mirror of
https://github.com/golang/go
synced 2024-11-19 05:44:40 -07:00
713699d8ad
R=r CC=golang-dev https://golang.org/cl/13305043
301 lines
7.7 KiB
Go
301 lines
7.7 KiB
Go
// Copyright 2013 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package ssa
|
|
|
|
// This file defines algorithms related to dominance.
|
|
|
|
// Dominator tree construction ----------------------------------------
|
|
//
|
|
// We use the algorithm described in Lengauer & Tarjan. 1979. A fast
|
|
// algorithm for finding dominators in a flowgraph.
|
|
// http://doi.acm.org/10.1145/357062.357071
|
|
//
|
|
// We also apply the optimizations to SLT described in Georgiadis et
|
|
// al, Finding Dominators in Practice, JGAA 2006,
|
|
// http://jgaa.info/accepted/2006/GeorgiadisTarjanWerneck2006.10.1.pdf
|
|
// to avoid the need for buckets of size > 1.
|
|
|
|
import (
|
|
"fmt"
|
|
"io"
|
|
"math/big"
|
|
"os"
|
|
)
|
|
|
|
// domNode represents a node in the dominator tree.
|
|
//
|
|
// TODO(adonovan): export this, when ready.
|
|
type domNode struct {
|
|
Block *BasicBlock // the basic block; n.Block.dom == n
|
|
Idom *domNode // immediate dominator (parent in dominator tree)
|
|
Children []*domNode // nodes dominated by this one
|
|
Level int // level number of node within tree; zero for root
|
|
Pre, Post int // pre- and post-order numbering within dominator tree
|
|
|
|
// Working state for Lengauer-Tarjan algorithm
|
|
// (during which Pre is repurposed for CFG DFS preorder number).
|
|
// TODO(adonovan): opt: measure allocating these as temps.
|
|
semi *domNode // semidominator
|
|
parent *domNode // parent in DFS traversal of CFG
|
|
ancestor *domNode // ancestor with least sdom
|
|
}
|
|
|
|
// ltDfs implements the depth-first search part of the LT algorithm.
|
|
func ltDfs(v *domNode, i int, preorder []*domNode) int {
|
|
preorder[i] = v
|
|
v.Pre = i // For now: DFS preorder of spanning tree of CFG
|
|
i++
|
|
v.semi = v
|
|
v.ancestor = nil
|
|
for _, succ := range v.Block.Succs {
|
|
if w := succ.dom; w.semi == nil {
|
|
w.parent = v
|
|
i = ltDfs(w, i, preorder)
|
|
}
|
|
}
|
|
return i
|
|
}
|
|
|
|
// ltEval implements the EVAL part of the LT algorithm.
|
|
func ltEval(v *domNode) *domNode {
|
|
// TODO(adonovan): opt: do path compression per simple LT.
|
|
u := v
|
|
for ; v.ancestor != nil; v = v.ancestor {
|
|
if v.semi.Pre < u.semi.Pre {
|
|
u = v
|
|
}
|
|
}
|
|
return u
|
|
}
|
|
|
|
// ltLink implements the LINK part of the LT algorithm.
|
|
func ltLink(v, w *domNode) {
|
|
w.ancestor = v
|
|
}
|
|
|
|
// buildDomTree computes the dominator tree of f using the LT algorithm.
|
|
// Precondition: all blocks are reachable (e.g. optimizeBlocks has been run).
|
|
//
|
|
func buildDomTree(f *Function) {
|
|
// The step numbers refer to the original LT paper; the
|
|
// reodering is due to Georgiadis.
|
|
|
|
// Initialize domNode nodes.
|
|
for _, b := range f.Blocks {
|
|
dom := b.dom
|
|
if dom == nil {
|
|
dom = &domNode{Block: b}
|
|
b.dom = dom
|
|
} else {
|
|
dom.Block = b // reuse
|
|
}
|
|
}
|
|
|
|
// Step 1. Number vertices by depth-first preorder.
