1
0
mirror of https://github.com/golang/go synced 2024-11-18 23:14:43 -07:00
go/internal/lsp/regtest/env.go
Rob Findley 5fb17a1e7b internal/jsonrpc2: support serving over unix domain sockets
For tests (and perhaps later, for daemon discovery), unix domain sockets
offer advantages over TCP: we can know the exact socket address that will be
used when starting a server subprocess. They also offer performance and
security advantages over TCP, and were specifically requested on
golang.org/issues/34111.

This CL adds support for listening on UDS, and uses this to implement an
additional regtest environment mode that starts up an external process.
This mode is disabled by default, but may be enabled by the
-enable_gopls_subprocess_tests.

The regtest TestMain may be hijacked to instead run as gopls, if a
special environment variable is set. This allows the the test runner to
start a separate process by using os.Argv[0]. The -gopls_test_binary
flag may be used to point tests at a separate gopls binary.

Updates golang/go#36879
Updates golang/go#34111

Change-Id: I1cfdf55040e81ffa69a6726878a96529e5522e82
Reviewed-on: https://go-review.googlesource.com/c/tools/+/218839
Run-TryBot: Robert Findley <rfindley@google.com>
TryBot-Result: Gobot Gobot <gobot@golang.org>
Reviewed-by: Heschi Kreinick <heschi@google.com>
2020-02-19 16:14:01 +00:00

