
}
return &state, nil
}
// ServeStream dials the forwarder remote and binds the remote to serve the LSP
// on the incoming stream.
func (f *Forwarder) ServeStream(ctx context.Context, clientConn jsonrpc2.Conn) error {
client := protocol.ClientDispatcher(clientConn)
netConn, err := f.connectToRemote(ctx)
if err != nil {
return fmt.Errorf("forwarder: connecting to remote: %w", err)
}
serverConn := jsonrpc2.NewConn(jsonrpc2.NewHeaderStream(netConn))
server := protocol.ServerDispatcher(serverConn)
// Forward between connections.
serverConn.Go(ctx,
protocol.Handlers(
protocol.ClientHandler(client,
jsonrpc2.MethodNotFound)))
// Don't run the clientConn yet, so that we can complete the handshake before
// processing any client messages.
// Do a handshake with the server instance to exchange debug information.
index := atomic.AddInt64(&serverIndex, 1)
serverID := strconv.FormatInt(index, 10)
var (
hreq = handshakeRequest{
ServerID: serverID,
GoplsPath: f.goplsPath,
}
hresp handshakeResponse
)
if di := debug.GetInstance(ctx); di != nil {
hreq.Logfile = di.Logfile
hreq.DebugAddr = di.ListenedDebugAddress
}
if err := protocol.Call(ctx, serverConn, handshakeMethod, hreq, &hresp); err != nil {
event.Error(ctx, "forwarder: gopls handshake failed", err)
}
if hresp.GoplsPath != f.goplsPath {
event.Error(ctx, "", fmt.Errorf("forwarder: gopls path mismatch: forwarder is %q, remote is %q", f.goplsPath, hresp.GoplsPath))
}
event.Log(ctx, "New server",
tag.NewServer.Of(serverID),
tag.Logfile.Of(hresp.Logfile),
tag.DebugAddress.Of(hresp.DebugAddr),
tag.GoplsPath.Of(hresp.GoplsPath),
tag.ClientID.Of(hresp.SessionID),
)
clientConn.Go(ctx,
protocol.Handlers(
forwarderHandler(
protocol.ServerHandler(server,
jsonrpc2.MethodNotFound))))
select {
case <-serverConn.Done():
clientConn.Close()
case <-clientConn.Done():
serverConn.Close()
}
err = serverConn.Err()
if err == nil {
err = clientConn.Err()
}
return err
}
func (f *Forwarder) connectToRemote(ctx context.Context) (net.Conn, error) {
var (
netConn net.Conn
err error
network, address = f.network, f.addr
)
if f.network == AutoNetwork {
// f.network is overloaded to support a concept of 'automatic' addresses,
// which signals that the gopls remote address should be automatically
// derived.
// So we need to resolve a real network and address here.
network, address = autoNetworkAddress(f.goplsPath, f.addr)
}
// Attempt to verify that we own the remote. This is imperfect, but if we can
// determine that the remote is owned by a different user, we should fail.
ok, err := verifyRemoteOwnership(network, address)
if err != nil {
// If the ownership check itself failed, we fail open but log an error to
// the user.
event.Error(ctx, "unable to check daemon socket owner, failing open", err)
} else if !ok {
// We succesfully checked that the socket is not owned by us, we fail
// closed.
return nil, fmt.Errorf("socket %q is owned by a different user", address)
}
// Try dialing our remote once, in case it is already running.
netConn, err = net.DialTimeout(network, address, f.dialTimeout)
if err == nil {
return netConn, nil
}
// If our remote is on the 'auto' network, start it if it doesn't exist.
if f.network == AutoNetwork {
if f.goplsPath == "" {
return nil, fmt.Errorf("cannot auto-start remote: gopls path is unknown")
}
if network == "unix" {
// Sometimes the socketfile isn't properly cleaned up when gopls shuts
// down. Since we have already tried and failed to dial this address, it
// should *usually* be safe to remove the socket before binding to the
// address.
