mirror of
https://github.com/golang/go
synced 2024-11-12 07:40:23 -07:00
f401cb3e75
R=rsc DELTA=2 (0 added, 0 deleted, 2 changed) OCL=31270 CL=31272
167 lines
2.8 KiB
Go
167 lines
2.8 KiB
Go
// $G $D/$F.go && $L $F.$A && ./$A.out
|
|
|
|
// Copyright 2009 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// A little test program for rational arithmetics.
|
|
// Computes a Hilbert matrix, its inverse, multiplies them
|
|
// and verifies that the product is the identity matrix.
|
|
|
|
package main
|
|
|
|
import Big "bignum"
|
|
import Fmt "fmt"
|
|
|
|
|
|
func assert(p bool) {
|
|
if !p {
|
|
panic("assert failed");
|
|
}
|
|
}
|
|
|
|
|
|
var (
|
|
Zero = Big.Rat(0, 1);
|
|
One = Big.Rat(1, 1);
|
|
)
|
|
|
|
|
|
type Matrix struct {
|
|
n, m int;
|
|
a []*Big.Rational;
|
|
}
|
|
|
|
|
|
func (a *Matrix) at(i, j int) *Big.Rational {
|
|
assert(0 <= i && i < a.n && 0 <= j && j < a.m);
|
|
return a.a[i*a.m + j];
|
|
}
|
|
|
|
|
|
func (a *Matrix) set(i, j int, x *Big.Rational) {
|
|
assert(0 <= i && i < a.n && 0 <= j && j < a.m);
|
|
a.a[i*a.m + j] = x;
|
|
}
|
|
|
|
|
|
func NewMatrix(n, m int) *Matrix {
|
|
assert(0 <= n && 0 <= m);
|
|
a := new(Matrix);
|
|
a.n = n;
|
|
a.m = m;
|
|
a.a = make([]*Big.Rational, n*m);
|
|
return a;
|
|
}
|
|
|
|
|
|
func NewUnit(n int) *Matrix {
|
|
a := NewMatrix(n, n);
|
|
for i := 0; i < n; i++ {
|
|
for j := 0; j < n; j++ {
|
|
x := Zero;
|
|
if i == j {
|
|
x = One;
|
|
}
|
|
a.set(i, j, x);
|
|
}
|
|
}
|
|
return a;
|
|
}
|
|
|
|
|
|
func NewHilbert(n int) *Matrix {
|
|
a := NewMatrix(n, n);
|
|
for i := 0; i < n; i++ {
|
|
for j := 0; j < n; j++ {
|
|
x := Big.Rat(1, int64(i + j + 1));
|
|
a.set(i, j, x);
|
|
}
|
|
}
|
|
return a;
|
|
}
|
|
|
|
|
|
func MakeRat(x Big.Natural) *Big.Rational {
|
|
return Big.MakeRat(Big.MakeInt(false, x), Big.Nat(1));
|
|
}
|
|
|
|
|
|
func NewInverseHilbert(n int) *Matrix {
|
|
a := NewMatrix(n, n);
|
|
for i := 0; i < n; i++ {
|
|
for j := 0; j < n; j++ {
|
|
x0 := One;
|
|
if (i+j)&1 != 0 {
|
|
x0 = x0.Neg();
|
|
}
|
|
x1 := Big.Rat(int64(i + j + 1), 1);
|
|
x2 := MakeRat(Big.Binomial(uint(n+i), uint(n-j-1)));
|
|
x3 := MakeRat(Big.Binomial(uint(n+j), uint(n-i-1)));
|
|
x4 := MakeRat(Big.Binomial(uint(i+j), uint(i)));
|
|
x4 = x4.Mul(x4);
|
|
a.set(i, j, x0.Mul(x1).Mul(x2).Mul(x3).Mul(x4));
|
|
}
|
|
}
|
|
return a;
|
|
}
|
|
|
|
|
|
func (a *Matrix) Mul(b *Matrix) *Matrix {
|
|
assert(a.m == b.n);
|
|
c := NewMatrix(a.n, b.m);
|
|
for i := 0; i < c.n; i++ {
|
|
for j := 0; j < c.m; j++ {
|
|
x := Zero;
|
|
for k := 0; k < a.m; k++ {
|
|
x = x.Add(a.at(i, k).Mul(b.at(k, j)));
|
|
}
|
|
c.set(i, j, x);
|
|
}
|
|
}
|
|
return c;
|
|
}
|
|
|
|
|
|
func (a *Matrix) Eql(b *Matrix) bool {
|
|
if a.n != b.n || a.m != b.m {
|
|
return false;
|
|
}
|
|
for i := 0; i < a.n; i++ {
|
|
for j := 0; j < a.m; j++ {
|
|
if a.at(i, j).Cmp(b.at(i,j)) != 0 {
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
|
|
func (a *Matrix) String() string {
|
|
s := "";
|
|
for i := 0; i < a.n; i++ {
|
|
for j := 0; j < a.m; j++ {
|
|
s += Fmt.Sprintf("\t%s", a.at(i, j));
|
|
}
|
|
s += "\n";
|
|
}
|
|
return s;
|
|
}
|
|
|
|
|
|
func main() {
|
|
n := 10;
|
|
a := NewHilbert(n);
|
|
b := NewInverseHilbert(n);
|
|
I := NewUnit(n);
|
|
ab := a.Mul(b);
|
|
if !ab.Eql(I) {
|
|
Fmt.Println("a =", a);
|
|
Fmt.Println("b =", b);
|
|
Fmt.Println("a*b =", ab);
|
|
Fmt.Println("I =", I);
|
|
panic("FAILED");
|
|
}
|
|
}
|