|
|
n := len(f.Blocks)
|
|
preorder := make([]*domNode, n)
|
|
root := f.Blocks[0].dom
|
|
ltDfs(root, 0, preorder)
|
|
|
|
buckets := make([]*domNode, n)
|
|
copy(buckets, preorder)
|
|
|
|
// In reverse preorder...
|
|
for i := n - 1; i > 0; i-- {
|
|
w := preorder[i]
|
|
|
|
// Step 3. Implicitly define the immediate dominator of each node.
|
|
for v := buckets[i]; v != w; v = buckets[v.Pre] {
|
|
u := ltEval(v)
|
|
if u.semi.Pre < i {
|
|
v.Idom = u
|
|
} else {
|
|
v.Idom = w
|
|
}
|
|
}
|
|
|
|
// Step 2. Compute the semidominators of all nodes.
|
|
w.semi = w.parent
|
|
for _, pred := range w.Block.Preds {
|
|
v := pred.dom
|
|
u := ltEval(v)
|
|
if u.semi.Pre < w.semi.Pre {
|
|
w.semi = u.semi
|
|
}
|
|
}
|
|
|
|
ltLink(w.parent, w)
|
|
|
|
if w.parent == w.semi {
|
|
w.Idom = w.parent
|
|
} else {
|
|
buckets[i] = buckets[w.semi.Pre]
|
|
buckets[w.semi.Pre] = w
|
|
}
|
|
}
|
|
|
|
// The final 'Step 3' is now outside the loop.
|
|
for v := buckets[0]; v != root; v = buckets[v.Pre] {
|
|
v.Idom = root
|
|
}
|
|
|
|
// Step 4. Explicitly define the immediate dominator of each
|
|
// node, in preorder.
|
|
for _, w := range preorder[1:] {
|
|
if w == root {
|
|
w.Idom = nil
|
|
} else {
|
|
if w.Idom != w.semi {
|
|
w.Idom = w.Idom.Idom
|
|
}
|
|
// Calculate Children relation as inverse of Idom.
|
|
w.Idom.Children = append(w.Idom.Children, w)
|
|
}
|
|
|
|
// Clear working state.
|
|
w.semi = nil
|
|
w.parent = nil
|
|
w.ancestor = nil
|
|
}
|
|
|
|
numberDomTree(root, 0, 0, 0)
|
|
|
|
// printDomTreeDot(os.Stderr, f) // debugging
|
|
// printDomTreeText(os.Stderr, root, 0) // debugging
|
|
|
|
if f.Prog.mode&SanityCheckFunctions != 0 {
|
|
sanityCheckDomTree(f)
|
|
}
|
|
}
|
|
|
|
// numberDomTree sets the pre- and post-order numbers of a depth-first
|
|
// traversal of the dominator tree rooted at v. These are used to
|
|
// answer dominance queries in constant time. Also, it sets the level
|
|
// numbers (zero for the root) used for frontier computation.
|
|
//
|
|
func numberDomTree(v *domNode, pre, post, level int) (int, int) {
|
|
v.Level = level
|
|
level++
|
|
v.Pre = pre
|
|
pre++
|
|
for _, child := range v.Children {
|
|
pre, post = numberDomTree(child, pre, post, level)
|
|
}
|
|
v.Post = post
|
|
post++
|
|
return pre, post
|
|
}
|
|
|
|
// dominates returns true if b dominates c.
|
|
// Requires that dominance information is up-to-date.
|
|
//
|
|
func dominates(b, c *BasicBlock) bool {
|
|
return b.dom.Pre <= c.dom.Pre && c.dom.Post <= b.dom.Post
|
|
}
|
|
|
|
// Testing utilities ----------------------------------------
|
|
|
|
// sanityCheckDomTree checks the correctness of the dominator tree
|
|
// computed by the LT algorithm by comparing against the dominance
|
|
// relation computed by a naive Kildall-style forward dataflow
|
|
// analysis (Algorithm 10.16 from the "Dragon" book).