433 lines
12 KiB
Go

// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package regtest provides an environment for writing regression tests.
package regtest
import (
"bytes"
"context"
"fmt"
"io/ioutil"
"os"
"os/exec"
"path/filepath"
"strings"
"sync"
"testing"
"time"
"golang.org/x/tools/internal/jsonrpc2/servertest"
"golang.org/x/tools/internal/lsp/cache"
"golang.org/x/tools/internal/lsp/fake"
"golang.org/x/tools/internal/lsp/lsprpc"
"golang.org/x/tools/internal/lsp/protocol"
)
// EnvMode is a bitmask that defines in which execution environments a test
// should run.
type EnvMode int
const (
// Singleton mode uses a separate cache for each test.
Singleton EnvMode = 1 << iota
// Shared mode uses a Shared cache.
Shared
// Forwarded forwards connections to an in-process gopls instance.
Forwarded
// SeparateProcess runs a separate gopls process, and forwards connections to
// it.
SeparateProcess
// NormalModes runs tests in all modes.
NormalModes = Singleton | Shared | Forwarded
)
// A Runner runs tests in gopls execution environments, as specified by its
// modes. For modes that share state (for example, a shared cache or common
// remote), any tests that execute on the same Runner will share the same
// state.
type Runner struct {
defaultModes EnvMode
timeout time.Duration
goplsPath string
mu sync.Mutex
ts *servertest.TCPServer
socketDir string
}
// NewTestRunner creates a Runner with its shared state initialized, ready to
// run tests.
func NewTestRunner(modes EnvMode, testTimeout time.Duration, goplsPath string) *Runner {
return &Runner{
defaultModes: modes,
timeout: testTimeout,
goplsPath: goplsPath,
}
}
// Modes returns the bitmask of environment modes this runner is configured to
// test.
func (r *Runner) Modes() EnvMode {
return r.defaultModes
}
// getTestServer gets the test server instance to connect to, or creates one if
// it doesn't exist.
func (r *Runner) getTestServer() *servertest.TCPServer {
r.mu.Lock()
defer r.mu.Unlock()
if r.ts == nil {
ss := lsprpc.NewStreamServer(cache.New(nil), false)
r.ts = servertest.NewTCPServer(context.Background(), ss)
}
return r.ts
}
// runTestAsGoplsEnvvar triggers TestMain to run gopls instead of running
// tests. It's a trick to allow tests to find a binary to use to start a gopls
// subprocess.
const runTestAsGoplsEnvvar = "_GOPLS_TEST_BINARY_RUN_AS_GOPLS"
func (r *Runner) getRemoteSocket(t *testing.T) string {
t.Helper()
r.mu.Lock()
defer r.mu.Unlock()
const daemonFile = "gopls-test-daemon"
if r.socketDir != "" {
return filepath.Join(r.socketDir, daemonFile)
}
if r.goplsPath == "" {
t.Fatal("cannot run tests with a separate process unless a path to a gopls binary is configured")
}
var err error
r.socketDir, err = ioutil.TempDir("", "gopls-regtests")
if err != nil {
t.Fatalf("creating tempdir: %v", err)
}
socket := filepath.Join(r.socketDir, daemonFile)
args := []string{"serve", "-listen", "unix;" + socket}
cmd := exec.Command(r.goplsPath, args...)
cmd.Env = append(os.Environ(), runTestAsGoplsEnvvar+"=true")
var stderr bytes.Buffer
cmd.Stderr = &stderr
go func() {
if err := cmd.Run(); err != nil {
panic(fmt.Sprintf("error running external gopls: %v\nstderr:\n%s", err, stderr.String()))
}
}()
return socket
}
// Close cleans up resource that have been allocated to this workspace.
func (r *Runner) Close() error {
r.mu.Lock()
defer r.mu.Unlock()
if r.ts != nil {
r.ts.Close()
}
if r.socketDir != "" {
os.RemoveAll(r.socketDir)
}
return nil
}
// Run executes the test function in the default configured gopls execution
// modes. For each a test run, a new workspace is created containing the
// un-txtared files specified by filedata.
func (r *Runner) Run(t *testing.T, filedata string, test func(context.Context, *testing.T, *Env)) {
t.Helper()
r.RunInMode(r.defaultModes, t, filedata, test)
}
// RunInMode runs the test in the execution modes specified by the modes bitmask.
func (r *Runner) RunInMode(modes EnvMode, t *testing.T, filedata string, test func(ctx context.Context, t *testing.T, e *Env)) {
t.Helper()
tests := []struct {
name string
mode EnvMode
getConnector func(context.Context, *testing.T) (servertest.Connector, func())
}{
{"singleton", Singleton, r.singletonEnv},
{"shared", Shared, r.sharedEnv},
{"forwarded", Forwarded, r.forwardedEnv},
{"separate_process", SeparateProcess, r.separateProcessEnv},
}
for _, tc := range tests {
tc := tc
if modes&tc.mode == 0 {
continue
}
t.Run(tc.name, func(t *testing.T) {
t.Helper()
ctx, cancel := context.WithTimeout(context.Background(), r.timeout)
defer cancel()
ws, err := fake.NewWorkspace("lsprpc", []byte(filedata))
if err != nil {
t.Fatal(err)
}
defer ws.Close()
ts, cleanup := tc.getConnector(ctx, t)
defer cleanup()
env := NewEnv(ctx, t, ws, ts)
test(ctx, t, env)
})
}
}
func (r *Runner) singletonEnv(ctx context.Context, t *testing.T) (servertest.Connector, func()) {
ss := lsprpc.NewStreamServer(cache.New(nil), false)
ts := servertest.NewPipeServer(ctx, ss)
cleanup := func() {
ts.Close()
}
return ts, cleanup
}
func (r *Runner) sharedEnv(ctx context.Context, t *testing.T) (servertest.Connector, func()) {
return r.getTestServer(), func() {}
}
func (r *Runner) forwardedEnv(ctx context.Context, t *testing.T) (servertest.Connector, func()) {
ts := r.getTestServer()
forwarder := lsprpc.NewForwarder("tcp", ts.Addr, false)
ts2 := servertest.NewPipeServer(ctx, forwarder)
cleanup := func() {
ts2.Close()
}
return ts2, cleanup
}
func (r *Runner) separateProcessEnv(ctx context.Context, t *testing.T) (servertest.Connector, func()) {
socket := r.getRemoteSocket(t)
forwarder := lsprpc.NewForwarder("unix", socket, false)
ts2 := servertest.NewPipeServer(ctx, forwarder)
cleanup := func() {
ts2.Close()
}
return ts2, cleanup
}
// Env holds an initialized fake Editor, Workspace, and Server, which may be
// used for writing tests. It also provides adapter methods that call t.Fatal
// on any error, so that tests for the happy path may be written without
// checking errors.
type Env struct {
t *testing.T