// TODO(rfindley): there is probably a race here if multiple gopls
// instances are simultaneously starting up.
if _, err := os.Stat(address); err == nil {
if err := os.Remove(address); err != nil {
return nil, fmt.Errorf("removing remote socket file: %w", err)
}
}
}
args := []string{"serve",
"-listen", fmt.Sprintf(`%s;%s`, network, address),
"-listen.timeout", f.remoteListenTimeout.String(),
"-logfile", f.remoteLogfile,
}
if f.remoteDebug != "" {
args = append(args, "-debug", f.remoteDebug)
}
if err := startRemote(f.goplsPath, args...); err != nil {
return nil, fmt.Errorf("startRemote(%q, %v): %w", f.goplsPath, args, err)
}
}
// It can take some time for the newly started server to bind to our address,
// so we retry for a bit.
for retry := 0; retry < f.retries; retry++ {
startDial := time.Now()
netConn, err = net.DialTimeout(network, address, f.dialTimeout)
if err == nil {
return netConn, nil
}
event.Log(ctx, fmt.Sprintf("failed attempt #%d to connect to remote: %v\n", retry+2, err))
// In case our failure was a fast-failure, ensure we wait at least
// f.dialTimeout before trying again.
if retry != f.retries-1 {
time.Sleep(f.dialTimeout - time.Since(startDial))
}
}
return nil, fmt.Errorf("dialing remote: %w", err)
}
// forwarderHandler intercepts 'exit' messages to prevent the shared gopls
// instance from exiting. In the future it may also intercept 'shutdown' to
// provide more graceful shutdown of the client connection.
func forwarderHandler(handler jsonrpc2.Handler) jsonrpc2.Handler {
return func(ctx context.Context, reply jsonrpc2.Replier, r jsonrpc2.Request) error {
// The gopls workspace environment defaults to the process environment in
// which gopls daemon was started. To avoid discrepancies in Go environment
// between the editor and daemon, inject any unset variables in `go env`
// into the options sent by initialize.
//
// See also golang.org/issue/37830.
if r.Method() == "initialize" {
if newr, err := addGoEnvToInitializeRequest(ctx, r); err == nil {
r = newr
} else {
log.Printf("unable to add local env to initialize request: %v", err)
}
}
return handler(ctx, reply, r)
}
}
// addGoEnvToInitializeRequest builds a new initialize request in which we set
// any environment variables output by `go env` and not already present in the
// request.
//
// It returns an error if r is not an initialize requst, or is otherwise
// malformed.
func addGoEnvToInitializeRequest(ctx context.Context, r jsonrpc2.Request) (jsonrpc2.Request, error) {
var params protocol.ParamInitialize
if err := json.Unmarshal(r.Params(), &params); err != nil {
return nil, err
}
var opts map[string]interface{}
switch v := params.InitializationOptions.(type) {
case nil:
opts = make(map[string]interface{})
case map[string]interface{}:
opts = v
default:
return nil, fmt.Errorf("unexpected type for InitializationOptions: %T", v)
}
envOpt, ok := opts["env"]
if !ok {
envOpt = make(map[string]interface{})
}
env, ok := envOpt.(map[string]interface{})
if !ok {
return nil, fmt.Errorf(`env option is %T, expected a map`, envOpt)
}
goenv, err := getGoEnv(ctx, env)
if err != nil {
return nil, err
}
for govar, value := range goenv {
env[govar] = value
}
opts["env"] = env
params.InitializationOptions = opts
call, ok := r.(*jsonrpc2.Call)
if !ok {
return nil, fmt.Errorf("%T is not a *jsonrpc2.Call", r)
}
return jsonrpc2.NewCall(call.ID(), "initialize", params)
}
func getGoEnv(ctx context.Context, env map[string]interface{}) (map[string]string, error) {
var runEnv []string
for k, v := range env {
runEnv = append(runEnv, fmt.Sprintf("%s=%s", k, v))
}
runner := gocommand.Runner{}
output, err := runner.Run(ctx, gocommand.Invocation{
Verb: "env",
Args: []string{"-json"},
Env: runEnv,
})
if err != nil {
return nil, err
}
envmap := make(map[string]string)
if err := json.Unmarshal(output.Bytes(), &envmap); err != nil {
return nil, err
}
return envmap, nil
}
// A handshakeRequest identifies a client to the LSP server.
type handshakeRequest struct {
// ServerID is the ID of the server on the client. This should usually be 0.