|
|
//
|
|
func sanityCheckDomTree(f *Function) {
|
|
n := len(f.Blocks)
|
|
|
|
// D[i] is the set of blocks that dominate f.Blocks[i],
|
|
// represented as a bit-set of block indices.
|
|
D := make([]big.Int, n)
|
|
|
|
one := big.NewInt(1)
|
|
|
|
// all is the set of all blocks; constant.
|
|
var all big.Int
|
|
all.Set(one).Lsh(&all, uint(n)).Sub(&all, one)
|
|
|
|
// Initialization.
|
|
for i := range f.Blocks {
|
|
if i == 0 {
|
|
// The root is dominated only by itself.
|
|
D[i].SetBit(&D[0], 0, 1)
|
|
} else {
|
|
// All other blocks are (initially) dominated
|
|
// by every block.
|
|
D[i].Set(&all)
|
|
}
|
|
}
|
|
|
|
// Iteration until fixed point.
|
|
for changed := true; changed; {
|
|
changed = false
|
|
for i, b := range f.Blocks {
|
|
if i == 0 {
|
|
continue
|
|
}
|
|
// Compute intersection across predecessors.
|
|
var x big.Int
|
|
x.Set(&all)
|
|
for _, pred := range b.Preds {
|
|
x.And(&x, &D[pred.Index])
|
|
}
|
|
x.SetBit(&x, i, 1) // a block always dominates itself.
|
|
if D[i].Cmp(&x) != 0 {
|
|
D[i].Set(&x)
|
|
changed = true
|
|
}
|
|
}
|
|
}
|
|
|
|
// Check the entire relation. O(n^2).
|
|
ok := true
|
|
for i := 0; i < n; i++ {
|
|
for j := 0; j < n; j++ {
|
|
b, c := f.Blocks[i], f.Blocks[j]
|
|
actual := dominates(b, c)
|
|
expected := D[j].Bit(i) == 1
|
|
if actual != expected {
|
|
fmt.Fprintf(os.Stderr, "dominates(%s, %s)==%t, want %t\n", b, c, actual, expected)
|
|
ok = false
|
|
}
|
|
}
|
|
}
|
|
if !ok {
|
|
panic("sanityCheckDomTree failed for " + f.String())
|
|
}
|
|
}
|
|
|
|
// Printing functions ----------------------------------------
|
|
|
|
// printDomTree prints the dominator tree as text, using indentation.
|
|
func printDomTreeText(w io.Writer, v *domNode, indent int) {
|
|
fmt.Fprintf(w, "%*s%s\n", 4*indent, "", v.Block)
|
|
for _, child := range v.Children {
|
|
printDomTreeText(w, child, indent+1)
|
|
}
|
|
}
|
|
|
|
// printDomTreeDot prints the dominator tree of f in AT&T GraphViz
|
|
// (.dot) format.
|
|
func printDomTreeDot(w io.Writer, f *Function) {
|
|
fmt.Fprintln(w, "//", f)
|
|
fmt.Fprintln(w, "digraph domtree {")
|
|
for i, b := range f.Blocks {
|
|
v := b.dom
|
|
fmt.Fprintf(w, "\tn%d [label=\"%s (%d, %d)\",shape=\"rectangle\"];\n", v.Pre, b, v.Pre, v.Post)
|
|
// TODO(adonovan): improve appearance of edges
|
|
// belonging to both dominator tree and CFG.
|
|
|
|
// Dominator tree edge.
|
|
if i != 0 {
|
|
fmt.Fprintf(w, "\tn%d -> n%d [style=\"solid\",weight=100];\n", v.Idom.Pre, v.Pre)
|
|
}
|
|
// CFG edges.
|
|
for _, pred := range b.Preds {
|
|
fmt.Fprintf(w, "\tn%d -> n%d [style=\"dotted\",weight=0];\n", pred.dom.Pre, v.Pre)
|
|
}
|
|
}
|
|
fmt.Fprintln(w, "}")
|
|
}
|