ctx context.Context
// Most tests should not need to access the workspace or editor, or server,
// but they are available if needed.
W *fake.Workspace
E *fake.Editor
Server servertest.Connector
// mu guards the fields below, for the purpose of checking conditions on
// every change to diagnostics.
mu sync.Mutex
// For simplicity, each waiter gets a unique ID.
nextWaiterID int
lastDiagnostics map[string]*protocol.PublishDiagnosticsParams
waiters map[int]*diagnosticCondition
}
// A diagnosticCondition is satisfied when all expectations are simultaneously
// met. At that point, the 'met' channel is closed.
type diagnosticCondition struct {
expectations []DiagnosticExpectation
met chan struct{}
}
// NewEnv creates a new test environment using the given workspace and gopls
// server.
func NewEnv(ctx context.Context, t *testing.T, ws *fake.Workspace, ts servertest.Connector) *Env {
t.Helper()
conn := ts.Connect(ctx)
editor, err := fake.NewConnectedEditor(ctx, ws, conn)
if err != nil {
t.Fatal(err)
}
env := &Env{
t: t,
ctx: ctx,
W: ws,
E: editor,
Server: ts,
lastDiagnostics: make(map[string]*protocol.PublishDiagnosticsParams),
waiters: make(map[int]*diagnosticCondition),
}
env.E.Client().OnDiagnostics(env.onDiagnostics)
return env
}
// RemoveFileFromWorkspace deletes a file on disk but does nothing in the
// editor. It calls t.Fatal on any error.
func (e *Env) RemoveFileFromWorkspace(name string) {
e.t.Helper()
if err := e.W.RemoveFile(e.ctx, name); err != nil {
e.t.Fatal(err)
}
}
// OpenFile opens a file in the editor, calling t.Fatal on any error.
func (e *Env) OpenFile(name string) {
e.t.Helper()
if err := e.E.OpenFile(e.ctx, name); err != nil {
e.t.Fatal(err)
}
}
// CreateBuffer creates a buffer in the editor, calling t.Fatal on any error.
func (e *Env) CreateBuffer(name string, content string) {
e.t.Helper()
if err := e.E.CreateBuffer(e.ctx, name, content); err != nil {
e.t.Fatal(err)
}
}
// EditBuffer applies edits to an editor buffer, calling t.Fatal on any error.
func (e *Env) EditBuffer(name string, edits ...fake.Edit) {
e.t.Helper()
if err := e.E.EditBuffer(e.ctx, name, edits); err != nil {
e.t.Fatal(err)
}
}
// GoToDefinition goes to definition in the editor, calling t.Fatal on any
// error.
func (e *Env) GoToDefinition(name string, pos fake.Pos) (string, fake.Pos) {
e.t.Helper()
n, p, err := e.E.GoToDefinition(e.ctx, name, pos)
if err != nil {
e.t.Fatal(err)
}
return n, p
}
func (e *Env) onDiagnostics(_ context.Context, d *protocol.PublishDiagnosticsParams) error {
e.mu.Lock()
defer e.mu.Unlock()
pth := e.W.URIToPath(d.URI)
e.lastDiagnostics[pth] = d
for id, condition := range e.waiters {
if meetsCondition(e.lastDiagnostics, condition.expectations) {
delete(e.waiters, id)
close(condition.met)
}
}
return nil
}
// CloseEditor shuts down the editor, calling t.Fatal on any error.
func (e *Env) CloseEditor() {
e.t.Helper()
if err := e.E.ShutdownAndExit(e.ctx); err != nil {
e.t.Fatal(err)
}
}
func meetsCondition(m map[string]*protocol.PublishDiagnosticsParams, expectations []DiagnosticExpectation) bool {
for _, e := range expectations {
if !e.IsMet(m) {
return false
}
}
return true
}
// A DiagnosticExpectation is a condition that must be met by the current set
// of diagnostics.
type DiagnosticExpectation struct {
IsMet func(map[string]*protocol.PublishDiagnosticsParams) bool
Description string
}
// EmptyDiagnostics asserts that diagnostics are empty for the
// workspace-relative path name.
func EmptyDiagnostics(name string) DiagnosticExpectation {
isMet := func(diags map[string]*protocol.PublishDiagnosticsParams) bool {
ds, ok := diags[name]
return ok && len(ds.Diagnostics) == 0
}
return DiagnosticExpectation{
IsMet: isMet,
Description: fmt.Sprintf("empty diagnostics for %q", name),
}
}
// DiagnosticAt asserts that there is a diagnostic entry at the position
// specified by line and col, for the workspace-relative path name.
func DiagnosticAt(name string, line, col int) DiagnosticExpectation {
isMet := func(diags map[string]*protocol.PublishDiagnosticsParams) bool {
ds, ok := diags[name]
if !ok || len(ds.Diagnostics) == 0 {
return false
}
for _, d := range ds.Diagnostics {
if d.Range.Start.Line == float64(line) && d.Range.Start.Character == float64(col) {
return true
}
}
return false
}
return DiagnosticExpectation{
IsMet: isMet,
Description: fmt.Sprintf("diagnostic in %q at (line:%d, column:%d)", name, line, col),
}
}
// Await waits for all diagnostic expectations to simultaneously be met.
func (e *Env) Await(expectations ...DiagnosticExpectation) {
// NOTE: in the future this mechanism extend beyond just diagnostics, for
// example by modifying IsMet to be a func(*Env) boo. However, that would
// require careful checking of conditions around every state change, so for
// now we just limit the scope to diagnostic conditions.
e.t.Helper()
e.mu.Lock()
// Before adding the waiter, we check if the condition is currently met to
// avoid a race where the condition was realized before Await was called.
if meetsCondition(e.lastDiagnostics, expectations) {
e.mu.Unlock()
return
}
met := make(chan struct{})
e.waiters[e.nextWaiterID] = &diagnosticCondition{
expectations: expectations,
met: met,
}
e.nextWaiterID++
e.mu.Unlock()
select {
case <-e.ctx.Done():
// Debugging an unmet expectation can be tricky, so we put some effort into
// nicely formatting the failure.
var descs []string
for _, e := range expectations {
descs = append(descs, e.Description)
}
e.mu.Lock()
diagString := formatDiagnostics(e.lastDiagnostics)
e.mu.Unlock()
e.t.Fatalf("waiting on (%s):\nerr:%v\ndiagnostics:\n%s", strings.Join(descs, ", "), e.ctx.Err(), diagString)
case <-met:
}
}
func formatDiagnostics(diags map[string]*protocol.PublishDiagnosticsParams) string {
var b strings.Builder
for name, params := range diags {
b.WriteString(name + ":\n")
for _, d := range params.Diagnostics {
b.WriteString(fmt.Sprintf("\t(%d, %d): %s\n", int(d.Range.Start.Line), int(d.Range.Start.Character), d.Message))
}
}
return b.String()
}