ServerID string `json:"serverID"`
// Logfile is the location of the clients log file.
Logfile string `json:"logfile"`
// DebugAddr is the client debug address.
DebugAddr string `json:"debugAddr"`
// GoplsPath is the path to the Gopls binary running the current client
// process.
GoplsPath string `json:"goplsPath"`
}
// A handshakeResponse is returned by the LSP server to tell the LSP client
// information about its session.
type handshakeResponse struct {
// SessionID is the server session associated with the client.
SessionID string `json:"sessionID"`
// Logfile is the location of the server logs.
Logfile string `json:"logfile"`
// DebugAddr is the server debug address.
DebugAddr string `json:"debugAddr"`
// GoplsPath is the path to the Gopls binary running the current server
// process.
GoplsPath string `json:"goplsPath"`
}
// ClientSession identifies a current client LSP session on the server. Note
// that it looks similar to handshakeResposne, but in fact 'Logfile' and
// 'DebugAddr' now refer to the client.
type ClientSession struct {
SessionID string `json:"sessionID"`
Logfile string `json:"logfile"`
DebugAddr string `json:"debugAddr"`
}
// ServerState holds information about the gopls daemon process, including its
// debug information and debug information of all of its current connected
// clients.
type ServerState struct {
Logfile string `json:"logfile"`
DebugAddr string `json:"debugAddr"`
GoplsPath string `json:"goplsPath"`
CurrentClientID string `json:"currentClientID"`
Clients []ClientSession `json:"clients"`
}
const (
handshakeMethod = "gopls/handshake"
sessionsMethod = "gopls/sessions"
)
func handshaker(session *cache.Session, goplsPath string, handler jsonrpc2.Handler) jsonrpc2.Handler {
return func(ctx context.Context, reply jsonrpc2.Replier, r jsonrpc2.Request) error {
switch r.Method() {
case handshakeMethod:
var req handshakeRequest
if err := json.Unmarshal(r.Params(), &req); err != nil {
sendError(ctx, reply, err)
return nil
}
event.Log(ctx, "Handshake session update",
cache.KeyUpdateSession.Of(session),
tag.DebugAddress.Of(req.DebugAddr),
tag.Logfile.Of(req.Logfile),
tag.ServerID.Of(req.ServerID),
tag.GoplsPath.Of(req.GoplsPath),
)
resp := handshakeResponse{
SessionID: session.ID(),
GoplsPath: goplsPath,
}
if di := debug.GetInstance(ctx); di != nil {
resp.Logfile = di.Logfile
resp.DebugAddr = di.ListenedDebugAddress
}
return reply(ctx, resp, nil)
case sessionsMethod:
resp := ServerState{
GoplsPath: goplsPath,
CurrentClientID: session.ID(),
}
if di := debug.GetInstance(ctx); di != nil {
resp.Logfile = di.Logfile
resp.DebugAddr = di.ListenedDebugAddress
for _, c := range di.State.Clients() {
resp.Clients = append(resp.Clients, ClientSession{
SessionID: c.Session.ID(),
Logfile: c.Logfile,
DebugAddr: c.DebugAddress,
})
}
}
return reply(ctx, resp, nil)
}
return handler(ctx, reply, r)
}
}
func sendError(ctx context.Context, reply jsonrpc2.Replier, err error) {
err = fmt.Errorf("%w: %v", jsonrpc2.ErrParse, err)
if err := reply(ctx, nil, err); err != nil {
event.Error(ctx, "", err)
}
}